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Abstract. Rapid advancements in next generation sequencing 
(NGS) technologies, coupled with the dramatic decrease in 
cost, have made NGS one of the leading approaches applied 
in cancer research. In addition, it is increasingly used in 
clinical practice for cancer diagnosis and treatment. Somatic 
(cancer‑only) single nucleotide variants and small insertions 
and deletions (indels) are the simplest classes of mutation, 
however, their identification in whole exome sequencing data 
is complicated by germline polymorphisms, tumor heteroge-
neity and errors in sequencing and analysis. An increasing 
number of software and methodological guidelines are 
being published for the analysis of sequencing data. Usually, 
the algorithms of MuTect, VarScan and Genome Analysis 
Toolkit are applied to identify the variants. However, one 
of these algorithms alone results in incomplete genomic 
information. To address this issue, the present study devel-
oped a systematic pipeline for analyzing the whole exome 
sequencing data of hepatocellular carcinoma (HCC) using a 
combination of the three algorithms, named the three‑caller 
pipeline. Application of the three‑caller pipeline to the whole 
exome data of HCC, improved the detection of true positive 
mutations and a total of 75 tumor‑specific somatic variants 
were identified. Functional enrichment analysis revealed the 
mutations in the genes encoding cell adhesion and regulation 
of Ras GTPase activity. This pipeline provides an effective 
approach to identify variants from NGS data for subsequent 
functional analyses.

Introduction

It is well established that tumorigenesis is attributed to 
chromosomal instability or accumulated genetic changes, 
including structure variations, genetic copy number variants, 
single nucleotide variants (SNVs) and small insertions and 
deletions (indels)  (1‑3). Somatic mutations are defined by 
mutations that are absent in corresponding adjacent tissues; 
however, they are present in all tumors (4). Somatic mutation 
calling is a critical step for cancer genome characterization 
and clinical genotyping. Next‑generation sequencing (NGS) 
has become a popular strategy for genotyping, enabling more 
precise mutation detection compared with traditional methods 
due to its high resolution and high throughput. Whole‑genome 
sequencing reveals overall genetic information about the vari-
ants, whereas whole‑exome sequencing (WES) with effective 
strategy only points economically at coding regions and is 
currently offered by more laboratories  (5). WES of tumor 
samples and matched normal controls has the potential to 
rapidly identify protein‑altering mutations across hundreds 
of patients, potentially enabling the discovery of recurrent 
events that drive tumor development and growth. Identification 
of somatic mutations from WES data is an increasingly 
common technique in the study of cancer genomics, and a 
large number of somatic alterations have been identified by 
WES in extensive tumor types (6‑9). The most prevalent muta-
tions observed are in the p53 tumor suppressor gene (TP53), 
Wnt/β‑catenin signaling pathway regulatory genes (catenin 
β1 and AXIN 1), chromatin remodeling complex components 
[AT‑rich interactive domain (ARID) 2 and ARID1A], Janus 
kinase (JAK)/signal transducer and activator of transcription 
pathway‑regulated JAK1, as well as hepatitis B (HBV) inte-
grations into myeloid/lymphoid or mixed‑lineage leukemia 4, 
telomerase reverse transcriptase and cyclin E1 (10,11).

The calling of accurate somatic mutations using WES data 
remains one of the major challenges in cancer genomics due to 
various sources of errors, including artifacts occurring during 
polymerase chain reaction (PCR) amplification or targeted 
capture, machine sequencing errors and incorrect local align-
ments of reads (12). Tumor heterogeneity and normal tissue 
contamination generate additional difficulties for the identi-
fication of tumor‑specific somatic mutations (12,13). In recent 
years, several methods have been developed to improve the 
accuracy of somatic mutation calling. Despite the variations 
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in the methodology of somatic mutation algorithms, the aim 
of each program is to identify tumor‑specific variants by 
comparing the tumor variant data with the dbSNP of paired 
adjacent tissue and germline variant data in the same patient. 
Currently the most popular computational algorithms are 
MuTect  (14), VarScan2 (15) and Genome Analysis Toolkit 
(GATK) (16). GATK calculates the variants in tumors and 
adjacent tissues separately, and then subtracts the variants 
identified in the adjacent tissues from those in the tumors. 
MuTect and VarScan2 directly compare the tumor tissues 
with the adjacent tissues at each mutation point, which in 
some cases improves the accuracy of variant calling. MuTect 
detects somatic mutation sensitively with a Bayesian model 
at low allele‑fractions, whereas VarScan2 applies a powerful 
heuristic/statistic approach to identify high‑quality vari-
ants (12). However, it is unclear which is the best strategy for 
identifying and accurately calling genome variations as well 
as how well these different tools improve the true positive 
mutations when they are combined.

