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Abstract. The interaction between Streptococcus pneumoniae 
(S. pneumoniae) and the mucosal epithelial cells of its host 
is a prerequisite for pneumococcal disease development, yet 
the specificity of this interaction between different respira-
tory cells is not fully understood. In the present study, three 
areas were examined: i) The capability of the encapsulated 
S. pneumoniae serotype 3 strain (WU2) to adhere to and 
invade primary nasal‑derived epithelial cells in comparison to 
primary oral‑derived epithelial cells, A549 adenocarcinoma 
cells and BEAS‑2B viral transformed bronchial cells; ii) the 
capability of the unencapsulated 3.8DW strain (a WU2 deriva-
tive) to adhere to and invade the same cells over time; and 
iii) the ability of various genetically‑unrelated encapsulated 
and unencapsulated S. pneumoniae strains to adhere to and 
invade A549 lung epithelial cells. The results of the present 
study demonstrated that the encapsulated WU2 strain adhesion 
to and invasion of primary nasal epithelial cells was greatest, 
followed by BEAS‑2B, A549 and primary oral epithelial cells. 
By contrast, the unencapsulated 3.8‑DW strain invaded oral 
epithelial cells significantly more efficiently when compared 
to the nasal epithelial cells. In addition, unencapsulated 
S. pneumoniae strains adhered to and invaded the A459 cells 
significantly more efficiently than the encapsulated strains; 
this is consistent with previously published data. In conclusion, 

the findings presented in the current study indicated that the 
adhesion and invasion of the WU2 strain to primary nasal 
epithelial cells was more efficient compared with the other 
cultured respiratory epithelial cells tested, which corresponds 
to the natural course of S. pneumoniae infection and disease 
development. The target cell preference of unencapsulated 
strains was different from that of the encapsulated strains, 
which may be due to the exposure of cell wall proteins.

Introduction

Streptococcus pneumoniae (S. pneumoniae) is part of the 
commensal flora of the human respiratory tract, however, viru-
lent strains of S. pneumoniae (1,2) or co‑infection with other 
microbes (3), may transform this commensal bacterium into 
a pathogen. Pathogenic S. pneumoniae can spread to sterile 
mucosal surfaces and cause otitis media and pneumonia, 
or may lead to sepsis or meningitis through invasion of the 
host (4). Despite the currently available antibiotic treatments 
and vaccines for S. pneumoniae infections, the annual world-
wide morbidity in children under five years of age reached 
approximately one million children, whilst mortality reached 
around 200,000 children (5). These rates clearly highlight the 
requirement for the development of alternative therapeutic 
approaches and reliable assays for determining treatment 
effectiveness.

Antibiotic treatments against S. pneumoniae are currently 
less effective than they were three decades ago, as a result of 
the persistent emergence of antibiotic‑resistant strains (6,7). 
Anti‑S. pneumoniae vaccines in current use, are based on the 
capsular polysaccharides of the bacterium. An example of this 
includes the Pneumovax vaccine, which has exhibited 60% 
effectiveness in preventing invasive pneumococcal diseases in 
the elderly (8). The incomplete coverage occurs as a result of 
incomplete coverage against all 97 currently known serotypes 
or a poor immune response against certain serotypes included 
in the vaccine, including serotype 3. However, Pneumovax 
does not elicit long‑term immune memory or protective 
immune responses in infants <2 years of age (8). To overcome 
this caveat, pneumococcal capsular polysaccharides have been 
conjugated to various carrier proteins to produce conjugate 
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vaccines. These currently include between 10 and 15 sero-
types (9,10). However, to date, 98 S. pneumoniae serotypes 
have been identified (11,12), and pneumococcal carriage and 
disease caused by serotypes that are not included in the conju-
gate vaccines are constantly emerging (13,14). This further 
emphasizes the need for new therapeutic approaches and 
improved vaccines. The development of new preventative and 
therapeutic interventions is hampered due to an incomplete 
understanding of pneumococcal pathogenesis.

