Hypermethylation of CDH13, DKK3 and FOXL2 promoters and the expression of EZH2 in ovary granulosa cell tumors

YANMEI XV1,2, XIA LI3, HONGTAO WANG4, PENGMU XIE2, XUN YAN2, YU BAI2 and TINGGUO ZHANG1

1 Institute of Pathology and Pathophysiology, Shandong University School of Medicine, Jinan, Shandong 250012; 2 Department of Pathology, Shandong Shanxian Central Hospital, Heze, Shandong 274300; 3 Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032; 4 Department of Gynecology and Obstetrics, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research for Cancer, Tianjin 300060, P.R. China

Received July 10, 2015; Accepted May 16, 2016

DOI: 10.3892/mmr.2016.5521

Abstract. Aberrant epigenetic modification is associated with the development and progression of cancer. Hypermethylation of tumor suppressor gene promoters and cooperative histone modification have been considered to be the primary mechanisms of epigenetic modification. Ovary granulosa cell tumors (GCTs) are relatively rare, accounting for ~3% of all ovarian malignancies. The present study assessed hypermethylation of the cadherin 13 (CDH13), dickkopf WNT signaling pathway inhibitor 3 (DKK3) and forkhead box L2 (FOXL2) promoters in 30 GCT tissues and 30 healthy control tissues using methylation-specific polymerase chain reaction analysis. The data showed that the frequencies of CDH13, DKK3 and FOXL2 promoter methylation were significantly higher in the GCT tissues, compared with the healthy control tissues (86.67, vs. 23.33%; 80, vs. 26.67% and 66.67, vs. 20%, respectively; P<0.001). Immunostaining of enhancer of zeste homolog 2 (EZH2), a histone H3K27 methyltransferase, showed that the EZH2 protein was expressed in 11 of the 30 GCT tissue samples, whereas no EZH2 protein was expressed in the 30 healthy control tissues (P<0.01). These data suggested that hypermethylation of the CDH13, DKK3 and FOXL2 gene promoters, and overexpression of the EZH2 protein were involved in the development of GCT.

Introduction

Granulosa cell tumors (GCTs) are malignant neoplasms, which originate from the sex cord. GCT is a relatively rare disease, but commonly occurs in the ovary. GCTs frequently occur in young women, and the majority of GCT cases are diagnosed in the late stages due to early stage GCT exhibiting few clinical symptoms, leading to a poor prognosis (1,2). Due to the current lack of understanding of this particular disease, the clinical management of GCTs is similar to that of other types of epithelial ovarian cancer. However, unlike other types of ovarian cancer, the prognostic assessment for GCT predominantly relies on clinicopathological variables, including stage and grade, although these do not provide biological insight into the disease (3). Thus, early diagnosis is critical for the successful management of numerous types of human cancer, including ovarian GCTs.

The identification of molecular or epigenetic markers may provide biological insight into GCT and a serve as a critical tool in successful treatment of the disease. Current knowledge indicates that the development and progression of cancer are driven by the accumulation of genetic abnormalities and epigenetic alterations, which include gene mutations and silencing, and epigenetic modifications of genomic DNA, including methylation of DNA CpG islands or covalent modification of histone tails (4,5). Gene promoter methylation silences the expression of tumor suppressor genes, which is one of the key mechanisms in tumor development (6,7). Aberrant gene methylation is also one of the earliest molecular alterations occurring in tumorigenesis, and is considered a biomarker for early tumor detection or a potential treatment strategy (8-10). Histone modification also regulates genetic programs in normal cells, but is altered in cancer cells (11). Therefore, the pathogenesis of GCT may follow a similar trend to other types of human cancer.

In the present study, the methylation status of three putative tumor suppressor genes, cadherin 13 (CDH13), dickkopf WNT signaling pathway inhibitor 3 (DKK3) and forkhead box L2 (FOXL2), and expression of enhancer of zeste homolog 2 (EZH2) were assessed in GCT tissue samples and compared with follicular cyst tissues. The aim of the present study was to screen and identify tumor markers for the early detection of GCT. As GCTs are rare and reports are limited, the present study focused on CDH13, DKK3 and FOXL2, as these are putative tumor suppressor genes, whose functions and expression are associated with the ovary, including ovary development,
Table I. Primer sequences for PCR amplification of multiple tumor suppressor genes and methylation-specific PCR analysis of gene promoter methylation.

