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Abstract. Aberrant epigenetic modification is associated with 
the development and progression of cancer. Hypermethylation 
of tumor suppressor gene promoters and cooperative histone 
modification have been considered to be the primary 
mechanisms of epigenetic modification. Ovary granulosa 
cell tumors (GCTs) are relatively rare, accounting for ~3% of 
all ovarian malignancies. The present study assessed hyper-
methylation of the cadherin  13 (CDH13), dickkopf WNT 
signaling pathway inhibitor 3 (DKK3) and forkhead box L2 
(FOXL2) promoters in 30 GCT tissues and 30 healthy control 
tissues using methylation‑specific polymerase chain reaction 
analysis. The data showed that the frequencies of CDH13, 
DKK3 and FOXL2 promoter methylation were significantly 
higher in the GCT tissues, compared with the healthy control 
tissues (86.67,  vs.  23.33%; 80, vs. 26.67% and 66.67, vs. 
20%, respectively; P<0.001). Immunostaining of enhancer 
of zeste homolog 2 (EZH2), a histone H3K27 methyltrans-
ferase, showed that the EZH2 protein was expressed in 11 of 
the 30 GCT tissue samples, whereas no EZH2 protein was 
expressed in the 30 healthy control tissues (P<0.01). These 
data suggested that hypermethylation of the CDH13, DKK3 
and FOXL2 gene promoters, and overexpression of the EZH2 
protein were involved in the development of GCT. 

Introduction

Granulosa cell tumors (GCTs) are malignant neoplasms, 
which originate from the sex cord. GCT is a relatively rare 
disease, but commonly occurs in the ovary. GCTs frequently 

occur in young women, and the majority of GCT cases are 
diagnosed in the late stages due to early stage GCT exhibiting 
few clinical symptoms, leading to a poor prognosis (1,2). Due 
to the current lack of understanding of this particular disease, 
the clinical management of GCTs is similar to that of other 
types of epithelial ovarian cancer. However, unlike other types 
of ovarian cancer, the prognostic assessment for GCT predom-
inantly relies on clinicopathological variables, including stage 
and grade, although these do not provide biological insight 
into the disease (3). Thus, early diagnosis is critical for the 
successful management of numerous types of human cancer, 
including ovarian GCTs.

The identification of molecular or epigenetic markers 
may provide biological insight into GCT and a serve as a 
critical tool in successful treatment of the disease. Current 
knowledge indicates that the development and progression of 
cancer are driven by the accumulation of genetic abnormali-
ties and epigenetic alterations, which include gene mutations 
and silencing, and epigenetic modifications of genomic DNA, 
including methylation of DNA CpG islands or covalent 
modification of histone tails (4,5). Gene promoter methyla-
tion silences the expression of tumor suppressor genes, which 
is one of the key mechanisms in tumor development (6,7). 
Aberrant gene methylation is also one of the earliest molecular 
alterations occurring in tumorigenesis, and is considered a 
biomarker for early tumor detection or a potential treatment 
strategy (8‑10). Histone modification also regulates genetic 
programs in normal cells, but is altered in cancer cells (11). 
Therefore, the pathogenesis of GCT may follow a similar trend 
to other types of human cancer.

In the present study, the methylation status of three putative 
tumor suppressor genes, cadherin 13 (CDH13), dickkopf WNT 
signaling pathway inhibitor 3 (DKK3) and forkhead box L2 
(FOXL2), and expression of enhancer of zeste homolog 2 
(EZH2) were assessed in GCT tissue samples and compared 
with follicular cyst tissues. The aim of the present study was 
to screen and identify tumor markers for the early detection 
of GCT. As GCTs are rare and reports are limited, the present 
study focused on CDH13, DKK3 and FOXL2, as these are puta-
tive tumor suppressor genes, whose functions and expression 
are associated with the ovary, including ovary development, 
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function maintenance. The present study aimed to provide 
novel information to improve current understanding of the 
development of GCT, and to potentially identify biomarkers 
for the early detection of GCT.