S. pneumoniae colonizes the nasopharynx by adhering 
to mucosal cells of the upper respiratory tract, which is a 
prerequisite for disease development  (15). Therefore, the 
nature of S. pneumoniae adhesins has been investigated over 
the past two decades (16,17). Among the molecules known 
to initiate the S. pneumoniae‑host interaction that leads to 
nasopharyngeal colonization, include two types of pili. The 
type I pilus is an oligomeric appendage, which is encoded by 
the rlrA operon (18,19). Its adhesin, the RrgA protein, binds 
to the toll‑like receptor (TLR) 2  (20). The type II pilus is 
encoded by a pathogenicity islet (PI)-II (21). Following the 
initial attachment to mucosal cells, the bacteria partially shed 
their polysaccharide capsule at the site of adhesion to provide 
access to the respiratory mucosa and facilitate the exposure of 
adhesive molecules embedded within the bacterial cell wall or 
cytoplasmic membrane (22). Among the adhesins present on 
the S. pneumoniae membrane and cell wall are the proteins; 
the lipoprotein PsaA  (23), which binds to the E‑cadherin 
receptor (24), and the PavA protein (25), which binds to the 
extracellular matrix (ECM) protein fibronectin and to the cell 
adhesion molecule integrin. Other adhesins include fructose 
bisphosphate aldolase, which binds to the flamingo cadherin 
receptor (26), NADH oxidase, which binds to the ECM protein 
laminin α5 (among other putative receptors) (27), and phos-
phoenolpyruvate protein phosphotransferase, which binds to 
the BMP binding endothelial regulator and Eps 1 proteins, 
among other putative receptors (28).

After attachment of the bacteria to the mucosal cells of the 
host has been established, S. pneumoniae may invade the cells 
either by binding phosphorylcholine or choline‑binding protein 
A (CbpA), also known as SpsA or PspC to the platelet‑activating 
factor receptor (PAF‑R) (29), which is present in epithelial and 
endothelial cells (30‑32). This binding may initiate the PAF‑R 
recycling pathway, which transports bacteria to the basal 
membrane of the host and leads to the development of an inva-
sive disease. In addition, the pneumococcal CbpA may bind to 
the polymeric immunoglobulin receptor (pIgR) or to secretory 
IgA (33‑35). Following attachment to the pIgR, the pneumo-
cocci exploit the recycling pathway to traverse the epithelium 
from the apical to the basement membrane. Notably, many 
adhesins and invasins, including, PspA, CbpA, PavA, PavB 
and PhtD, are known to be immunogenic and elicit a protective 
immune response in mouse model systems (36‑39).

In the search for effective therapeutic targets, tissue cultures 
of cancer‑derived or immortalized cell lines are most often 
used to identify new molecules that may be involved in bacte-
rial virulence (22‑29). In the current study, these tissue cultures 
were examined to investigate whether they are appropriate 
models for studying the interactions between S. pneumoniae 
and its host. In addition, although a significant amount of 
information has been gathered regarding the interaction 

between S. pneumoniae and its host cells (22‑29), the extent 
and specificity of the interaction with primary upper respira-
tory cells and secondary lower respiratory cells has not been 
fully described. Thus, the present study compared the abili-
ties of S. pneumoniae to adhere to and invade nasal‑derived 
epithelial cells (nasal cells), oral‑derived epithelial cells (oral 
cells) from primary cell lines, as well as bronchial‑virus trans-
formed cells (BEAS‑2B) and type II adenocarcinoma derived 
epithelial (A549) cells.

The present study investigated the interaction between 
non‑encapsulated pneumococcal strains and the respiratory 
tissue derived epithelial cells, as they have been recently 
demonstrated to be involved in S. pneumoniae diseases to a 
larger extent than previously assumed (40). Non‑encapsulated 
S. pneumoniae are subdivided into the following two groups: 
Group I, which possess a mutation or deletion in the cps locus, 
thereby preventing capsular synthesis; and group II, where the 
cps locus is replaced by a gene or genes that code for proteins, 
such as two aliB homologues (aliC and aliD), which are 
peptide‑binding molecules associated with an ATP‑binding 
cassette transporter  (41,42) or pspK  (40). pspK encodes a 
protein with a long alpha‑helical region containing an LPxTG 
motif and a YPT motif known to bind human pIgR (43), neces-
sary for nasopharyngeal carriage in mice.

Respiratory epithelial cells derived from cancers of 
the respiratory system and virus immortalized cells are 
widely used as in  vitro models for S. pneumoniae infec-
tions  (22‑29). However, the validity of these cell lines to 
reproduce the functions of primary respiratory cells remains 
to be fully determined. The present study aimed to compare 
the S. pneumoniae adhesion to and invasion of primary respi-
ratory cells with their interaction with the cancer‑derived cell 
lines and virus‑immortalized cells. The results of the present 
study suggest that the adhesion and invasion to the different 
types of cells is concomitant with the natural course of 
infection and disease development. In addition, the exposure 
of surface proteins, which occurs in unencapsulated strains, 
alters the target cell preferences of S. pneumoniae. The epithe-
lial cell cultures described in the current study may be used as 
a platform for the future identification of molecules that define 
the specificity of S. pneumoniae infection and its affinity to 
various tissues.

