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Abstract. Fibroblast-like synoviocytes (FLSs) of rheumatoid 
arthritis (RA) lead to cartilage destruction, and the activa-
tion of NF-κB is important in the proliferation of FLSs. 
Heparin is a glycosaminoglycan, which is widely used as an 
anticoagulant. In the present study, the effect of heparin on 
the tumor necrosis factor (TNF)-α induced proliferation of 
FLSs was investigated. Western blot and polymerase chain 
reaction analyses were used to assess the expression levels 
of cytokines. The results revealed that TNF-α induced the 
expression of interleukin (IL)-6, IL-8, TNF-α and cyclin D1. 
Heparin inhibited the growth rate of the FLSs induced by 
TNF-α. Heparin also decreased the TNF-α-induced mRNA 
and protein expression levels of IL-6, IL-8, TNF-α and cyclin 
D1 in a dose‑dependent manner. Immunofluorescence analysis 
showed that the expression of cytoplasmic TNF-α was signifi-
cantly reduced by heparin treatment. Furthermore, the levels 
of p65 and inhibitor of nuclear factor (NF)-κB phosphoryla-
tion were inhibited by heparin treatment, suggesting that 
heparin induced the inhibition of NF-κB. In conclusion, the 
results of the present study revealed that heparin inhibited the 
TNF-α-induced proliferation, cytokine production, expres-
sion of cyclin D1 and activation of NF-κB signaling in FLSs, 
indicating the therapeutic potential of heparin in the treatment 
of RA.

Introduction

Rheumatoid arthritis (RA) is a common chronic inflammatory 
joint disease, which is characterized by inflammation, hyper-
plasia and destruction of joints (1,2). Hypertrophic synovial 

tissue in RA is composed of fibroblast-like synoviocytes 
(FLSs) and inflammatory cells, which secrete several inflam-
matory cytokines (3). Previous studies have demonstrated that 
tumor necrosis factor (TNF)-α, which stimulates FLS prolif-
eration, is critical in the pathogenesis of RA (4-6). TNF-α also 
activates a broad array of intracellular signaling mechanisms, 
including the nuclear factor (NF)-κB pathway (7).

NF-κB is important in inflammatory regulation, and 
several studies have suggested the role of NF-κB activation 
during the development of RA (8-10). TNF-α stimulation 
activates NF-κB signaling in FLSs and leads to the produc-
tion of cytokines, including TNF-α, interleukin (IL)6 and 
IL8 (11). In addition, there is a positive feedback loop between 
NF-κB and TNF-α (12), which is critical during the patho-
genesis of RA. The inhibition of NF-κB signaling, particularly 
antibody-mediated inhibition of TNF-α function, has been 
found to significantly suppresses the progression of inflamma-
tion (13). These findings suggest that the inhibition of NF‑κB 
is an important therapeutic approach for the treatment of 
RA (14-16).

Heparin is a sulfated glycosaminoglycan, which is widely 
applied as an injectable anticoagulant (17,18). Although used 
principally in medicine for anticoagulation, other biological 
and physiological roles of heparin, and its underlying mecha-
nisms remain to be fully elucidated. Previous reports suggest 
that heparin exerts inhibitory effects on NF-κB signaling in 
human endothelial cells, suggesting it may function as an 
inhibitor of FLS proliferation and lead to the progression of 
RA (19,20). In the present study, the effects of heparin on the 
proliferation and activation of NF-κB in TNF-α-stimulated 
FLSs were investigated. The present study aimed to determine 
the importance of heparin in FLSs, which may provide insights 
into the clinical impacts of this anticoagulant in patients with 
RA.