<table>
<thead>
<tr>
<th>Gene</th>
<th>Sequence</th>
<th>Amplicon (bp)</th>
<th>Temperature (˚C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDH13-M-F</td>
<td>5'-TCGCGGGGTTCGTTTTTCGCG-3'</td>
<td>243</td>
<td>58</td>
</tr>
<tr>
<td>CDH13-M-R</td>
<td>5'-GACGTATTTCCATTCTACACAGCG-3'</td>
<td>242</td>
<td></td>
</tr>
<tr>
<td>CDH13-U-F</td>
<td>5'-TGTGGGAGGGGTTTTTTG'G-3'</td>
<td>120</td>
<td>60</td>
</tr>
<tr>
<td>CDH13-U-R</td>
<td>5'-AACATTTTCACTTCTACACACA-3'</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>DKK3-M-F</td>
<td>5'-GGGGCCGGGCGGGCGGGG-3'</td>
<td>211</td>
<td>58</td>
</tr>
<tr>
<td>DKK3-M-R</td>
<td>5'-ACATCTCCGGTCTACAGGCGCG-3'</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>DKK3-U-F</td>
<td>5'-TTAGGGGTGGGGTTGGGGG-3'</td>
<td>214</td>
<td></td>
</tr>
<tr>
<td>DKK3-U-R</td>
<td>5'-CTACATCTCCACTCTACACCA-3'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOXL2-M-F</td>
<td>5'-GTTATAATATTTTTTGCGTTGTTCC-3'</td>
<td>211</td>
<td>58</td>
</tr>
<tr>
<td>FOXL2-M-R</td>
<td>5'-CTAATCTCCAGACCTATACTCG-3'</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>FOXL2-U-F</td>
<td>5'-AGGTTATAATATTTTTTGTGGTTT-3'</td>
<td>214</td>
<td></td>
</tr>
<tr>
<td>FOXL2-U-R</td>
<td>5'-CTTAACTCCACACATCTACTACAA-3'</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PCR, polymerase chain reaction; CDH13, cadherin 13; DKK3, dickkopf WNT signaling pathway inhibitor 3; FOXL2, forkhead box L2; M, methylated; U, unmethylated; F, forward; R, reverse.

function maintenance. The present study aimed to provide novel information to improve current understanding of the development of GCT, and to potentially identify biomarkers for the early detection of GCT.

Materials and methods

Patients and samples. In the present study, 31 patients with GCTs were recruited from Shandong University Qilu Hospital (Jinan, China) and Shaxian Central Hospital (Heze, China) between 2010 and 2013. All patients were diagnosed histologically with GCT, and all tissue specimens were reconfirmed by pathologists in the Department of Pathology, Qilu Hospital, which resulted in 30 cases being available for use in the study. The present study also included tissues from 30 patients with follicular cysts, which were selected as a control. Clinicopathological data from each patient, including age, tumor size, Federation of Gynecology and Obstetrics (FIGO) stage and postoperative recurrence, were collected from medical records. The present study was approved by the Ethics Committee of Shandong University School of Medicine (Jinan, China) and the patients or their guardians provided signed informed consent prior to involvement in the investigation. Written informed consent was obtained from patients.

Methylation-specific polymerase chain reaction (MSP). A total of 31 patients with GCTs were recruited from Shandong University Qilu Hospital (Jinan, China) and Shaxian Central Hospital (Heze, China) between 2010 and 2013. All patients were diagnosed histologically with GCT, and all tissue specimens were reconfirmed by pathologists in the Department of Pathology, Qilu Hospital. One tissue wax block was not large enough, which resulted in only 30 cases being available for use in the present study. For MSP, two 8-µm tissue sections were prepared from the 30 paraffin-embedded tissue blocks and deparaffinized in xylene, following which tumor cells were dissected from sections for genomic DNA extraction. Specifically, genomic DNA was extracted using a Genomic DNA Purification kit (Qiagen, Hilden, Germany) and subjected to bisulfite conversion using a CpGenome DNA Modification kit (Intergen Co., Purchase, NY, USA), according to the manufacturer's protocols. Subsequently, 2 µl of the modified DNA (50 ng) was subjected to PCR amplification in a 50 µl volume reaction [0.25 µl Taq polymerase, 5 µl 10X PCR buffer; 4 µl dNTP mix (2.5 mM); 0.5 µl forward and reverse primers; 50 ng DNA template made up to the volume in Milli Q water] under the following conditions: 45 cycles at an annealing temperature of 58˚C for 45 sec (CDH13), 60˚C for 45 sec (DKK3) or 58˚C for 45 sec (FOXL2), and primer extension at 72˚C. All PCR amplifications were performed with positive controls for unmethylated and methylated alleles, and DNA-free empty controls. The PCR amplification kit was purchased from Eppendorf AG (Hamburg, Germany). The primers (Sangon Biotech., Co., Ltd., Shanghai, China) for each gene promoter methylation were designed according to previous reports (12-14) by first identifying the methylated- and unmethylated-specific sequences, respectively, and subsequent synthesis for MSP amplification of the CDH13, DKK3 and FOXL2 genes (Table I). The PCR products were then separated on 3% agarose gels and visualized using ethidium bromide staining under an UV-3000 ultraviolet light box.