Materials and methods

Reagents. All chemicals and biochemical reagents were of 
the highest purity available and, unless otherwise stated, were 
purchased from Sigma‑Aldrich; Merck Millipore (Darmstadt, 
Germany).

Bacterial strains. The bacterial strains used in the current 
study included the encapsulated S. pneumoniae serotype 3 
WU2 strain and its unencapsulated variant 3.8‑DW (kindly 
provided by Professor David Watson, University of Texas, 
Galveston, TX, USA) (44), the encapsulated serotype 2 strain 
D39‑LM (provided by Professor Larry S. McDaniel, University 
of Mississippi Medical Center, Jackson, MS, USA) and its 
unencapsulated variant R6 [American Type Cell Collection 
(ATCC)] (45). The encapsulated strains 23F‑RD (serotype 23F) 
and 6B‑RD (serotype 6B) were clinical strains obtained from 
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the collection of the Pediatric Infectious Disease Unit (Soroka 
University Medical Center, Beer‑Sheva, Israel). S. pneumoniae 
were plated onto tryptic soy agar supplemented with 5% sheep 
erythrocytes (Biological Industries, Beit Haemek, Israel) and 
incubated for 17‑18 h at 37˚C under anaerobic conditions. The 
bacteria were then transferred to a Todd‑Hewitt broth supple-
mented with 0.5% yeast extract (THY), incubated at 37˚C until 
mid‑logarithmic phase (as determined by a growth curve), 
and isolates were harvested when the optical density (OD) 
was equal to ~0.55 at absorbance (A)620. The colony‑forming 
unit (CFU) content of the preparations was verified in each 
experiment by using agar plates supplemented with 5% sheep 
erythrocytes (Biological Industries).

Cell culture. Mucosal epithelial cells were isolated from 
discarded segments of healthy oral or nasal mucosa, 
using the method described by Ueda et al (46) with minor 
modifications. These segments were provided by Professor 
Lipa Bodner (Oral and Maxillofacial Surgery Unit, Soroka 
University Medical Center) and obtained from one patient 
who underwent oral surgery and one patient that underwent 
nasal surgery. The samples were obtained from healthy areas 
in the oral and nasal cavities. All human studies, protocol 
revisions, and consent procedures were approved by the 
Helsinki Ethics Committee of the Soroka University Medical 
Center (permit no.  4995). Written informed consent was 
obtained from each individual.

Ten mucosal segments (5  mm in diameter) were 
immersed for 30 min in a phosphate‑buffered saline (PBS) 
solution containing penicillin (100  U/ml), streptomycin 
(100  µg/ml), gentamycin (50  µg/ml), amphotericin  B 
(2.5 µg/ml) and neomycin (0.4%). The mucosal segments were 
then incubated for 16 h at 4˚C in Dulbecco's Modified Eagle's 
Medium (DMEM) containing the aforementioned antibiotics, 
along with dispase (2  U/ml; Roche Diagnostics GmbH, 
Mannheim, Germany). The epidermis was peeled off and 
incubated in 0.25% trypsin with antibiotics (aforementioned 
mixture of penicillin, streptomycin, gentamycin, amphotericin 
and neomycin) at 37˚C for 60 min, before being transferred to 
a 10 ml volume of keratinocyte seeding medium, according 
to the procedures described by Rheinwald and Green (47). 
The keratinocyte seeding medium contained DMEM: F12 
(3:1), fetal calf serum (FCS; 10%), glutamine (2 mM), peni-
cillin (100  U/ml), streptomycin (100  µg/ml), gentamycin 
(50 µg/ml), amphotericin B (2.5 µg/ml), adenine (0.18 mM), 
hydrocortisone (0.4  µg/ml), insulin (5  µg/ml), transferrin 
(5 µg/ml) and tri‑iodothyronine (2 nM). In addition to the 
above, the keratinocyte growth medium contained cholera 
toxin (0.1 nM) and epidermal growth factor (EGF; 5 ng/ml). A 
single‑cell suspension, obtained following a 2‑min vortex, was 
then plated on a mitomycin C‑treated feeder layer of 3T3 cells 
(ATCC) in 35‑mm diameter tissue culture plates (Corning Inc., 
Corning, NY, USA) at a seeding density of 20,000 cells/cm2. 
Cultures were incubated in an environment of 37˚C, 8% CO2 
and 95% humidity, and the keratinocyte growth medium was 
replenished every other day. Keratinocytes were routinely 
sub‑cultured onto fresh feeder cells after reaching 80% conflu-
ence, following the selective removal of the feeders with EDTA 
(0.02% in PBS) and trypsinization (48). Experiments were 
performed with nasal and oral mucosal cells at passage four or 

five. At this point, cells (2.5x104/well) were seeded in 96‑well 
plates (Corning Inc.) with a keratinocyte seeding medium in 
the absence of feeder cells. The cells were incubated for 24 h 
without antibiotics prior to conducting the adhesion assay, at 
which time they had reached a density of ~5x104 cells/well.

