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Abstract. The present study aimed to analyze RNA-seq 
data of kidney renal clear cell carcinoma (KIRC) to identify 
prognostic genes. RNA-seq data were downloaded from The 
Cancer Genome Atlas. Feature genes with a coefficient of 
variation (CV) >0.5 were selected using the genefilter package 
in R. Gene co-expression networks were constructed with the 
WGCNA package. Cox regression analysis was performed 
using the survive package. Furthermore, a functional enrich-
ment analysis was conducted using Database for Annotation, 
Visualization and Integrated Discovery tools. A total of 
533 KIRC samples were collected, from which 6,758 feature 
genes with a CV >0.5 were obtained for further analysis. 
The KIRC samples were divided into two sets: The training 
set (n=319 samples) and the validation set (n=214 samples). 
Subsequently, gene co-expression networks were constructed 
for the two sets. A total of 12 modules were identified, and the 
green module was significantly associated with survival time. 
Genes from the green module were revealed to be implicated in 
the cell cycle and p53 signaling pathway. In addition, a total of 
11 hub genes were revealed, and 10 of them (CCNA2, CDC20, 
CDCA8, GTSE1, KIF23, KIF2C, KIF4A, MELK, TOP2A 
and TPX2) were validated as possessing prognostic value, as 
determined by conducting a survival analysis on another gene 
expression dataset. In conclusion, a total of 10 prognostic genes 
were identified in KIRC. These findings may help to advance 
the understanding of this disease, and may also provide poten-
tial biomarkers for therapeutic development.

Introduction

Kidney renal clear cell carcinoma (KIRC) is the eighth most 
common type of cancer, which accounts for the majority of 

malignant kidney tumors (1). KIRC is known to be associ-
ated with radiotherapy and chemotherapy resistance (2), and 
the 2-year survival rate of patients with metastatic KIRC is 
<20% (3,4). Early diagnosis and surgical resection may result 
in a good prognosis; therefore, further investigations regarding 
the genomic alterations and underlying molecular mechanisms 
of KIRC are essential for improvements in early diagnosis and 
treatment.

Certain advances have been made in unveiling the 
complicated molecular mechanisms underlying KIRC, since 
numerous relevant pathways have been implicated in its patho-
genesis. Components of the mammalian target of rapamycin 
pathway have been reported to be significantly associated with 
the pathological features and survival of KIRC (5). Frequent 
mutations in genes encoding ubiquitin-mediated proteolysis 
pathway components have also been observed in KIRC (6). 
The Sonic hedgehog signaling pathway (7) and MYC 
pathway (8) are also activated in KIRC and serve a role in 
tumor growth. Furthermore, numerous biomarkers have been 
identified, including cluster of differentiation 70 (8), succinate 
dehydrogenase B (8) and transforming growth factor beta 1 (9). 
Nevertheless, further studies are required to identify novel 
prognostic genes and provide potential therapeutic targets.

Previous studies have focused on the identification of 
differentially expressed genes, which may serve roles in the 
pathogenesis of KIRC (10,11). The present study performed a 
gene co-expression network analysis and a survival analysis on 
RNA-seq data in order to screen out prognostic genes in KIRC. 
These findings may help improve understanding regarding the 
pathogenesis of KIRC, and also provide potential markers for 
prognosis and treatment.

Materials and methods

Gene expression data. RNA-seq (Illumina RNASeqV2, 
Level 3; Illumina, San Diego, CA, USA) rsem.gene.results data 
of KIRC were downloaded from The Cancer Genome Atlas 
(TCGA; https://cancergenome.nih.gov/) on September 25, 2015, 
including 533 KIRC samples. Clinical information, including 
status, follow-up time and time of death, was also collected.

Screening of feature genes. Raw data were normalized and 
filtered using the TCGAbiolinks package in R (version 3.2.2, 
http://www.r-project.org/). Genes with an average expression 
level <0.25 in all samples were excluded from the subsequent 
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analyses. Feature genes with a coefficient of variation (CV) 
>0.5 in all samples were selected using the genefilter package 
in R.