Materials and methods

Patients and samples. In the present study, 31  patients 
with GCTs were recruited from Shandong University Qilu 
Hospital (Jinan, China) and Shanxian Central Hospital (Heze, 
China) between 2010 and 2013. All patients were diagnosed 
histologically with GCT, and all tissue specimens were 
reconfirmed by pathologists in the Department of Pathology, 
Qilu Hospital, which resulted in 30 cases being available for 
use in the study. The present study also included tissues from 
30 patients with follicular cysts, which were selected as a 
control. Clinicopathological data from each patient, including 
age, tumor size, Federation of Gynecology and Obstetrics 
(FIGO) stage and postoperative recurrence, were collected 
from medical records. The present study was approved by the 
Ethics Committee of Shandong University School of Medicine 
(Jinan, China) and the patients or their guardians provided 
signed informed consent prior to involvement in the investiga-
tion. Written informed consent was obtained from patients.

Methylation‑specific polymerase chain reaction (MSP). A 
total of 31 patients with GCTs were recruited from Shandong 
University Qilu Hospital (Jinan, China) and Shanxian Central 
Hospital (Heze, China) between 2010 and 2013. All patients 
were diagnosed histologically with GCT, and all tissue speci-
mens were reconfirmed by pathologists in the Department 
of Pathology, Qilu Hospital. One tissue wax block was not 
large enough, which resulted in only 30 cases being avail-
able for use in the present study. For MSP, two 8‑µm tissue 
sections were prepared from the  30  paraffin‑embedded 
tissue blocks and deparaffinized in xylene, following which 
tumor cells were dissected from sections for genomic DNA 

extraction. Specifically, genomic DNA was extracted using 
a Genomic DNA Purification kit (Qiagen, Hilden, Germany) 
and subjected to bisulfite conversion using a CpGenome DNA 
Modification kit (Intergen Co., Purchase, NY, USA), according 
to the manufacturer's protocols. Subsequently, 2 µl of the 
modified DNA (50 ng) was subjected to PCR amplification 
in a 50 µl volume reaction [0.25 µl Taq polymerase, 5 µl 10X 
PCR buffer; 4 µl dNTP mix (2.5 mM); 0.5 µl forward and 
reverse primers; 50 ng DNA template made up to the volume 
in Milli Q water] under the following conditions: 45 cycles at 
an annealing temperature of 58˚C for 45 sec (CDH13), 60˚C 
for 45 sec (DKK3) or 58˚C for 45 sec (FOXL2), and primer 
extension at 72˚C. All PCR amplifications were performed 
with positive controls for unmethylated and methylated alleles, 
and DNA‑free empty controls. The PCR amplification kit was 
purchased from Eppendorf AG (Hamburg, Germany). The 
primers (Sangon Biotech., Co., Ltd., Shanghai, China) for 
each gene promoter methylation were designed according to 
previous reports (12‑14) by first identifying the methylated‑ and 
unmethylated‑specific sequences, respectively, and subsequent 
synthesis for MSP amplification of the CDH13, DKK3 and 
FOXL2 genes (Table I). The PCR products were then separated 
on 3% agarose gels and visualized using ethidium bromide 
staining under an UV‑3000 ultraviolet light box.

Immunohistochemistry. Immunohistochemistry was performed 
to detect the protein expression of EZH2 in the tissue samples. 
In brief, 3‑µm thick tissue sections were prepared from the 
paraffin‑embedded tissue blocks, deparaffinized in xylene and 
rehydrated in a series of ethanol. The sections were then incu-
bated with 0.5% TritonX‑100 for 30 min at room temperature 
to ensure that the antibody entered the nuclei. The sections then 
underwent epitope retrieval in a steam cooker in 0.01 M citric 
buffer (pH 6.0) for 15 min at 100˚C. The slides were subsequently 
washed with phosphate‑buffered saline (pH 7.4) three times 
for 5 min. The slides were immersed in 3% H2O2 methanol solu-
tion (freshly prepared) for 10 min. The slides were subsequently 

Table I. Primer sequences for PCR amplification of multiple tumor suppressor genes and methylation‑specific PCR analysis of 
gene promoter methylation.