The virus‑transformed bronchial BEAS‑2B cell line (ATCC) 
was cultured in an LHC‑9 medium (Biological Industries) 
containing 0.5 ng/ml recombinant EGF, 500 ng/ml hydro-
cortisone, 0.005 mg/ml insulin, 0.035 mg/ml bovine pituitary 
extract, 500 nM ethanolamine, 500 nM phosphoethanolamine, 
0.01  mg/ml transferrin, 6.5  ng/ml 3,3',5‑triiodothyronine, 
500 ng/ml epinephrine, 0.1 ng/ml retinoic acid.

The A549 lung adenocarcinoma cell line (ATCC) was used 
as it retains the morphological, biochemical, and immunolog-
ical characteristics of type II lung epithelial cells (49‑52). The 
cells were cultured in DMEM (Biological Industries) supple-
mented with 10% FCS (Biological Industries), penicillin and 
streptomycin (100 µg/ml each). At 24 h prior to experiments, 
the cells were transferred to 96‑well plates without antibiotics, 
and the cultures were then blocked with DMEM supplemented 
with 0.5% gelatin and incubated for 4 h at 37˚C. The cell count 
was, on average, 50,000 cells/well.

Cell adhesion assay. S. pneumoniae from fresh overnight 
blood agar cultures were inoculated into the THY broth and 
cultivated at 37˚C until they reached mid‑logarithmic phase 
(A620, OD=~0.55). The bacteria were diluted in PBS to a final 
concentration of 2x107 CFU/ml. A total of 200 µl diluted 
bacteria (~4x106 CFU/200 µl) was added to the 5x104 cultured 
cells/well (multiplicity of infection ~80:1). Bacteria and cells 
were incubated for 15, 30, 60 or 90 min at 37˚C. These time 
points were selected as preliminary experiments revealed no 
alteration in the survival of the cells in the presence of bacteria 
during this time period. As a negative control, the same volume 
of PBS containing the bacteria was added to wells that did not 
contain mammalian cells. At each of the denoted time points, 
the wells were extensively washed with PBS five times, and the 
cells were removed from the wells by incubating the culture 
with 0.25% trypsin and 0.02% EDTA for 5 min. Cultured cells 
were counted at the end of the experiment and the cell number 
did not differ significantly from their number prior to the 
addition of the bacteria. The suspension was serially diluted 
and plated on 5% sheep blood agar plates, before they were 
incubated at 37˚C under anaerobic conditions for 17‑18 h for 
CFU determination. For each experiment, 4‑6 replicates were 
performed at least three times. Representative experiments are 
presented in the figures.

Cell invasion assay. All of the initial steps were the same 
as those used in the adhesion assay, except that penicillin 
(100 µg/ml) and gentamicin (50 µg/ml) were added to the 
culture media for 45 min at the same aforementioned time 
points. The antibiotics in the supernatant were removed and 
the cells were removed from the wells by using 0.25% trypsin 
and 0.02% EDTA for 5 min. The cells were then lysed using 
0.02% saponin, and the suspension was serially‑diluted and 
plated on sheep blood agar plates, which were then incubated 
under anaerobic conditions for 17‑18 h for CFU determination. 
For each experiment, six replicates were performed at least 
three times.
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Statistical analyses. The present study used non‑parametric 
Pearson analysis to determine alterations in adhesion effi-
ciency over time (at 15, 30, 60, 90 and 120 min of incubation). 
One‑way analysis of variance was employed to compare the 
adhesion and invasion curves of the different epithelial cells. 
For multiple comparisons at all time points the Tukey post‑hoc 
test was used. Statistical analyses were performed in GraphPad 
Prism software version 7 (GraphPad Software, Inc., La Jolla, 
CA, USA). P<0.05 was considered to indicate a statistically 
significant difference.

