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Abstract. Parkinson's disease (PD) is a severe neurodegen-
erative disorder. Although the detailed underlying molecular 
mechanism remains to be elucidated, the major pathological 
feature of PD is the loss of dopaminergic (DA) neurons of 
the substantia nigra. The use of donor stem cells to replace 
DA neurons may be a key breakthrough in the treatment of 
PD. In the present study, the growth kinetics of hippocampal 
neural stem cells (Hip‑NSCs) isolated from postnatal mice 
and cultured in vitro were observed, specifically the genera-
tion of cells expressing DA neuronal markers nuclear receptor 
related‑1 protein (Nurr1) and tyrosine hydroxylase (TH). It was 
revealed that Hip‑NSCs differentiated primarily into astro-
cytes when cultured in serum‑containing medium. However, 
in low serum conditions, the number of βIII tubulin‑positive 
neurons increased markedly. The proportion of Nurr1‑positive 
cells and TH‑positive neurons, significantly increased with 
increasing duration of directed differentiation of Hip‑NSCs 
(P=0.0187 and 0.0254, respectively). The results of the present 
study reveal that Hip‑NSCs may be induced to differentiate 
in vitro into neurons expressing Nurr1 and TH, known to be 
critical regulators of DA neuronal fate. Additionally, their 
expression may be necessary to facilitate neuronal maturation 
in vitro. These data suggest that Hip‑NSCs may serve as a 

source of DA neurons for cell therapy in patients diagnosed 
with PD.

Introduction

Parkinson's disease (PD) is a progressively debilitating neuro-
degenerative disorder (1). The major pathological feature of PD 
is the selective degeneration and loss of dopaminergic (DA) 
neurons of the substantia nigra leading to a significant reduc-
tion in synthesis of extrapyramidal dopamine (2). Currently 
available medication only alleviates symptoms temporarily 
and cannot cure PD (3). It is therefore imperative to identify 
safe and effective methods of treating this disorder, preferably 
by supplementing patients with DA neurons. One approach is 
to investigate the dynamics of postnatal and adult neurogen-
esis in vivo, which if successfully manipulated may succeed 
in correcting the dopamine imbalance in PD patients (4,5). 
Another approach is to generate healthy DA neurons in vitro 
and transplant them into the brains of PD patients to replenish 
the loss (6).

The multipotent neural stem cells (NSCs) identified in the 
adult hippocampus have the ability to proliferate and differ-
entiate throughout the lifetime of the individual. Numerous 
studies have demonstrated that NSCs secrete various neuro-
trophic factors, neurotransmitters and enzymes  (7‑9). In 
response to molecular signals from the microenvironment, 
transplanted hippocampal NSCs (Hip‑NSCs) differentiate 
into various types of neurons and glia in vivo, a property that 
may be recapitulated in vitro under appropriate conditions. 
Transplanted Hip‑NSCs may not only replenish the reservoir 
of neurotrophic growth factors in the damaged nervous tissue, 
but also expand and generate lost and degenerated neurons 
to achieve functional recovery (10,11). The multipotency of 
NSCs affords them a broad application in cell replacement 
therapy and injury repair in diseases of the central nervous 
system (12,13).

In the present study, Hip‑NSCs were isolated from post-
natal mouse brains and cultured in  vitro to monitor their 
proliferation, migration and differentiation properties. The 
dynamic expression of DA neuronal markers nuclear receptor 
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related‑1 protein (Nurr1) and tyrosine hydroxylase (TH) in 
the differentiated neurons was analyzed. Hip‑NSCs were 
observed to differentiate into neurons with DA characteristics. 
The results of the present study provide further evidence of the 
merits of using Hip‑NSCs as a suitable donor population for 
stem cell therapy in PD.

Materials and methods

Animals. All experiments were conducted with C57BL/6 mice 
(0‑3 days old) provided by the Laboratory Animal Center of 
Ningxia Medical University (Yinchuan, China). Mice were 
housed at 24‑25˚C and 50‑60% humidity on a 12‑h light/dark 
cycle. Food and water were provided ad libitum. All experi-
ments were approved by the Animal Experimentation Ethics 
Committee of Ningxia Medical University (Yinchuan, China) 
and were specifically designed to minimize the number of 
animals used.