Gene	 Sequence	 Amplicon (bp)	 Temperature (˚C)

CDH13‑M‑F	 5'‑TCGCGGGGTTCGTTTTTCGC‑3'	 243	 58
CDH13‑M‑R	 5'‑GACGTTTTCATTCATACACGCG‑3'		
CDH13‑U‑F	 5'‑TTGTGGGGTTTGTTTTTTGT‑3'	 242	
CDH13‑U‑R	 5'‑AACTTTTCATTCATACACACA‑3'		
DKK3‑M‑F	 5'‑GGGGCGGGCGGCGGGGC‑3'	 120	 60
DKK3‑M‑R	 5'‑ACATCTCCGCTCTACGCCCG‑3'		
DKK3‑U‑F	 5'‑TTAGGGGTGGGTGGTGGGGT‑3'	 126	
DKK3‑U‑R	 5'‑CTACATCTCCACTCTACACCCA‑3'		
FOXL2‑M‑F	 5'‑GTTATAATATTTTTTCGGTTGTTC G‑3'	 211	 58
FOXL2‑M‑R	 5'‑CTAACTCCACGACCTATACTCGAT‑3'		
FOXL2‑U‑F	 5'‑AGGTTATAATATTTTTTTGGTTGTTTG‑3'	 214	
FOXL2‑U‑R	 5'‑CCTAACTCCACAACCTATACTCAAT‑3'		

PCR, polymerase chain reaction; CDH13, cadherin 13; DKK3, dickkopf WNT signaling pathway inhibitor 3; FOXL2, forkhead box L2; 
M, methylated; U, unmethylated; F, forward; R, reverse.
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washed as above. Following being blocked in normal serum for 
30 min, the sections were incubated with anti‑EZH2 antibody 
at a dilution of 1:100 (cat. no. 5246; Cell Signaling Technology, 
Inc., Danvers, MA, USA) at 4˚C overnight. The following day, 
the sections were washed with phosphate‑buffered saline (PBS) 
three times and further incubated with a rabbit anti‑human 
secondary antibody Dako (Glostrup, Denmark; cat. no. K5007) 
at room temperature for 30 min. The positive signal was visual-
ized using diaminobenzidine as the chromogen. Breast cancer 
tissue sections (Shanxian Central Hospital; patient was diag-
nosed as infiltrating ductal carcinoma) were used as a positive 
control, and PBS was used as a negative control. The stained 
sections were reviewed and scored under a light microscope 
(BX43; Olympus, Tokyo, Japan) by two investigators for staining 
intensity and percentage of staining (15). The staining intensity 
score was recorded as follows: Absent, 0; weak, 1; moderate, 
2; strong, 3. The percentage of positive cells was recorded as 
follows: Absent, 0; ≤10%, 1; 11‑50%, 2; 51‑≤80%, 3; >80 %, 4. 
These two scores were then multiplied to obtain a staining index. 
If the staining index was ≥3, the case was considered positive.

Statistical analysis. All statistical analyses were performed 
using SAS version 9.1 software (SAS Institute, Inc., Cary, NC, 
USA). The frequencies of methylation were compared using 

χ2 test or Fisher's exact test. P<0.05 was considered to indicate 
a statistically significant difference. All tests were two‑sided.

Results

Differential methylation status of CDH13, DKK3 and FOXL2 
promoters in GCTs. In the present study, the methylation status 
of the CDH13, DKK3 and FOXL2 promoters in the GCT tissue 
specimens were assessed and compared with those in follicular 
cyst specimens. Table II summarizes the methylation rates of 
these three genes in the GCTs, compared with the follicular 
cysts. Representative examples of the MSP data are shown in 
Fig. 1. Significant differences were found in the methylation of 
the CDH13, DKK3 and FOXL2 promoters in the GCT tissues, 
compared with the follicular cyst tissues (P<0.001). The asso-
ciations between gene methylation and clinicopathological 
parameters, including age, tumor size, FIGO stage and postop-
erative recurrence, were also analyzed (Table III), however, no 
significant associations were observed.

Differential protein expression of EZH2 in GCT tissues. 
The immunohistochemical staining showed that EZH2 
protein was localized in the nuclei of the positive tumor 
cells. Representative examples of the immunohistochemical 

Table II. Comparison of methylation rates of CDH13, CKK3 and FOXL‑2 promoters between GCT and follicular cyst tissues.