Results

Adhesion of S. pneumoniae serotype 3 strain WU2 and the 
unencapsulated derivative 3.8 strain to primary and secondary 
respiratory epithelial cells. The adhesion of the WU2 strain to 
the epithelial cells increased in a time‑dependent manner in 
all cell types tested (Fig. 1A; nasal cells, r=0.9995, P=0.0005; 
oral cells, r=0.9461, P=0.0149; A549 cells, r=0.948, P<0.02; 
BEAS‑2B cells, r=0.9707, P=0.006). However, analysis of all 
curves (Fig. 1A) revealed that WU2 adhesion was significantly 
more efficient to nasal cells compared with BEAS‑2B cells 
(P=0.0193), A549 cells (P=0.0003) and oral cells (P=0.0001). 
Analysis performed at each time point revealed significantly 
greater efficiency of WU2 adhesion to nasal cells than to any 
of the other types of epithelial cell assessed (nasal vs. A549, 
P=0.0003; nasal vs. oral, P=0.0001; nasal vs. BEAS‑2B, 
P=0.0193). The adhesion of WU2 to BEAS‑2B cells was 
significantly more efficient than to A549 cells at the 90 and 
120 min time points (P=0.0024 and P=0.0295, respectively).

Next, the adherence experiments were repeated using 
the unencapsulated S. pneumoniae strain 3.8‑DW (Fig. 1B). 
Adhesion to the A549 cells was time‑dependent (r=0.9835, 
P=0.0165) and adhesion to BEAS‑2B cells demonstrated a 
tendency toward time‑dependency (r=0.941, P=0.059; Fig. 1B). 
Analysis of all curves revealed that 3.8‑DW adhesion to A549 
cells was significantly greater compared with the adhesion to 
the other cell types (A549 vs. nasal, P=0.0020; A549 vs. oral, 
P=0.0001; A549 vs. BEAS‑2B, P<0.0001). In addition, analysis 
of the individual time points revealed that adhesion of 3.8‑DW 
to nasal cells was significantly greater than to BEAS‑2B cells 
at the 15, 30 and 60 min time points (P=0.0002, P<0.0001 and 
P=0.0279, respectively; Fig. 1B and C).

Invasion of the encapsulated S. pneumoniae WU2 strain and 
its unencapsulated derivative strain 3.8‑DW to primary and 
secondary respiratory epithelial cells. In order to determine 
the extent of invasion of the WU2 strain to the cultured cells, 
antibiotics were added to the cell cultures at the denoted time 
points for 45 min prior to determination of bacterial count. 
Notably, the invasion of nasal cells compared with all other 
cells types increased within the first 60 min reaching the 
significance of P<0.0001 at 30 min, and decreased there-
after (Fig. 2A), possibly mimicking the transcytosis process 
that occurs in nasal mucosal cells. However, after 60 min 
the invasion of nasal cells remained significantly greater in 
comparison to the other cells types (P<0.0001). Cell invasion 
of A549 and BEAS‑2B cells was time‑dependent (r=0.9728, 
P=0.0054; and r=0.9787, P=0.0037, respectively); however, the 
invasion of oral cells was not. Consistently, WU2 invasion of 

BEAS‑2B and A549 cells was significantly greater compared 
to the invasion of oral cells (P=0.002 and P=0.0008, respec-
tively; Fig. 2A). The invasion of WU2 into BEAS‑2B cells was 
not significantly different from the invasion of A549 cells at 
any of the examined time points.

The invasion of the 3.8‑DW unencapsulated strain of 
A549 and to BEAS‑2B cells was time‑dependent (r=0.9946, 
P=0.0054; and r=0.9798, P=0.0202, respectively; Fig. 2B). 
Analysis of all curves revealed that invasion of A549 cells 
was significantly higher when compared with nasal, oral and 
BEAS‑2B cells (P=0.0004, P=0.0208 and P=0.0007, respec-
tively; Fig. 2B and C). 3.8‑DW invasion of A549 cells at each 
time point was significantly greater compared with oral cells 
at 30, 60 and 90 min (P=0.0058, P=0.0339 and P=0.0209, 
respectively). The invasion of 3.8‑DW into A549 cells was 
significantly greater than into nasal cells at 60 and 90 min time 
points (P=0.0007 and P=0.0001, respectively). The invasion 
into A549 cells was significantly greater than into BEAS‑2B 
cells at the 60 and 90 min time point (P<0.0001 and P=0.0007, 
respectively). A total of 90 min following inoculation, inva-
sion of nasal cells decreased (Fig. 2B and C), similar to the 
decrease observed for the WU2 strain invasion of nasal cells 
(Fig. 2A). Invasion of nasal cells was not significantly different 
when compared with oral cells.