Construction of a gene co‑expression network. The KIRC 
samples were divided into two sets: The training set (n=319 
samples) and the validation set (n=214 samples), with a ratio 
of 3:2 using the caTools package in R.

Gene co-expression networks were constructed using the 
weighted gene co-expression network analysis (WGCNA) (12) 
package in R. Adjacency coefficient (aij) was calculated as 
follows:

Where xi and xj are vectors of expression value for genes 
i and j; cor represents Pearson's correlation coefficient of the 
two vectors; and aij is adjacency coefficient, which is acquired 
via exponential transform of Sij.

The WGCNA method takes topological properties into 
consideration in order to identify modules from a gene 
co-expression network. Therefore, this method not only 
considers the relationship between two connected nodes, but 
also takes associated genes into account. Weighting coefficient 
(Wij) is calculated from aij as follows:

Where u represents common genes linked gene I and 
gene j together; aiu, the connection coefficient of gene i and 
gene u; and auj, the connection coefficient of gene u and 
gene j. Wij considers overlapping between neighbor genes of 
genes i and j. Modules were identified via hierarchical clus-
tering of weighting coefficient matrix W.

Survival analysis. A univariate Cox regression analysis was 
performed using the survive package in R.

Functional enrichment analysis. Gene Ontology (GO) enrich-
ment analysis and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis were performed 
using DAVID (Database for Annotation, Visualization and 
Integration Discovery; http://david.abcc.ncifcrf.gov/) (13).

Validation of the hub genes. A KIRC gene expression dataset 
(accession no. E-GEOD-22541) was downloaded from 
ArrayExpress (http://www.ebi.ac.uk/arrayexpress/) to validate 
the reliability of the 11 hub genes. Cases were divided into 
two groups (high and low) based upon the expression levels 
of certain hub genes, using the gene average expression level 
in all samples as the cut-off. The samples in which the gene 

expression level were higher than average expreesion level 
were defined as high exp; the other samples were defined as 
low exp, correspondingly. Survival analysis was performed 
using the Kaplan-Meier method.

Results

Feature genes. A total of 533 KIRC samples were collected 
from TCGA. After pretreatment, 13,742 genes were selected 
according to the threshold (average expression level >0.25 in 
all samples). Finally, 6,758 feature genes with a CV >0.5 were 
acquired for further analysis.

Gene co‑expression network. The training set included 
319 samples and the validation set contained 214 samples. 
The training set was used to construct a gene co-expression 
network, whereas the validation set was used to examine the 
stability and accuracy of the network. The soft threshold was 
set as 5 to construct the network (Fig. 1).

When the soft threshold was set as 5, both training set 
and validation set networks obeyed power-law distribution, 
exhibiting scale-free characteristics (Fig. 2). The correlation 
coefficient between the two networks was 0.75, when the soft 
threshold was 5.

Survival‑related modules. A total of 12 modules were revealed 
using the cuttreeStaticColor function from WGCNA package 
(cutHeight=0.93; minSize=50) (Fig. 3). A Cox regression 
analysis was performed for each gene in both datasets and a 
P-value was obtained. Hub genes may serve critical roles in 
disease; therefore, degree (k) was also calculated for each gene. 
The correlation between k and -log10(p) was subsequently 
determined. Survival-associated genes were significantly 
over-represented in the green module (Fig. 4).

Biological functions of the green module. Significantly 
over-represented GO biological process terms (Table I) and 
KEGG pathways (Table II) were identified for genes from the 
green module. The cell cycle and p53 signaling pathway were 
revealed to be closely associated with KIRC.