Materials and methods

Reagents and antibodies. Recombinant TNF-α was obtained 
from Cell Signaling Technology, Inc. (Danvers, MA, USA). 
RPMI-1640, fetal bovine serum (FBS), antibiotics, trypsin, 
phosphate-buffered saline (PBS) and other products for cell 
culture were purchased from Invitrogen; Thermo Fisher 
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Scientific, Inc. (Waltham, MA, USA). Phosphorylated (p‑) Akt, 
Akt, IL-6, IL-8, p-p65, p65, p-IκB, IκB and β-actin antibodies 
were purchased from Cell Signaling Technology, Inc. Heparin 
sodium for injection was purchased from Shanghai No. 1 
Biochemistry & Pharmaceutical Co., Ltd. (Shanghai, China).

Isolation and culture of FLSs. The present study was 
approved by the First Affiliated Hospital and Shengjing 
Hospital of China Medical University (Shenyang, China). 
Informed consent was obtained from all patients. The FLSs 
were isolated from primary synovial tissues obtained from 
three patients with RA who had undergone joint replacement 
surgery or synovectomy between 20013 and January 2014. The 
synovial tissue was sectioned and digested with 0.25% trypsin 
to isolate the synoviocytes, which were cultured in 5% CO2 at 
37˚C. Following overnight culture, the non‑adherent cells were 
removed, and the adherent cells were cultivated in RPMI-1640 
supplemented with 10% FBS. The FLSs were passaged 
following 0.25% trypsin treatment. FLSs in passages 3-8 were 
used in subsequent experiments. The cells were observed using 
a light microscope and were morphologically homogeneous 
and exhibited a typical bipolar configuration.

Treatment of the cells with TNF‑α and heparin. FLS cells were 
cultured in plates. When 80% confluence was achieved, cells 
were treated with 10 ng/ml TNF-α alone and TNF-α (10 ng/ml) 
with different concentrations of heparin (0, 0.1, 1 and 5 U/ml) 
for 24, 48 and 72 h.

MTT assay. The cells were plated in 96-well plates 
(~3,000 cells per well) and cultured for 5 days. MTT solution 
(20 µl of 5 mg/ml MTT) was added to each well. Following 
incubation for 4 h at 37˚C, the medium was removed and the 
remaining MTT formazan was dissolved in 150 µl DMSO. 
The absorbance of the solution was measured at 490 nm using 
an absorbance microplate reader.

Reverse transcription‑quantitative polymerase chain reaction 
(RT‑qPCR) analysis. Total RNA was extracted from fresh 
tissue samples and cells with TRIzol reagent (Thermo Fisher 
Scientific, Inc.) according to the manufacturer's protocol. Total 
RNA was reversed to cDNA using PrimeScript RT Master Mix 
(Takara, Biotechnology Co., Ltd., Dalian, China). A total 10 µl of 
reverse-transcription reaction solution was prepared using 2 µl 
of 5X RT Master Mix and 500 ng RNA. Reverse-transcription 
reaction was performed by incubating the samples at 37˚C for 
15 min and then 85˚C for 5 sec. qPCR was performed as follows 
using 9 µl water, 1 µl cDNA and 10 µl SYBR Green master 
mix (Thermo Fisher Scientific, Inc.): 50˚C for 2 min, 95˚C for 
10 min, 40 cycles of 95˚C for 15 sec, 60˚C for 60 sec. The 
RT-qPCR analysis was performed using a 7900HT Real-Time 
PCR system (Thermo Fisher Scientific, Inc.). β-actin was used 
as the reference gene. The relative expression levels of target 
genes were calculated as ΔCq = Cq gene - Cq reference, and 
the fold change in target gene expression was calculated using 
the 2-ΔΔCq method (21). Experiments were repeated in tripli-
cate. The primer sequences were as followers: TNF-α, forward 
5'‑TGA CTG TCG CCC GCA GTACG‑3' and reverse 5'‑CGG 
CAA TTT AGT GAC ACGCG‑3'; IL‑6, forward 5'‑ACC GTC 
ATC ATG TCT GACCA‑3' and reverse 5'‑TGG AAC ACC CTG 

TCT TTGAC‑3'; IL‑8, forward 5'‑ACC GTC ATC ATG TCT 
GACCA‑3' and reverse 5'‑TGG AAC ACC CTG TCT TTGAC‑3'; 
cyclin D1, forward 5'‑GCT GGA GGT CTG CGA GGA‑3' and 
reverse 5'‑ACA GGA AGC GGT CCA GGT AGT‑3'; β-actin, 
forward 5'‑ATA GCA CAG CCT GGA TAG CAA CGTAC‑3' and 
reverse 5'‑CAC CTT CTA CAA TGA GCT GCG TGTG‑3'.