Adhesion and invasion of encapsulated and unencapsulated 
S. pneumoniae strains to A549 cells. The next aim of the study 
was to compare the adhesion to and invasion of A549 cells 
of selected encapsulated and unencapsulated S. pneumoniae 
strains. The encapsulated strains included the following: i) The 
WU2 serotype 3 strain, which has the thickest capsule among 
all strains tested in the current study, and is considered to be a 
highly invasive strain (53‑55); ii) the D39‑LM serotype, which 
is widely used for studying S. pneumoniae pathogenesis (28); 
iii) the 6B‑RD serotype, which was isolated from the naso-
pharynx of a healthy child and was previously demonstrated to 
colonize the nasopharynx but not disseminate to the lungs or 
any other tissue (56,57); and iv) the 23F‑RD serotype, which is 
considered to be pathogenic, as its capsule was included in the 
7 valent conjugate vaccine (58). The unencapsulated strains 
included the 3.8‑DW, which is a derived from WU2 (44) and 
the R6 strain (45), which was derived from the D39 strain. 
Although the results presented so far indicated that the encap-
sulated WU2 strain adhered and invaded most efficiently to 
nasal epithelial cells, these cells are very difficult to obtain 
and maintain. Therefore, the adhesion to and invasion of A549 
cells by the various encapsulated and unencapsulated strains 
were assessed.

All strains indicated a time‑dependent adhesion 
to A549 cells (WU2, r=0.9487, P=0.0139; D39‑LM, 
r=0.9866, P=0.0019; 6B‑RD, r=0.9809, P=0.0032; 23F‑RD, 
r=0.9424, P=0.0165; 3.8‑DW, r=8955, P=0.0399; R6, r=0.9936, 
P=0.0006; Fig.  3A). A whole‑curve comparison revealed 
that the adhesion of the unencapsulated strain 3.8‑DW was 
significantly higher when compared to that of the encapsu-
lated strains (6B‑RD, P=0.004; 23F‑RD P<0.0001; D39‑LM, 
P<0.0001; WU2, P<0.0001), but was not significantly different 
from the adhesion of the unencapsulated strain R6 (Fig. 3A). 
In addition, whole‑curve analysis indicated that the adhesion 
of the R6 strain was significantly higher than the adhesion of 
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any of the encapsulated strains (23F‑RD, P=0.004; D39‑LM, 
P<0.0001; WU2, P=0.0007) except for 6B‑RD (Fig 3A). 
Significant differences in adherence among the unencapsu-
lated 3.8‑DW and encapsulated strains were observed at each 
of the individual time points examined except for 3.8‑DW vs. 
6B‑RD at the 30 min time point. The strain 3.8‑DW adhered 
more efficiently to the A549 cells up to 60 min of incubation. 
The adherence of the unencapsulated R6‑RD was significantly 
greater than the encapsulated strains in all time points after 
15 min of incubation. The adhesion of 6B‑RD was signifi-
cantly greater than that of the 23F‑RD between 30 and 60 min 
of incubation, D39 after 15 min of incubation and WU2 strains 
at the 30 min time point.

The invasion of the 6B‑RD, R6, D39‑LM, and WU2 strains 
to the A549 cells was time‑dependent (6B‑RD, r=0.9416, 
P=0.0168; R6, r=0.9628, P<0.0086; D39‑LM, r=0.9588, 
P=0.01; WU2, r=0.9728, P<0.0054; Fig. 3B). The invasion of 
the unencapsulated 3.8‑DW strain was significantly greater 
compared with all the other strains assessed, by whole‑curve 
analysis and at each of the examined time points, except in 
comparison to R6‑DW at the 30 min time point (Fig. 3B and C).

Discussion

Cell lines are frequently used to understand the interactions 
between S. pneumoniae and its host (26,27,52,59‑64). Notably, 
the lung‑derived adenocarcinoma A549 cell line and the 
virus‑transformed BEAS‑2B bronchial cell line have been 
used for studying the function of virulence factors and the 
alterations that take place in the bacterium and the host cell 

upon bacteria‑host interactions (3,65‑68). However, the suit-
ability of these cell lines as in vitro models for investigating 
the interaction between S.  pneumoniae and nasal or lung 
mucosal cells has not been verified directly. To the best of our 
knowledge, the present study is the first to demonstrate that 
the extent of adhesion and invasion of a highly encapsulated 
pathogenic S. pneumoniae strain (WU2) into nasal cells is 
superior in comparison to the extent of its adhesion and inva-
sion into primary oral cells and into the cancer‑derived or 
virus‑transformed respiratory cell lines.