Hub genes in the green module. A total of 202 genes were 
included in the green module. Genes with P<0.01 in the 
Cox regression analysis of the training and validation sets 
were selected. The intramodular degree (kWithin) was then 
calculated for each gene. The top 20 genes in the training and 
validation sets were subsequently obtained. The overlapping 
genes were regarded as hub genes. A total of 11 hub genes 
were identified (Table III): Cyclin A2 (CCNA2), cyclin B2 
(CCNB2), cell division cycle 20 (CDC20), cell division cycle 
associated 8 (CDCA8), G2 and S-phase expressed 1 (GTSE1), 
kinesin family member 23 (KIF23), kinesin family member 2C 
(KIF2C), kinesin family member 4A (KIF4A), maternal 
embryonic leucine zipper kinase (MELK), topoisomerase II 
alpha (TOP2A) and TPX2 microtubule-associated (TPX2).

Validation of the hub genes. With the exception of CCNB2, 
the other 10 hub genes exhibited good prognostic effects in the 
validation dataset E-GEOD 22541. The Kaplan-Meier survival 
curve of CCNA2 is presented in Fig. 5.
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Figure 1. (A) Scale‑free fit R2 vs. various soft thresholds. The red line indicates an R2 of 0.85. (B) Mean Connectivity vs. different soft threshold β.

Figure 2. Distribution of genes in terms of degree (soft threshold, 5). (A) Training set; (B) Validation set; X-axis indicates degree k; Y-axis indicates percentage 
of genes with degree k. (C) Correlation between the training dataset and validation dataset co-expression networks. The x-axis indicates degree k in the 
training dataset; y-axis indicates degree k in the validation dataset.
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Figure 3. Results of a cluster analysis, and 12 modules identified from the gene expression networks. (A) Training set; (B) validation set. Gray represents no 
module.

Figure 4. Enrichment of survival‑associated genes in each module. (A) Training set; (B) validation set. X‑axis indicates modules; Y‑axis indicates significance 
of enrichment.
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Discussion

In the present study, a total of 533 KIRC samples were collected 
from TCGA and 6,758 feature genes were revealed, based 

upon which gene co-expression networks were constructed. A 
total of 12 modules were identified; however, only one module 
(green) was significantly associated with survival time. The 
green module included 202 genes, which were implicated in 

Table I. Top 10 GO biological process terms of genes from the green module.

No. Biological process Count P-value

GO:0007049 Cell cycle 98 1.85E-74
GO:0022403 Cell cycle phase 79 3.66E-72
GO:0000279 M phase 73 4.21E-71
GO:0022402 Cell cycle process 83 1.43E-66
GO:0000278 Mitotic cell cycle 68 7.52E-60
GO:0000280 Nuclear division 56 8.53E-57
GO:0007067 Mitotic nuclear division 56 8.53E-57
GO:0000087 M phase of mitotic cell cycle 56 2.56E-56
GO:0048285 Organelle fission 56 9.80E‑56
GO:0051301 Cell division 54 1.95E-46

GO, gene ontology.

Table II. Significantly over‑represented Kyoto Encyclopedia of Genes and Genomes pathways of genes from the green module.

No. Pathway Count P-value

hsa04110 Cell cycle 25 2.63E-23
hsa04114 Oocyte meiosis 13 7.35E-09
hsa04914 Progesterone-mediated oocyte maturation 11 8.09E-08
hsa04115 p53 signaling pathway  7 1.86E-04
hsa03440 Homologous recombination  5 3.73E-04

Table III. Summary of the 11 hub genes.

 P-value k Total k Within
 ------------------------------------------------------- ---------------------------------------------- -----------------------------------------------
Gene T set V set T set V set T set V set

CCNA2 2.29E-06 8.15E-11 85.594 57.123 68.745 48.839
CCNB2 9.08E-07 1.89E-08 94.399 68.515 72.728 55.378
CDC20 6.17E-08 1.27E-08 93.507 60.032 74.198 50.181
CDCA8 2.76E-05 5.21E-08 89.649 64.707 73.107 52.065
GTSE1 1.88E-06 1.30E-08 93.828 63.922 73.780 53.611
KIF23 3.21E-08 1.07E-08 91.183 60.441 69.097 48.626
KIF2C 3.00E-07 8.09E-08 88.153 64.374 70.517 54.608
KIF4A 1.14E-04 4.07E-08 92.184 63.336 69.749 51.397
MELK 9.74E-07 2.37E-07 85.264 60.536 69.125 52.317
TOP2A 3.88E-08 1.72E-08 88.265 61.531 72.680 53.977
TPX2 7.24E-07 1.40E-08 88.309 68.001 71.906 57.164