Immunohistochemistry. Immunohistochemistry was performed to detect the protein expression of EZH2 in the tissue samples. In brief, 3-µm thick tissue sections were prepared from the paraffin-embedded tissue blocks, deparaffinized in xylene and rehydrated in a series of ethanol. The sections were then incubated with 0.5% TritonX-100 for 30 min at room temperature to ensure that the antibody entered the nuclei. The sections then underwent epitope retrieval in a steam cooker in 0.01 M citric buffer (pH 6.0) for 15 min at 100˚C. The slides were subsequently washed with phosphate-buffered saline (pH 7.4) three times for 5 min. The slides were then immersed in 3% H2O2 methanol solution (freshly prepared) for 10 min. The slides were subsequently
washed as above. Following being blocked in normal serum for 30 min, the sections were incubated with anti-EZH2 antibody at a dilution of 1:100 (cat. no. 5246; Cell Signaling Technology, Inc., Danvers, MA, USA) at 4˚C overnight. The following day, the sections were washed with phosphate-buffered saline (PBS) three times and further incubated with a rabbit anti-human secondary antibody (Dako, Glostrup, Denmark; cat. no. K5007) at room temperature for 30 min. The positive signal was visualized using diaminobenzidine as the chromogen. Breast cancer tissue sections (Shanxian Central Hospital; patient was diagnosed as infiltrating ductal carcinoma) were used as a positive control, and PBS was used as a negative control. The stained sections were reviewed and scored under a light microscope (BX43; Olympus, Tokyo, Japan) by two investigators for staining intensity and percentage of staining (15). The staining intensity score was recorded as follows: Absent, 0; weak, 1; moderate, 2; strong, 3. The percentage of positive cells was recorded as follows: Absent, 0; ≤10%, 1; 11-50%, 2; 51-≤80%, 3; >80 %, 4. These two scores were then multiplied to obtain a staining index. If the staining index was ≥3, the case was considered positive.

Statistical analysis. All statistical analyses were performed using SAS version 9.1 software (SAS Institute, Inc., Cary, NC, USA). The frequencies of methylation were compared using χ² test or Fisher's exact test. P<0.05 was considered to indicate a statistically significant difference. All tests were two-sided.

Results

Differential methylation status of CDH13, DKK3 and FOXL2 promoters in GCTs. In the present study, the methylation status of the CDH13, DKK3 and FOXL2 promoters in the GCT tissue specimens were assessed and compared with those in follicular cyst specimens. Table II summarizes the methylation rates of these three genes in the GCTs, compared with the follicular cysts. Representative examples of the MSP data are shown in Fig. 1. Significant differences were found in the methylation of the CDH13, DKK3 and FOXL2 promoters in the GCT tissues, compared with the follicular cyst tissues (P<0.001). The associations between gene methylation and clinicopathological parameters, including age, tumor size, FIGO stage and postoperative recurrence, were also analyzed (Table III), however, no significant associations were observed.

Differential protein expression of EZH2 in GCT tissues. The immunohistochemical staining showed that EZH2 protein was localized in the nuclei of the positive tumor cells. Representative examples of the immunohistochemical

Table II. Comparison of methylation rates of CDH13, DKK3 and FOXL-2 promoters between GCT and follicular cyst tissues.