The adhesion of S. pneumoniae to the upper respiratory 
tract is a prerequisite for its colonization and is therefore 
considered to be a major risk factor for the development of 
pneumococcal disease (3,69,70). The respiratory epithelial 
cells are the first line of defense of the innate immune system, 
and the interaction between pneumococci and the respiratory 
epithelial cells activates signal transduction cascades, in which 
p38 mitogen‑activated protein kinase‑dependent nuclear 
factor‑κB activation upregulates the expression of inter-
leukin‑8 (71). The activation of this cascade may be the result 
of the bacteria binding to innate immune system‑associated 
pattern recognition receptors on the surface of mammalian 
cells (e.g. TLRs)  (72), or to intracellular pattern recognition 
receptors, such as the nucleotide‑binding oligomerization 
domain proteins (73). In addition, S. pneumoniae may bind 
to additional human membrane receptors, which are capable 
of activating different signal transduction pathways  (74), 
which may increase cytokine expression. As a result, PAF‑R 
expression is increased, which increases the binding of 
S. pneumoniae to the cells (29).

Figure 1. Adhesion of the encapsulated S. pneumoniae strain WU2 and its unencapsulated derivative strain 3.8‑DW to A549, oral, nasal and BEAS‑2B 
respiratory epithelial cells. (A) Adhesion of WU2 increased in a time‑dependent manner in all cultured epithelial cells examined (nasal cells, r=0.9995, 
P=0.0005; oral cells, r=0.9461, P=0.0149; A549 cells, r=0.948, P<0.02; BEAS‑2B cells, r=0.9707, P=0.006). *P<0.05 and ***P<0.001. (B) The adhesion of 
the unencapsulated S. pneumoniae strain 3.8‑DW to A549 cells was time‑dependent (r=0.9835, P=0.0165), and adhesion to BEAS‑2B cells demonstrated a 
tendency to be time‑dependent (r=0.941, P=0.059). **P<0.01; ***P<0.001; and ****P<0.0001. (C) Statistical analysis for WU2 and 3.8DW adhesion for whole 
curve analysis comparisons (ANOVA of total graph) and at each time point. CFU, colony‑forming units; S. pneumoniae; Streptococcus pneumonia; ANOVA, 
analysis of variance.
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In the current study, the WU2 strain adhered to all cell 
types in a time‑dependent manner. The adhesion of WU2 
to nasal cells was more efficient than the adhesion to other 
cells tested throughout the incubation period. In addition, 
WU2 invasion of nasal cells was significantly more efficient 
when compared with the other cell types examined. Invasion 
of the WU2 strain to the A549 and BEAS‑2B cell lines was 
significantly higher than its invasion of oral cells. At 30 min 
following inoculation of nasal cells with the WU2 strain, a 
decline in the number of bacteria in these cells was observed, 
which decreased further at 60 and 90  min time points. 
Following adherence, S. pneumoniae is able to invade nasal 
cells by binding of bacterial phosphorylcholine or CbpA 
to the PAF‑R of the host cell  (29); the latter also binds to 
the pIgR (33), which allows subsequent exploitation of the 
recycling pathways. This facilitates transcytosis through the 
mucosal epithelial cell layer, and leads to the development of 
invasive disease. PAF‑R is present in epithelial and endothelial 
cells (29,75,76). The authors of the current study hypothesized 
that adhesion and invasion of S. pneumoniae strains to nasal 
cells may occur through these receptors or through other, as 
yet unknown receptors, which recycle and expel the WU2 
strain more efficiently from the nasal cells than from the 
other types of cells examined. It has been demonstrated that  
S. pneumoniae adhere to and penetrate the nasopharynx to gain 
access to the middle ear via the Eustachian tube (77,78). Thus, 
bacterial strains capable of invading nasopharyngeal cells may 

be those that disseminate and cause invasive disease (79). Out 
of all cell types examined in the present study, the adhesion and 
invasion of the WU2 strain to oral cells was the least efficient. 
The oral mucosa is not a primary site for S. pneumoniae colo-
nization, although adhesion of S. pneumoniae to primary oral 
cells in vitro has been reported (80). Ultimately, differences in 
capsule size or the differential expression of virulence factors 
involved in the invasion process, may explain the ability of 
pathogenic pneumococci to adhere and invade different types 
of respiratory epithelial cells in different manners.