Western blot analysis. Total proteins from the cells were 
extracted in lysis buffer and quantified using the Bradford 
method. A 30 mg quantity of protein was separated by 10% 
SDS-PAGE. The samples were then transferred onto PVDF 
membranes (EMD Millipore, Billerica, MA, USA) and 
incubated overnight at 4˚C with primary antibodies against 
TNF-α (cat. no. 6945), IL-6 (cat. no. 12153) and cyclin D1 
(cat. no. 2978; 1:900; all from Cell Signaling Technology, Inc., 
Danvers, MA, USA), IL-8 (cat. no. 7922; 1:500; Santa Cruz 
Biotechnology, Inc., Dallas, TX, USA) and actin (cat. no. 47778; 
1:1,000; Santa Cruz Biotechnology, Inc.). This was followed by 
incubation with peroxidase-coupled anti-mouse or rabbit IgG 
antibody (1:1,000 dilution; Cell Signaling Technology, Inc.) at 
37˚C for 2 h. Target proteins on the PVDF membrane were 
visualized using a Pierce ECL kit (Pierce, Rockford, IL, USA) 
and images were captured using a DNR Bio-Imaging system 
(DNR Bio-Imaging systems, Ltd., Jerusalem, Israel).

Immunofluorescence staining. Following washing with 
cold PBS, The FLSs were fixed with 4% formaldehyde in 
PBS for 10 min. Subsequently, the cells were treated with 
0.25% Triton X-100 (Sigma-Aldrich, St. Louis, MO, USA). 
The cells were then washed three times in PBS for 5 min each, 
followed by blocking for 10 min with 5% goat serum. The cells 
were then incubated with TNF-α primary antibody diluted 
in PBS with 3% bovine serum albumin (1:500; Beyotime 
Institute of Biotechnology, Shanghai, China) overnight at 
4˚C. The cells were then incubated with AlexaFluro 488 
conjugated-goat anti-rabbit IgG for 2 h at room temperature. 
Immunofluorescence was visualized under a fluorescence 
microscope (Olympus Corporation, Tokyo, Japan).

Statistical analysis. Data are expressed as the mean ± stan-
dard deviation. Statistical analysis was performed using SPSS 
12.0 software (SPSS, Inc., Chicago, IL, USA). The results were 
compared using one-way analysis of variance with post-hoc 
tests. P<0.05 was considered to indicate a statistically signifi-
cant difference.

Results

Effect of heparin on the proliferation rate of FLSs. The 
effect of heparin on FLS growth rate was determined using 
an MTT assay. The cells were treated with TNF-α (10 ng/ml) 
and different concentrations of heparin (0, 0.1, 1 and 5 U/ml) 
for 24, 48 and 72 h. As shown in Fig. 1, heparin treatment, 
particularly at concentrations of 1 and 5 U/ml, significantly 
inhibited the proliferation rate of the FLSs induced by TNF-α 
treatment (P<0.05; 5 U/ml group at 24 h; 1 and 5 U/ml groups 
at 48 h; 1 and 5 U/ml groups at 72 h).

Effect of heparin on TNF‑α‑induced mRNA expression levels 
of the TNF‑α, IL‑6, IL‑8 and cyclin D1 NF‑κB target genes in 
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FLSs. TNF-α is a downstream target of the NF-κB pathway, 
which also activates NF-κB signaling. Previous studies have 
reported a positive feedback loop between TNF-α and NF-κB 
signaling (22-24). Therefore, the present study examined the 
effect of TNF-α on the expression of NF-κB target genes using 
RT-qPCR. As shown in Fig. 2A, 24 h of TNF-α treatment 

(10 ng/ml) significantly upregulated the mRNA expression 
of the NF-κB target genes, including TNF-α, IL-6, IL-8 and 
cyclin D1, compared with the untreated control (P<0.05).