Gene	 GCT (n=30)	 Follicular cyst (n=30)	 χ2	 P‑valuea

CDH13	 86.67 (26)	 23.33 (7)	 21.70	 <0.001
DKK3	 80 (24)	 26.67 (8)	 17.14	 <0.001
FOXL2	 70 (21)	 20 (6)	 17.38	 <0.001

aχ2 test compared with normal endometrium. GCT, granulosa cell tumor; CDH13, cadherin 13; DKK3, dickkopf WNT signaling pathway 
inhibitor 3; FOXL2, forkhead box L2.

Figure 1. MSP analysis of CDH13, DKK3 and FOXL2 promoter methylation in GCT and follicular cyst tissues. The MSP products in the M lanes indicate 
the presence of methylated alleles, whereas those in the U lanes indicate the presence of unmethylated alleles. MSP, methylation‑specific polymerase chain 
reaction; T, GCT; N, follicular cyst; CDH13, cadherin 13; DKK3, dickkopf WNT signaling pathway inhibitor 3; FOXL2, forkhead box L2; U, unmethylated; 
M, methylated.
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data are shown in Fig. 2. It was found that the expression 
of EZH2 was higher in the GCT tissues, compared with the 
follicular cysts (Table IV), however, no associations were 
found between the expression of EZH2 and the clinicopatho-
logical parameters of the patients with GCT with respect to 
age, tumor size, FIGO stage and metastasis (Table II). The 
present study then examined the associations between the 
expression of EZH2 and methylation of the CDH13, DKK3 
and FOXL2 gene promoters, however, no positive associa-
tions were found (Table V).

Discussion

GCTs are a relatively rare type of malignancy in the ovary, 
and are inconsistent in size, ranging between small spots and 
large masses, with an average diameter of 10 cm. Although the 
clinical appearance, symptoms and management are similar to 
those of epithelial ovarian tumors, the mechanism underlying 
the development and progression of GCT may be different 
from other types of ovarian cancer (1). Thus, an improved 

understanding of the mechanism underlying the develop-
ment and progression of GCT may lead to improved options 
for the early detection, prevention and treatment of GCT 
clinically (16). To date, clinical prognostic indicators rely 
predominantly on clinicopathological variables, including 
patient age, tumor stage and grade. Thus, the identification 
of molecular or epigenetic markers may provide biological 
insight and serve as a critical tool in the successful treatment 
of GCT. The present study assessed the methylation status of 
the CDH13, DKK3 and FOXL2 promoters, and found that the 
promoters of these three genes were significantly hypermeth-
ylated in the GCT tissues, compared with the follicular cyst 
tissues. Expression of the EZH2 protein was also high in the 
GCT tissues, however, no associations were found between 
these alterations and the clinicopathological data from 
the patients with GCT. Further investigations with a larger 
sample size are required to confirm these findings. As GCT 
is a relatively rare type of tumor, a consortium of different 
cancer centers or hospitals may be required to obtain suffi-
cient numbers of tissue samples to facilitate further molecular 
investigations.

Although the cause and pathogenesis of GCTs remain 
to be elucidated, GCTs are similar to the majority of other 
types of human cancer, the development of which involves 
gene mutation and promoter methylation, and epigenetic 
modifications of genomic DNA. The accumulation of genetic 
abnormalities and epigenetic alterations lead to the malignant 
transformation of normal cells. To date, the known primary 
human epigenetic modifications include alterations of DNA 
methylation status in CpG islands and covalent modifica-
tions of histone tails. Accumulating evidence suggests that 
more genes are affected by aberrant epigenetic alterations 
than genetic mutations in human carcinogenesis  (6,7,17). 
Thus, promoter methylation‑induced silencing of tumor 

Table III. Association between CDH13, DKK3 and FOXL2 methylation and clinicopathological data from patients with granu-
losa cell tumors.