The adhesion of the unencapsulated strain 3.8‑DW  
(a derivative of the encapsulated WU2 strain)  (81) to A549 
cells was time‑dependent. However, unlike the WU2 strain, 
the 3.8‑DW strain most efficiently adhered to and invaded 
A549 cells. This alteration in adhesion and invasion preference 
may be due to the exposure of surface proteins that are other-
wise masked by the capsule, which is a major virulence factor 
that protects the bacterium from phagocytosis and prolongs 
its survival in phagocytes (81,82). The authors attribute these 
differences in adhesion and invasion to the absence of the 
capsule, which allows the cell wall proteins to be exposed and 
available for interaction with the host cells. It has not yet been 
determined whether there are any genetic differences between 
the encapsulated and their unencapsulated derivatives. In addi-
tion, a different pattern of mRNA and protein expression in 
the unencapsulated strain compared with the parental strain 
may exist.

Figure 2. Invasion of the encapsulated S. pneumoniae strain WU2 and its unencapsulated derivative strain 3.8‑DW to A549, nasal, oral and BEAS‑2B respira-
tory epithelial cells. In order to determine invasion capabilities, extracellular bacteria were eliminated by adding antibiotics to the culture at the denoted time 
points, for 45 min prior to determination of bacterial counts. (A) Invasion of WU2 strain to cells at the indicated time points. The invasion of nasal cells vs. 
all other cells types was significantly greater within the first 60 min, reaching the significance of P<0.0001 at 30 min. Cell invasion increased continuously 
in A549 and in BEAS‑2B cells (r=0.9728, P=0.0054; and r=0.9787, P=0.0037, respectively). (B) Invasion of the unencapsulated strain 3.8DW to A549 and 
BEAS‑2B cells was time‑dependent (r=0.9946, P=0.0054; and r=0.9798 P=0.0202, respectively). Analysis of all curves indicated that invasion of A549 
cells was significantly more efficient than to nasal, oral, and BEAS‑2B cells (P=0.0004, P=0.0208 and P=0.0007, respectively). No significant differences 
in invasion efficiency were observed among the nasal, oral and BEAS‑2B cell types. *P<0.05; ***P<0.001; and ****P<0.0001. (C) Statistical analysis for WU2 
and 3.8DW invasion for whole curve analysis comparisons (ANOVA of total graph) and at each time point. CFU, colony‑forming units; S. pneumoniae; 
Streptococcus pneumoniae; ANOVA, analysis of variance; ns, non significant.



MOLECULAR MEDICINE REPORTS  15:  65-74,  2017 71

Previous studies have suggested that the capsule prevents 
bacterial adhesion to epithelial cells (62,83,84). In addition, 
partial capsule shedding at the site of adhesion is a prerequi-
site for S. pneumoniae adhesion and invasion, and variations 
in the capsule size of different strains or variants affects the 
extent of adhesion (22,85‑88). In general, unencapsulated  
S. pneumoniae strains are less virulent than encapsulated 
strains; a phenomenon primarily associated to the lack of 
the capsular polysaccharide shield (89). However, infection 
with unencapsulated strains leads to streptococcal ocular 
keratitis in a rabbit model system (90) and conjunctivitis in 
humans (91).

The unencapsulated strains 3.8‑DW and R6 demonstrated 
similar adhesion efficiencies in the A549 cells, and were 
significantly higher than that of the other encapsulated strains 
tested. These results are consistent with a previous study (22). 
In contrast to their similar adhesion capabilities, invasion of 
A549 cells by the R6 strain was as inefficient as that of the 
encapsulated strains when compared to the 3.8‑DW strain. 
An increasing number of reports have identified non‑encap-
sulated S. pneumoniae as a disease‑causing pathogen (40). 
This phenomenon may originate from the introduction of 
the pneumococcal conjugate vaccine in 2000, or from an 
improved identification of the smaller colonies of non‑encap-
sulated S.  pneumoniae in microbiology laboratories  (40). 
Keller et al  (40) described the different characteristics of 

non‑encapsulated S. pneumoniae obtained from patients 
with nasopharyngeal colonization or invasive pneumococcal 
diseases. In addition, a recent report demonstrated the involve-
ment of non‑encapsulated S. pneumoniae as a cause of chronic 
adenoiditis (92).

In conclusion, the results of the present study provide 
evidence of an association between the ability of pathogenic 
encapsulated S. pneumoniae to adhere to and invade specific 
respiratory epithelial cells in vitro and the natural course 
of S. pneumoniae‑induced diseases. In addition, the results 
demonstrate that alternative cell cultures may be used to further 
contribute to research concerning the interaction between S. 
pneumoniae and its host. Whereas the cancer‑derived cell lines 
are informative, primary cultures may assist in deciphering 
specific interactions and the identification of molecules 
responsible for the affinity of S. pneumoniae to specific tissues. 
Furthermore, cell origin and type may cause differences that 
should be taken into consideration when drawing conclusions 
and translating to in vivo cell biology.
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