Hip‑NSC culture. Obtained 0‑3‑day old C57BL/6 mice were 
sacrificed by drowning in ethyl alcohol for five min, and were 
stripped of the skin and periosteum of the head. Mice were 
then placed onto a 35‑mm dish in 2 ml Hank's balanced salt 
solution, the cerebral cortex was stripped, the bilateral hippo-
campus was fully exposed and the intact hippocampal tissues 
were collected. Following removal of the blood vessels and 
fascia of the brain, dissected hippocampal tissues were finely 
minced and treated with 1‑2 ml Accutase® (A1110501; Gibc 
Thermo Fisher Scientific, Inc., Waltham, MA, USA) at 37˚C 
for 10 min, followed by resuspension in 3‑4 ml fresh medium. 
No additional washes or enzyme inhibitors were required. 
Following enzymatic digestion, the tissues were mechanically 
dissociated into a single cell suspension by gentle movement up 
and down in fresh medium using a pipette, in order to reduce 
cell damage and death. The cell suspension was centrifuged 
at 179 x g for 5 min at room temperature. The supernatant 
was discarded, and the cell pellet resuspended and seeded at 
a density of 1x105 cells/tissue culture flask in 1:1 Dulbecco's 
modified Eagle's medium (DMEM) /F12 1:1 (11330‑032; 
Gibc Thermo Fisher Scientific, Inc.) supplemented with 2% 
B‑27® (12587‑010; Invitrogen; Thermo Fisher Scientific, 
Inc.), 20 ng/ml recombinant human epidermal growth factor 
(450‑02; PeproTech, Inc., Rocky Hill, NJ, USA) and 20 ng/ml 
basic fibroblast growth factor (bFGF, 100‑18B; PeproTech, 
Inc.). Cells were cultured in a humidified 5% CO2/95% air 
incubator at 37˚C for 5‑7 days. During this period, the cells 
gradually grew into floating neurospheres. They were main-
tained in culture with regular passaging every 5‑7 days.

5‑bromo‑2'‑deoxyuridine (BrdU) immunocytochemistry. 
Passage (P) 2 Hip‑NSCs were treated with the thymidine analog 
BrdU (Sigma‑Aldrich, St Louis, MO, USA) at 10 µmol/l upon 
reaching 50% confluency. A total of 48 h later, the neurospheres 
derived from the Hip‑NSCs were plated on polylysine‑treated 
sterile glass coverslips and incubated at 37˚C in 5% CO2 for 2‑4 h. 
Following thorough rinsing with phosphate‑buffered saline 
(PBS), the neurospheres were treated with 2 M hydrochloric acid 
for 1 h at 37˚C and boric acid buffer (pH 8.5) for 10 min at room 
temperature (RT). BrdU‑incorporated cells were visualized by 
immunostaining. Briefly, cells were incubated with blocking 

solution 0.3% Triton X‑100 containing 1% normal donkey serum 
(Jackson ImmunoResearch Labortories, Inc., West Grove, PA, 
USA) for 30 min. Cells were then incubated with a primary 
antibody mixture of mouse anti‑BrdU (1:200; ab8152; Abcam, 
Cambridge, MA, USA) and rabbit anti‑nestin (1:100; N5413; 
Sigma‑Aldrich) for 24 h at 4˚C, followed by the secondary anti-
bodies (Alexa Fluor 488‑conjugated donkey anti‑mouse IgG; 
1:1,000; R37114; Alexa Fluor 594‑conjugated donkey anti‑rabbit 
IgG; 1:1,000; R37119; both Thermo Fisher Scientific, Inc.) for 
4 h at RT. Finally, the immunostained Hip‑NSCs were mounted 
onto glass slides using VECTASHIELD® antifade fluorescence 
mounting medium (Vector Laboratories, Inc., Burlingame, CA, 
USA), and observed under a fluorescence microscope.