Subsequently, the role of heparin on the mRNA expression 
levels of the TNF-α, IL-6, IL-8 and cyclin D1 NF-κB target 
genes was investigated. The FLSs were treated with 10 ng/ml 

Figure 2. Effect of heparin on the NF-κB target genes TNF-α, IL-6, IL-8 and cyclin D1. (A) Treatment with TNF-α (10 ng/ml) for 24 h upregulated the 
mRNA expression levels of TNF-α, IL-6, IL-8 and cyclin D1. (B) Heparin treatment decreased the mRNA levels of TNF-α, IL-6, IL-8 and cyclin D1 in a 
dose-dependent manner. *P<0.05 vs. TNF-α group. FLS, fibroblast‑like synoviocyte; TNF‑α, tumor necrosis factor-α; IL, interleukin. 

Figure 1. Effect of heparin on the proliferation rate of FLSs. FLSs were treated with TNF-α and different concentration of heparin (0, 0.1, 1 and 5 U/ml) for 
24, 48 and 72 h. Heparin significantly inhibited the proliferation rate of the FLSs. *P<0.05 vs. TNF-α group. FLS, fibroblast‑like synoviocyte; TNF‑α, tumor 
necrosis factor-α.

  A

  B
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Figure 3. Effect of heparin on the protein expression levels of TNF-α, IL-6, IL-8 and cyclin D1. Heparin treatment decreased the protein levels of TNF-α, 
IL-6, IL-8 and cyclin D1 in the FLSs in a dose-dependent manner. *P<0.05 vs. 0 U/ml heparin group. FLS, fibroblast‑like synoviocyte; TNF‑α, tumor necrosis 
factor-α; IL, interleukin.

Figure 5. Effect of heparin on nuclear factor-κB signaling activation. Western blot analysis showed that the levels of p-p65 and p-IκB decreased following 
heparin treatment in a dose-dependent manner. *P<0.05 vs. 0 U/ml heparin group. p-phosphorylated; IκB, inhibitor of nuclear factor-κB.

Figure 4. Immunofluorescence staining of TNF‑α in fibroblast‑like synoviocytes treated with heparin. Immunofluorescence showed that heparin treatment 
induced a dose-dependent decrease in the cellular protein expression of TNF-α. Magnification, x400. TNF‑α, tumor necrosis factor-α.
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of TNF-α for 24 h, following which the FLSs were exposed 
to different concentrations of heparin (0, 0.1, 1 and 5 U/ml). 
As shown in Fig. 2B, heparin treatment decreased the mRNA 
levels of TNF-α, IL-6, IL-8 and cyclin D1 in a dose-dependent 
manner (1 and 5 U/ml groups; P<0.05).

Effect of heparin on the protein expression levels of TNF‑α, 
IL‑6, IL‑8 and cyclin D1 in FLSs. Western blot analysis was 
used to examine heparin-induced changes in the protein 
levels of TNF-α, IL-6, IL-8 and cyclin D1. The FLSs were 
treated with 10 ng/ml of TNF-α for 24 h, following which 
the FLSs were exposed to different concentrations of heparin 
(0, 0.1, 1 and 5 U/ml) or another 24 h. As shown in Fig. 3, 
heparin treatment significantly decreased the protein levels 
of TNF-α, IL-6, IL-8 and cyclin D1 in a dose-dependent 
manner (P<0.05). In addition, immunofluorescence was used 
to examine protein expression and localization of TNF-α 
in the heparin-treated FLS. As shown in Fig. 4, TNF-α was 
located in the cytoplasm of the FLSs, and heparin treatment 
dose-dependently decreased the cellular protein expression of 
TNF-α.