		  DKK3 (M)	  	 CDH13 (M)		  FOXL2 (M)		  EZH2 (M)
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑  
Clinical feature	 n	 n (%)	 P‑valuea	 n (%)	 P‑valuea	 n (%)	 P‑valuea	 n (%)	 P‑valuea

Age (years)			   1.00		  0.55		  1.00		  1.00
  <40	 8	 7 (87.5)		    8 (100.0)		  6 (75.0)		  3 (37.5)	
  ≥40	 22	 17 (77.3)		  18 (81.8)		  15 (68.2)		  8 (36.4)	
Tumor size (cm)			   0.37		  1.00		  0.68		  0.69
  ≥10	 19	 14 (73.7)		  16 (84.2)		  14 (73.3)		  6 (31.6)	
  <10 	 11	 10 (90.9)		  10 (90.9)		  7 (63.6)		  5 (45.5)	
FIGO stage			   0.57		  0.55		  1.00		  0.64
  I	 24	 20 (83.3)		  20 (83.3)		  17 (70.8)		  8 (33.3)	
  II‑III	 6	 4 (66.7)		    6 (100.0) 		  4 (66.7)		  3 (50.0)	
Recurrence			   0.50		  1.00		  0.53		  0.53
  Yes	 3	 2 (66.7)		    3 (100.0) 		  3 (100.0) 		  2 (44.4) 	
  No	 27	 22 (81.5)		  23 (85.2)		  18 (66.7)		  9 (33.3)	

aFisher's exact test. CDH13, cadherin 13; DKK3, dickkopf WNT signaling pathway inhibitor 3; FOXL2, forkhead box L2; (M), methylated;  
EZH2, enhancer of zeste homolog 2; FIGO, Federation of Gynecology and Obstetrics.

Table IV. Comparison of the expression of enhancer of zeste 
homolog 2 between GCT and follicular cyst tissues.

	 EZH2
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Tissue	 + (n)	 ‑ (n)	 %	 χ2	 P‑valuea

GCT	 11	 19	 36.7
Follicular cyst	 0	 30	 0	 13.5	 <0.001

aχ2 test compared with normal endometrium. GCT, granulosa cell 
tumor; EZH2, enhancer of zeste homolog 2.
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suppressor genes has been suggested as a key mechanism in 
the development of several types of human cancer. Aberrant 
gene methylation is also one of the earliest molecular altera-
tions occurring during tumorigenesis and may be used as 
a marker for early tumor detection. As methylation of the 
promoter region is a reversible process, the detection of gene 
methylation levels may provide guidance for individualized 
chemotherapy. The present study showed for the first time, to 
the best of our knowledge, methylation of the CDH13, DKK3 
and FOXL2 gene promoters in GCT tissue samples, with no 
similar findings reported previously. Friedrichs et al (15) first 
reported a specific pattern of CpG island hypermethylation 
in different types of human cancer. In GCTs, the detection of 
different gene promoter methylation has been shown in cell 
lines and in a limited number of tumor tissues, with the most 
frequently methylated gene promoters being p16 and ER‑α 
(40%), BRCA1 and RASSF1A (36%), MGMT (32.5%) and 
hMLH1 and FHIT (28%) (16,18,19).

CDH13 is a cell adherence protein of a unique cadherin 
superfamily member and functions to mediate intracellular 
signaling in vascular cells. Emerging evidence indicates that 
CDH13 is a candidate tumor suppressor in several types of 
human cancer, including breast and lung cancer (12,20‑26), 
colorectal cancer  (21,27), hepatocellular carcinoma  (28), 
bladder cancer  (29), cervical cancer  (30) and ovarian 
cancer  (31‑34). Previous studies have showed that CDH13 
promoter methylation is a frequent event in cancer, which is 
associated with unfavorable tumor features, increased risk of 
recurrence and poorer survival rates, and has been suggested 
as an independent predictor for tumor recurrence and progres-
sion (26,29). DKK3 is a secreted protein, which is involved 