Differentiation of Hip‑NSCs. P2 Hip‑NSCs were seeded onto 
polylysine‑treated coverslips at 30‑40  cells/coverslip in a 
24‑well plate. To induce differentiation, these cells were cultured 
in low‑serum conditioned medium containing DMEM/F12 1:1 
supplemented with 2% fetal bovine serum (26140‑111, Gibc 
Thermo Fisher Scientific, Inc.) and 100 ng/ml FGF‑8 (100‑25, 
PeproTech, Inc.). The growth medium was replaced every 
2‑3 days, and immunocytochemistry and western blotting were 
performed following 3‑7 days of differentiation.

Immunocytochemistry of differentiated Hip‑NSCs. Following 
flattening and adhesion, Hip‑NSCs and their differentiated 
progeny were washed in PBS 2‑3 times and incubated overnight 
at 4˚C with the following primary antibodies: Rabbit anti‑Nurr1 
(1:1,000; N4663; Sigma‑Aldrich), mouse anti‑TH (1:8,000; 
T2928; Sigma‑Aldrich), mouse anti‑glial fibrillary acidic 
protein (GFAP; 1:4,000; SAB1405864; Sigma‑Aldrich), rabbit 
anti‑GFAP (1:3,000; ab7779; Abcam), mouse anti‑β‑Tubulin 
III (Tuj1; 1:3,000; T5076; Sigma‑Aldrich), rabbit anti‑Tuj1 
(1:3,000; SAB4300623; Sigma‑Aldrich) and mouse anti‑2', 
3'‑cyclic nucleotide 3'‑phosphodiesterase (CNPas 1:500; C5922; 
Sigma‑Aldrich). Cells were then incubated with the appropriate 
Alexa Fluor 488 or Alexa Fluor 555‑labeled secondary anti-
bodies (1:500; goat anti‑mouse IgG; A11001; goat anti‑rabbit 
IgG; A31629; Invitrogen; Thermo Fisher Scientific, Inc.). Nuclei 
were stained with Hoechst 33342 (1:500; B2261; Sigma‑Aldrich). 
Coverslips were mounted onto slides, and observed under a 
fluorescence microscope.

Western blot analysis. This assay was performed as described 
previously (14). Hip‑NSCs and their differentiated progeny 
were treated with radioimmunoprecipitation assay lysis buffer 

Figure 1. Neurospheres derived from the mouse hippocampus at various 
stages of differentiation. Cells possessed the morphological features of neu-
rospheres (A) P0 and (B) P2. Magnification, x200. P, passage.
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containing 2% protease inhibitor (Boehringer Mannheim, 
Mannheim, Germany) for 30 min, removed with a cell scraper 
(on ice), transferred to 2 ml microcentrifuge tubes and pelleted 
by centrifugation at 13,314 x g for 5‑10 min at 4˚C. The super-
natant was transferred to fresh microcentrifuge tubes and the 
total protein concentration was estimated using the bicincho-
ninic acid assay according to the manufacturer's instructions. 
A total of 20‑30 µg protein was loaded in each well of a 10% 
SDS‑PAGE gel, separated by electrophoresis (2 h at 120 mV) 
and transferred to polyvinylidene difluoride membranes 
(100 min at 130 mA). The membranes were blocked with 5% 
milk at RT for 1 h and incubated overnight at 4˚C with the 
following primary antibodies: Rabbit anti‑Nurr1 (1:1,000; 
N4663; Sigma‑Aldrich), mouse anti‑TH (1:8,000; T2928; 
Sigma‑Aldrich) and mouse anti‑β‑actin (1:2,000; A2228; 
Sigma‑Aldrich). The following day the membranes were 
washed in Tris‑buffered saline with 1% Tween 20 three times, 
and incubated with horseradish peroxidase HRP‑conjugated 
secondary antibodies (goat anti‑rabbit; 1:3,000; ab6721; or 
goat anti‑mous 1:3,000; ab97023; Abcam) for 1 h at room 
temperature. The protein bands were visualized by incubating 
the membranes in enhanced chemiluminescence substrate 
solution and analyzed using ImagePro‑Plus version 6.0 soft-
ware (Media Cybernetics, Inc., Rockville. MD, USA). The 
band intensity of Nurr1 and TH was normalized to β‑actin.