<table>
<thead>
<tr>
<th>Gene</th>
<th>GCT (n=30)</th>
<th>Follicular cyst (n=30)</th>
<th>χ²</th>
<th>P-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDH13</td>
<td>86.67 (26)</td>
<td>23.33 (7)</td>
<td>21.70</td>
<td><0.001</td>
</tr>
<tr>
<td>DKK3</td>
<td>80 (24)</td>
<td>26.67 (8)</td>
<td>17.14</td>
<td><0.001</td>
</tr>
<tr>
<td>FOXL2</td>
<td>70 (21)</td>
<td>20 (6)</td>
<td>17.38</td>
<td><0.001</td>
</tr>
</tbody>
</table>

*χ² test compared with normal endometrium. GCT, granulosa cell tumor; CDH13, cadherin 13; DKK3, dickkopf WNT signaling pathway inhibitor 3; FOXL2, forkhead box L2.
data are shown in Fig. 2. It was found that the expression of EZH2 was higher in the GCT tissues, compared with the follicular cysts (Table IV), however, no associations were found between the expression of EZH2 and the clinicopathological parameters of the patients with GCT with respect to age, tumor size, FIGO stage and metastasis (Table II). The present study then examined the associations between the expression of EZH2 and methylation of the CDH13, DKK3 and FOXL2 gene promoters, however, no positive associations were found (Table V).

Discussion

GCTs are a relatively rare type of malignancy in the ovary, and are inconsistent in size, ranging between small spots and large masses, with an average diameter of 10 cm. Although the clinical appearance, symptoms and management are similar to those of epithelial ovarian tumors, the mechanism underlying the development and progression of GCT may be different from other types of ovarian cancer (1). Thus, an improved understanding of the mechanism underlying the development and progression of GCT may lead to improved options for the early detection, prevention and treatment of GCT clinically (16). To date, clinical prognostic indicators rely predominantly on clinicopathological variables, including patient age, tumor stage and grade. Thus, the identification of molecular or epigenetic markers may provide biological insight and serve as a critical tool in the successful treatment of GCT. The present study assessed the methylation status of the CDH13, DKK3 and FOXL2 promoters, and found that the promoters of these three genes were significantly hypermethylated in the GCT tissues, compared with the follicular cyst tissues. Expression of the EZH2 protein was also high in the GCT tissues, however, no associations were found between these alterations and the clinicopathological data from the patients with GCT. Further investigations with a larger sample size are required to confirm these findings. As GCT is a relatively rare type of tumor, a consortium of different cancer centers or hospitals may be required to obtain sufficient numbers of tissue samples to facilitate further molecular investigations.

Although the cause and pathogenesis of GCTs remain to be elucidated, GCTs are similar to the majority of other types of human cancer, the development of which involves gene mutation and promoter methylation, and epigenetic modifications of genomic DNA. The accumulation of genetic abnormalities and epigenetic alterations lead to the malignant transformation of normal cells. To date, the known primary human epigenetic modifications include alterations of DNA methylation status in CpG islands and covalent modifications of histone tails. Accumulating evidence suggests that more genes are affected by aberrant epigenetic alterations than genetic mutations in human carcinogenesis (6,7,17). Thus, promoter methylation-induced silencing of tumor
suppressor genes has been suggested as a key mechanism in the development of several types of human cancer. Aberrant gene methylation is also one of the earliest molecular alterations occurring during tumorigenesis and may be used as a marker for early tumor detection. As methylation of the promoter region is a reversible process, the detection of gene methylation levels may provide guidance for individualized chemotherapy. The present study showed for the first time, to the best of our knowledge, methylation of the \textit{CDH13}, \textit{DKK3} and \textit{FOXL2} gene promoters in GCT tissue samples, with no similar findings reported previously. Friedrichs et al (15) first reported a specific pattern of CpG island hypermethylation in different types of human cancer. In GCTs, the detection of different gene promoter methylation has been shown in cell lines and in a limited number of tumor tissues, with the most frequently methylated gene promoters being \textit{p16} and ER-\textit{\alpha} (40%), \textit{BRCA1} and \textit{RASSF1A} (36%), \textit{MGMT} (32.5%) and \textit{hMLH1} and \textit{FHIT} (28%) (16,18,19).