in embryonic development through its interactions with the 
Wnt signaling pathway. The expression of DKK3 is reduced 
in a variety of cancer cell lines and may function as a tumor 
suppressor gene by antagonizing Wnt signaling  (35‑37). 
Epigenetic silencing of DKK3 has been observed to disrupt 
normal Wnt/β‑catenin signaling and apoptosis regulation (38). 
DKK3 methylation has been frequently detected in a broad 
range of types of cancer and appears to be important in tumor 
development (13,37‑42). FOXL2 is a member of the forkhead 
transcription factor family and functions as an essential regu-
lator of ovarian maintenance. FOXL2 protein is expressed 
in the pituitary gonadotrope, thyrotrope cells and ovarian 
granulosa cells, and is required for commitment to ovary 
differentiation (43,44). FOXL2 mutations are associated with 
syndromic and non‑syndromic ovarian failure, and occurs in 
ovary GSTs with a mutation rate at FOXL2 (402 C‑>G) of 
97% in adult GCT (45‑50). Tran et al showed that the CpG 
island of the murine FOXL2 proximal promoter was differ-
entially methylated in primary and immortalized cells (51). 
The FOXL2 promoter was also abnormally methylated in 
non‑small cell lung cancer (52). In the present study, the meth-
ylation statuses of three gene promoters in GCT tissues were 
detected, and the results demonstrated that promoter methyla-
tion was associated with the development of GCT, but not with 
its progression. Further investigations aim to investigate the 
underlying molecular mechanism for silencing the expression 
of these three genes in GCT.

Histone modifications are considered to regulate genetic 
programs in normal cells, but are altered in cancer cells. 
The methylation of histone H3 at lysine 27 silences gene 
expression, which induces transcriptional repression and is 

Table V. Association between the expression of EZH2 and methylation of the CDH13, DKK3 and FOXL2 promoters.

	 DKK3		  CDH13		  FOXL2
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑  
EZH2	 M	 U	 P‑valuea	 M	 U	 P‑valuea	 M	 U	 P‑valuea

Positive (n)	 9	 2		  9	 2		  9	 2	
Negative (n)	 15	 4	 1.00	 17	 2	 0.61	 12	 7	 0.41

aFisher's exact test of the association between gene methylation and the protein expression of EZH2. M, methylated; U, unmethylated; EZH2, 
enhancer of zeste homolog 2; CDH13, cadherin 13; DKK3, dickkopf WNT signaling pathway inhibitor 3; FOXL2, forkhead box L2.

Figure 2. Immunohistochemical analysis of the protein expression of enhancer of zeste homolog 2 in (A) granulosa cell tumor (positive) and (B) follicular cyst 
tissues (negative) (magnification, x200).

  A   B
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thus involved in controlling gene expression patterns (53,54). 
EZH2 is a methyltransferase and a component of the polycomb 
repressive complex 2, which is essential in the epigenetic main-
tenance of the H3K27me3 repressive chromatin mark (55). 
The abnormal expression of EZH2 has been associated with 
aggressive tumor subgroups, disease‑free survival rates and 
overall survival rates in patients with cutaneous melanoma, 
and in cancer of the endometrium, prostate, breast, colorectal 
and ovary (11,56‑59). The present study was the first, to the best 
of our knowledge, to detect the expression of EZH2 in GCT 
and found 11 positive cases in 30 GCT tissue samples (36.7%), 
compared with follicular cyst tissue samples, in which no 
positive cases were found. In addition, a previous study linked 
EZH2 to gene silencing in association with the maintenance of 
DNA methylation (58). EZH2 may affect DNA methylation by 
direct interaction with DNA methyltransferases, however, the 
majority of H3K27me3‑marked genes lack DNA methylation 
in embryonic stem cells, indicating that EZH2 recruitment 
may not be sufficient to promote DNA methylation (60). In 
the present study, no associations were found between the 
expression of EZH2 and methylation of the CDH13, DKK3 
and FOXL2 promoters. Thus, further investigation is required 
to assess the functions of the EZH2 protein in GCTs.

The results of the present study were proof‑of‑principle, 
and future investigations with a larger sample size are required 
to verify the findings. Future investigations aim to assess 
how the methylation of the CDH13, DKK3 and FOXL2 gene 
promoters affects the expression of their proteins, and how 
these proteins contribute to the development of GCT. Whether 
the altered methylation status of these gene promoters can be 
detected as biomarkers for the early detection of GCT also 
requires investigation.
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