T set, training set; V set, validation set; CCNA2, cyclin A2; CCNB2, cyclin B2; CDC20, cell division cycle 20; CDCA8, cell division cycle 
associated 8; GTSE1, G2 and S-phase expressed 1; KIF23, kinesin family member 23; KIF2C, kinesin family member 2C; KIF4A, kinesin 
family member 4A; MELK, maternal embryonic leucine zipper kinase; TOP2A, topoisomerase II alpha; TPX2, TPX2 microtubule-associated.
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the cell cycle and p53 signaling pathway. Finally, a total of 
11 hub genes were revealed by network analysis combined with 
survival analysis; 10 of which were validated using another 
gene expression dataset.

The majority of the validated hub genes were involved 
in the cell cycle, including CCNA2, CDC20 and CDCA8. 
CDC20 acts as a regulatory protein at numerous points in 
the cell cycle. It is negatively regulated by p53 and may be 
considered a good potential therapeutic target (14). Increased 
TOP2A expression is associated with more aggressive 
pathological features and an increased risk of cancer‑specific 
mortality among patients undergoing surgery for localized 
KIRC (15). Chen et al indicated that TOP2A is a prognostic 
marker in advanced renal cell carcinoma (16). Furthermore, 
overexpression of TOP2A has been reported in other types 
of cancer (17,18) and is considered a therapeutic target (19). 
The results of the present study indicated that it may also 
be a therapeutic target in KIRC. GTSE1 accumulates in the 
nucleus and binds to p53, resulting in its translocation out of 
the nucleus and suppression of its apoptosis-inducing ability. 
In addition, GTSE1 suppresses apoptotic signaling and confers 
cisplatin resistance in gastric cancer cells (20). Overexpression 
of GTSE1 has previously been observed in KIRC (21) and may 
therefore exert a similar function in KIRC.

Several prognostic genes have been implicated in various 
types of cancer; however, their roles in KIRC require further 

research. Kinesins are a family of molecular motor proteins that 
travel along microtubule tracks in order to fulfill their numerous 
roles in intracellular transport and cell division (22). Several 
kinesins that are involved in mitosis have emerged as poten-
tial targets for cancer drug development (23). Three kinesins 
(KIF23, KIF2C and KIF4A) were identified as prognostic genes 
in KIRC in the present study. Previous studies have indicated 
their roles in lung cancer (24), colorectal cancer (25) and oral 
cancer (26). MELK, which is a highly conserved serine/threo-
nine kinase, is a regulator in cell cycle control and cancer (27,28). 
Dysregulated expression of MELK is associated with a poor 
prognosis in breast cancer (29). In addition, a MELK inhibitor 
has been reported to have potential as a novel molecular targeted 
therapy, which targets human cancer stem cells (30). TPX2 is 
associated with various types of cancer, including esophageal 
squamous cell carcinoma (31), bladder carcinoma (32) and 
cervical carcinoma (33). In addition, it contributes to the growth 
and metastasis of hepatocellular carcinoma (34). Further studies 
regarding these genes may provide novel insights into the patho-
genesis of KIRC and provide potential prognostic markers.

In conclusion, the present study identified 11 critical genes 
associated with KIRC. The prognostic value of 10 genes 
was validated using another gene expression dataset, which 
provides important evidence regarding the pathogenesis of 
KIRC. Further studies are required to better define their roles 
in KIRC.

Figure 5. Kaplan-Meier survival curves of CCNA2. Based on gene expression data from (A) TCGA and the (B) E-GEOD-22541 dataset. CCNA2, cyclin A2; 
TCGA, the Cancer Genome Atlas.
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