Statistical analysis. Data were collected from triplicate 
samples from three independent experiments. All data are 
expressed as the mean ± standard error. Statistical compari-
sons were performed using Student's t‑test or one‑way analysis 
of variance, followed by Dunnett's post‑hoc test. Statistical 
analysis was performed using SPSS version 13.0 (SPSS, 
Inc., Chicago, IL, USA). P<0.05 was considered to indicate a  
statistically significant difference.

Results

Morphology of Hip‑NSCs. Immediately following the 
seeding of isolated Hip‑NSCs, cells were large and rounded 
with strong light refraction. Very little cell debris and few 
adherent differentiated cells were observed under a bright-
field microscope. Cellular aggregates with an orbicular 
morphology started to appear 36 h later. These resembled 
neurospheres and their number and size increased with time 
(Fig. 1A). Following five days of in vitro culture, cells were 

passaged by enzymatic dissociation using Accutase®. Dead 
cells were rarely observed at this time point (Fig. 1B). During 
passaging, 98% of the cultured Hip‑NSCs were dissociated 
into single cells. A total of 36 h subsequent to passaging, the 
cells reassembled into mitotically‑active aggregates, exhib-
iting a rounded shape.

Proliferative capacity of Hip‑NSCs in vitro. To determine the 
proliferative capacity of Hip‑NSCs in vitro, neurospheres were 
examined by double immunofluorescence staining for incor-
poration of the proliferation indicator BrdU and the neural 
progenitor marker nestin. The results revealed that Hip‑NSCs 
expanded rapidly in culture as visualized by the extent of 
BrdU incorporation and that NSCs were abundant within the 
neurospheres (Fig. 2).

Characteristics of differentiating Hip‑NSCs. Following the 
second passaging of Hip‑NSCs (P2), the plated cells attached 
to the surface completely within 4 h, a feature characteristic of 
non‑proliferative differentiating cells. Over time, an increasing 
number of cells migrated out of the neurospheres. At 12‑24 h 
following passaging, processes began to emerge along the 
edge of the neurospheres (Fig. 3). During the early stages 
of differentiation, Hip‑NSCs were arranged radially with a 
tendency to differentiate into astrocytes without the addition of 
exogenous cytokines. The majority of these glial cells stained 
positive for GFAP (Fig. 4A). However, when Hip‑NSCs were 
cultured under low‑serum conditions (DMEM/F12 1:1 supple-
mented with 2% fetal bovine serum and 100 ng/ml FGF‑8) 
there was an increase in the number of Tuj1‑positive neurons 

Figure 2. Immunocytochemical detection of proliferation markers in neurospheres derived from the mouse hippocampus. Neurospheres were stained for BrdU 
and nestin and an overlay of the two images was produced. Magnification, x200. BrdU, 5‑bromo‑2'‑deoxyuridine.

Figure 3. Neurospheres derived from the mouse hippocampus at various 
stages of differentiation. Cells possessed the morphological features of dif-
ferentiating hippocampal neural stem cells at day 1 and day 7. Magnification, 
x200.
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(Fig. 4B), with fewer cells differentiating into CNPase‑positive  
oligodendrocytes (Fig. 4C).

Expression of Nurr1 and TH in differentiating Hip‑NSCs. 
Immunofluorescent staining was performed to analyze the 
expression of the DA neuronal markers Nurr1 and TH at 
the early stages of Hip‑NSC differentiation in low serum 
conditions. The results revealed an increasing number of 
Nurr1‑expressing cells over time, and increased expression of 
TH was detected (Fig. 5A). The proportions of Nurr1‑positive 
cells and TH‑positive neurons at day 7 (39.30±3.96 and 
11.9±1.68%, respectively) were significantly greater than those 
at day 3 (22.23±2.10 and 4.63±1.25%, respectively; P=0.0187 
and 0.0254, respectively; Fig. 5B).