Effect of heparin on NF‑κB activity. To investigate the 
mechanism by which heparin inhibits proinflammatory cyto-
kines, the present study examined the effect of heparin on the 
phosphorylation of p65 and IκB, which are key proteins of the 
NF-κB signaling pathway. As shown in Fig. 5, the levels of 
p-p65 and p-IκB were significantly reduced following heparin 
treatment in a dose-dependent manner, suggesting that heparin 
inhibited NF-κB activity in the FLSs (P<0.05).

Discussion

In the present study, it was found that heparin (0, 0.1, 1 and 
5 U/ml) dose-dependently inhibited TNF-α-induced NF-κB 
activation and attenuated the TNF-α-induced production of 
IL-6, IL-8, cyclin D1 and TNF-α in FLSs at mRNA and protein 
levels. In addition, heparin reduced TNF-α-induced cell prolif-
eration.

NF-κB signaling is important in the development of inflam-
mation-associated diseases, including RA. NF-κB signaling can 
be induced by several stimuli, including cytokines, bacteria and 
oxidative stress (25). Among these stimuli, TNF-α is one of the 
most important cytokines involved in the development of RA 
through the activation of several signaling pathways, including 
NF-κB signaling (26). In addition, a previous study reported 
the presence of a positive feedback loop between NF-κB and 
TNF-α (12). Inhibition of the function of TNF-α significantly 
suppresses the progression of inflammation in RA and has 
become an important therapeutic approach for the treatment of 
RA (27).

Heparin is a natural glycosaminoglycan, which is widely 
used as an anticoagulant (19,28). Aside from its anticoagu-
lant function, it has other biological functions, which remain 
to be fully elucidated. A previous study suggested a role of 
heparin in the inhibition of NF-κB signaling (19). However, 
the effects of heparin on the process of inflammation in FLSs 
and the underlying mechanisms have not been examined. 
In the present study, the role of heparin in TNF-α-induced 
activation of NF-κB was investigated. It was found that 

heparin attenuated TNF-α-induced NF-κB signaling in a 
dose-dependent manner.

It has been reported that TNF-α can initiate joint destruction 
and synovial inflammation during the development of RA 
through the induction of inflammatory cytokines (2). The 
present study demonstrated that the production of IL-6, IL-8 and 
cyclin D1 were significantly enhanced in the FLSs treated with 
TNF-α. Heparin significantly attenuated the TNF‑α-induced 
production of TNF-α, IL-6, IL-8 and cyclin D1 in the FLSs in 
a concentration‑dependent manner, suggesting its anti‑inflam-
matory role in the RA process. This TNF-α-induced production 
of cytokines was associated with NF-κB activation in the 
FLSs. As heparin inhibited TNF-α-induced NF-κB signaling, 
it decreased the expression of IL-6, IL-8, cyclin D1 and TNF-α, 
possibly through the inhibition of NF-κB.

Heparin has been shown to attenuate the proliferation 
of endothelial cells (29-31). In the present study, it was found 
that heparin inhibited the proliferation of the FLSs induced 
by TNF-α. In addition, heparin inhibited the expression of 
cyclin D1, which is an NF-κB target and acts as a cell cycle regu-
lator involved in cell proliferation (32). These results indicated 
that cyclin D1 is critical in heparin-induced growth inhibition 
through the inhibition of NF-κB. The molecular mechanism of 
heparin-induced NF-κB inhibition remains to be elucidated. It 
was previously reported that this effect may be associated with 
KLF-5 and growth factors, including EGF and VEGF (33,34). 
The precise mechanism requires further investigation.

In conclusion, the present study demonstrated that, by 
suppressing NF-κB activation, heparin inhibited TNF-α-induced 
cell proliferation and the production of cytokines, including IL-6 
and IL‑8, in FLSs, suggesting that heparin may be beneficial in 
preventing the progression of RA. Therefore, heparin may be a 
novel therapeutic approach for the treatment of RA.
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