\textit{CDH13} is a cell adherence protein of a unique cadherin superfamily member and functions to mediate intracellular signaling in vascular cells. Emerging evidence indicates that \textit{CDH13} is a candidate tumor suppressor in several types of human cancer, including breast and lung cancer (12,20-26), colorectal cancer (21,27), hepatocellular carcinoma (28), bladder cancer (29), cervical cancer (30) and ovarian cancer (31-34). Previous studies have showed that \textit{CDH13} promoter methylation is a frequent event in cancer, which is associated with unfavorable tumor features, increased risk of recurrence and poorer survival rates, and has been suggested as an independent predictor for tumor recurrence and progression (26,29). \textit{DKK3} is a secreted protein, which is involved in embryonic development through its interactions with the Wnt signaling pathway. The expression of \textit{DKK3} is reduced in a variety of cancer cell lines and may function as a tumor suppressor gene by antagonizing Wnt signaling (35-37). Epigenetic silencing of \textit{DKK3} has been observed to disrupt normal Wnt/\textit{\beta}-catenin signaling and apoptosis regulation (38). \textit{DKK3} methylation has been frequently detected in a broad range of types of cancer and appears to be important in tumor development (13,37-42). \textit{FOXL2} is a member of the forkhead transcription factor family and functions as an essential regulator of ovarian maintenance. \textit{FOXL2} protein is expressed in the pituitary gonadotrope, thrytocyte cells and ovarian granulosa cells, and is required for commitment to ovary differentiation (43,44). \textit{FOXL2} mutations are associated with syndromic and non-syndromic ovarian failure, and occurs in ovary GST s with a mutation rate at \textit{FOXL2} (402 C->G) of 97% in adult GCT (45-50). Tran et al showed that the CpG island of the murine \textit{FOXL2} proximal promoter was differentially methylated in primary and immortalized cells (51). The \textit{FOXL2} promoter was also abnormally methylated in non-small cell lung cancer (52). In the present study, the methylation statuses of three gene promoters in GCT tissues were detected, and the results demonstrated that promoter methylation was associated with the development of GCT, but not with its progression. Further investigations aim to investigate the underlying molecular mechanism for silencing the expression of these three genes in GCT.

Histone modifications are considered to regulate genetic programs in normal cells, but are altered in cancer cells. The methylation of histone H3 at lysine 27 silences gene expression, which induces transcriptional repression and is

<table>
<thead>
<tr>
<th></th>
<th>\textit{CDH13}</th>
<th>\textit{DKK3}</th>
<th>\textit{FOXL2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{EZH2}</td>
<td>\textit{M}</td>
<td>\textit{U}</td>
<td>\textit{M}</td>
</tr>
<tr>
<td>Positive (n)</td>
<td>9</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>Negative (n)</td>
<td>15</td>
<td>4</td>
<td>17</td>
</tr>
</tbody>
</table>

aFisher’s exact test of the association between gene methylation and the protein expression of \textit{EZH2}. \textit{M}, methylated; \textit{U}, unmethylated; \textit{EZH2}, enhancer of zeste homolog 2; \textit{CDH13}, cadherin 13; \textit{DKK3}, dickkopf WNT signaling pathway inhibitor 3; \textit{FOXL2}, forkhead box L2.

Figure 2. Immunohistochemical analysis of the protein expression of enhancer of zeste homolog 2 in (A) granulosa cell tumor (positive) and (B) follicular cyst tissues (negative) (magnification, x200).
thus involved in controlling gene expression patterns (53,54). EZH2 is a histone methyltransferase and a component of the polycomb repressive complex 2, which is essential in the epigenetic maintenance of the H3K27me3 repressive chromatin mark (55). The abnormal expression of EZH2 has been associated with aggressive tumor subgroups, disease-free survival rates and overall survival rates in patients with cutaneous melanoma, and in cancer of the endometrium, prostate, breast, colorectal and ovary (11,56-59). The present study was the first, to the best of our knowledge, to detect the expression of EZH2 in GCT and found 11 positive cases in 30 GCT tissue samples (36.7%), compared with follicular cyst tissue samples, in which no positive cases were found. In addition, a previous study linked CDH13 promoter SNPs with pleiotropic effect on cardiac metabolic parameters represent methylation QTLs. Hum Genet 134: 291-303, 2015.

References

The authors would like to thank Medjaden Bioscience Ltd. and future investigations compared with follicular cyst tissue samples, in which no positive cases were found. In addition, a previous study linked CDH13 promoter SNPs with pleiotropic effect on cardiac metabolic parameters represent methylation QTLs. Hum Genet 134: 291-303, 2015.

Acknowledgements

The authors would like to thank Medjaden Bioscience Ltd. (Hong Kong, China) for their assistance with manuscript editing.

References