Quantification of Nurr1 and TH expression in differentiating 
Hip‑NSCs. To quantify and compare the levels of Nurr1 and 
TH protein expression at day 3 and 7 of differentiation a 
western blotting assay was performed. Nurr1 and TH proteins 
were expressed at day 3 (0.499±0.072 and 0.212±0.031, respec-
tively), and their expression levels increased significantly at 
day 7 (0.792±0.067 and 0.473±0.072, respectively; P=0.0409 
and 0.0292, respectively; Fig. 6).

Discussion

Advances in NSC technology have led to novel and promising 
therapeutic strategies for PD treatment, including transplan-
tation of DA neurons derived from NSCs in vitro into the 
diseased brain, transplantation of NSCs directly into injured 
areas and inducing differentiation into DA neurons in vivo, 
and manipulation of endogenous NSCs to differentiate into 
DA neurons (15‑17). Endogenous NSCs may thus serve as the 
ideal donor for cell transplantation therapy (17,18). However, 
various studies have demonstrated that, in vitro, NSCs have an 
increased tendency to differentiate into glial cells than neurons, 
particularly DA neurons  (19,20). The inability to generate 
large numbers of DA neurons in vitro poses a major obstacle 
for the clinical application of NSCs in a transplantation‑based 
treatment of PD. Therefore, there is an urgent need to identify 
the molecular cues and the ideal microenvironment that would 
facilitate this process.

Various studies have demonstrated that neurotrophic factors 
are important in the regulation of neuron survival, axonal 
maturation and neuronal differentiation during the develop-
ment of the nervous system (21,22). Growth factors cerebral 
dopamine neurotrophic factor and Parkinson disease protein 
7 protect cholinergic and DA neurons against injury (23,24) 
and additional investigation of age‑associated diseases has 
determined that expression levels of neurotrophic factors are 
reduced in these conditions (25). More notably, a significant 
decline in their function has been noted in older individuals 
and patients diagnosed with neurodegenerative disorders 
like Alzheimer's disease (26). Hip‑NSCs, as all stem cells, 
have the ability to proliferate and differentiate into multiple 
lineages (27,28). It has been demonstrated that the propensity 
of primary NSCs to differentiate into neurons and glial cells, 
measured by parameters including the differentiation rate and 
characteristics of neural cells generated, varies depending 
on the brain region that cells were isolated from; therefore, 
Hip‑NSCs have regional specificity (14,29).

In the present study, primary Hip‑NSCs proliferated 
rapidly and aggregated into neurospheres with an orbicular 
morphology within 36  h of plating. In addition, during 
suspension culture, the passaged Hip‑NSCs did not attach 
to the surface of the flask and exhibited the characteristics 
of primary Hip‑NSCs. Following differentiation, cells 
organized themselves radially during the early stages, and 
in the initial three weeks exhibited a tendency to differen-
tiate into astrocytes in the absence of exogenous cytokines. 
Studies have demonstrated that the yield of DA neurons 
from NSCs increased significantly in the presence of glial 
cell‑derived neurotrophic factor (GDNF) and associated 
cytokines (6,30,31). GDNF activates the expression of Nurr1 
and pituitary homeobox 3 and has been used to create an 
in vitro PD model from NSCs. When overexpressed, GDNF 
is able to increase or improve the cognitive function of aging 
animals  (32,33). It has been reported that NSCs isolated 
from the embryonic midbrain have an increased tendency 
to differentiate into DA neurons compared with NSCs from 
alternative regions of the brain (34). This suggests that NSC 
differentiation and cell fate specification is influenced by 
their intrinsic properties, in addition to exogenous signaling 
molecules. A previous study investigated the molecular 

Figure 4. Immunohistochemical detection of neurons and glial cells during Hip‑NSC differentiation. (A) Expression of GFAP (green) and Tuj1 (red) in dif-
ferentiated Hip‑NSC cultured with DMEM/F12 containing 10% fetal bovine serum on day 3. (B) Expression of GFAP (red) and Tuj1 (green) and (C) CNPase 
(green) and Hoechst (blue) in differentiated Hip‑NSCs cultured with DMEM/F12 supplemented with 2% fetal bovine serum and 100 ng/ml fibroblast growth 
factor‑8 on day 3. Magnification, x200. Hip‑NSC, hippocampal neural stem cell; GFAP, glial fibrillary acidic protein; Tuj1, β‑Tubulin III; CNPase, 2',3'‑cyclic 
nucleotide 3'‑phosphodiesteras DMEM, Dulbecco's modified Eagle's medium.
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Figure 6. Analysis and quantification of Nurr1 and TH protein expression levels at various stages of hippocampal neural stem cell differentiation. (A) Nurr1 and 
TH protein bands detected by western blotting, at days 3 and 7 of differentiation. β‑actin was used as an internal control. (B) The relative expression of Nurr1 
and TH protein was shown at day 3 (0.499±0.072 and 0.212±0.031, respectively) and day 7 (0.792±0.067 and 0.473±0.072, respectively). Densitometric quan-
tification of Nurr1 and TH protein expression, normalized to β‑actin. *P<0.05 vs. day 3, assessed by Student's t‑test. Data are presented as the mean ± standard 
error. Nurr1, nuclear receptor related‑1 protein; TH, tyrosine hydroxylase.

Figure 5. Immunohistochemical analysis of expression of Nurr1 and TH and GFAP at various stages of Hip‑NSC differentiation. (A) Expression of GFAP 
(red) and Nurr1 (green) and overlaid images at day 3 and 7; and expression of TH (red) and GFAP (green) and overlaid images at day 3 and 7 of differentiation. 
(B) Nurr1‑ and TH‑positive differentiated Hip‑NSCs increased significantly from day 3 (22.23±2.10 and 4.63±1.25%, respectively) to day 7 (39.30±3.96 and 
11.9±1.68%, respectively). Analysis of variance was performed, followed by Dunnett's post hoc test. *P<0.05, vs. day 3. Magnification, x200. Nurr1, nuclear 
receptor related‑1 protein; TH, tyrosine hydroxylas GFAP, glial fibrillary acidic protein; Hip‑NSC, hippocampal neural stem cell.
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mechanism underlying the generation of DA neurons based 
on gene expression analysis and knockout studies identified 
various transcription factors that appear to be important in 
this process (35). A previous study confirmed Nurr1 as an 
important factor regulating the differentiation of midbrain 
DA neurons, cell survival and acquisition of neuronal proper-
ties (36). In mice, Nurr1 gene knockout resulted in a reduction 
in TH expression in ventral mesencephalon neurons and 
inhibited production of dopamine in the striatum. However, 
the levels of norepinephrine, serotonin and acetylcholine 
were not altered  (30,37). A previous study reported that 
Nurr1‑induced differentiation of TH‑positive cells from 
embryonic stem cells was not completely neuronogenic (38). 
Elevated expression of TH in differentiated glial cells was 
observed, indicating that Nurr1 was not a specific inducer 
of midbrain DA neuronal fate, and that Nurr1 alone was not 
sufficient to induce NSCs to differentiate into mature DA 
neurons (39). Additional studies confirmed that expression 
of forkhead box protein A1/2, orthodenticle homeobox 2, 
engrailed‑1 and paired‑like homeodomain 3 manipulated 
the development and differentiation of adult midbrain DA 
neurons (39‑41).

In the current study, the differentiation of Hip‑NSCs 
into Nurr1 and TH‑positive neurons increased significantly 
with time under low serum conditions. Nurr1 expression was 
detected during the early phase of differentiation and increased 
progressively. Therefore, Nurr1 may be indispensable for 
the generation of midbrain DA neurons from Hip‑NSCs 
in vitro (31). The results of the present study suggest that the 
factors controlling in vitro differentiation of Hip‑NSCs into 
specific neuronal fates include their intrinsic gene expression 
profile and their microenvironment. Furthermore, Hip‑NSCs 
in adherent culture were demonstrated to generate not only 
neurons, but also glial cells expressing Nurr1, indicating 
that Nurr1 expression is not specific to the development of 
midbrain DA neurons. Additional studies are required to 
identify alternative transcription factors that may act syner-
gistically with Nurr1 to induce a DA neuronal fate.
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