The present study integrated the resources of different 
somatic mutation algorithms and optimized their own param-
eters in order to identify novel and recurrent mutations more 
effectively and faster. The present study used one case of 
hepatocellular carcinoma (HCC) to explain the whole‑exome 
analysis pipeline and identify the key somatic mutations of 
HCC.

Materials and methods

Patient. A punctured HCC tumor and paired adjacent tissue 
was obtained from a patient (57 years, male) at the Youan 
Hospital, Capital Medical University of China (Beijing, 
China) and complied with the principles of The Declaration 
of Helsinki. The patient was infected with HBV and received 
no radiation and chemotherapy prior to radiofrequency 
ablation.

NGS platforms. The DNA was extracted using an E.Z.N.A.® 
Tissue DNA Kit (Omega Bio‑Tek, Inc., Norcross, GA, USA) 
and the extracted DNA was captured using Agilent Human 
All Exon 50 M kit (Agilent Technologies, Inc., Santa Clara, 
CA, USA) following the protocols recommended by the 
manufacturer. Sequencing machines generated a large volume 
of data at a rapid speed by sequencing paired‑end DNA frag-
ments in parallel using Illumina His‑seq2,000 (Illumina, Inc., 
San Diego, CA, USA) (17,18). Following a series of library 
construction and actual sequencing, a large quantity of raw 
data was produced.

Quality evaluation of the raw reads. Raw reads generated by 
a sequenator are usually affected by adverse factors, including 
adaptor contamination, poor base sequence quality and 
guanine‑cytosine (GC) bias (19). Once the raw data was obtained, 
the quality of raw reads was assessed and the adaptor was 
clipped using fastq‑mcf (version 1.04.636; www.github.com/ 
ExpressionAnalysis/ea‑utils/blob/wiki/FastqMcf.md). The 
sequencing data was then processed using the FastQC tool 
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) 
to analyze the distribution of base GC content and sequence 
quality scores.

Alignment and duplicated PCR removal. Following the quality 
control analyses, the processed reads were aligned to an estab-
lished reference genome (version hg19), which was provided 
by the University of California Santa Cruz (Santa Cruz, CA, 
USA) (20). Millions of short reads were aligned efficiently to 
the reference genome using Burrows‑Wheeler Aligner (BWA) 
software with default parameters, which were based on the 
Burrows‑Wheeler transform (21). The aligned reads were then 
stored in BAM file (.bam) using samtools software (22), which 
was able to sort and index the BAM file to save space and help 
subsequent process. For the assembled genome data, the picard 
tool (http://picard.sourceforge.net/index.shtml) was combined 
with bamtools to filter out the mismatching and inappropriate 
reads. In addition, picard removed the read duplicates derived 
from library PCR. The data distribution and reads coverage 
were then evaluated using the CalculateHsMetrics package. 
Recalibration and realignment were performed using GATK 
(version 2.8; Broad Institute, Cambridge, MA, USA; www.
broadinstitute.org/gatk/). Finally, the resulting data were used 
for further variation identification.

Variant identification. A key step in the analysis of cancer exome 
sequencing data is the identification of variants. The depth of 
sequence coverage determines the choice of somatic mutation 
algorithms used for identification of variants mutation. The 
different identification abilities in different allele frequen-
cies of GATK (version 2.8.1), MuTect (version 1.1.4; Broad 
Institute; http://www.broadinstitute.org/cancer/cga/mutect), 
and VarScan (version 2.3.6; http://varscan.sourceforge.
net/), and the joint analysis strategy by combining the 
three softwares (the three‑caller pipeline approach), 
were taken into consideration when identifying somatic 
mutations.

Variant annotation. Oncotator (http://portals.broadin-
stitute.org/oncotator/) was used to annotate the screened 
variations (23). All of the candidate mutations were validated 
visually using the Integrated Genomics Viewer (IGV) (24) 
and were confirmed using Sanger sequencing in paired 
samples. The tools, Polyphen‑2 (www.genetics.bwh.harvard.
edu/pph2/index.shtml) and scale‑invariant feature transform 
(SIFT; www.sift.jcvi.org/), were integrated to predict whether 
mutations affected protein function based on the structure and 
function of the protein, and the conservation of amino acid 
residues in different species sequences.

Gene functional enrichment analysis. The gene sets screened 
were used for functional annotation analysis by the Database 
for Annotation, Visualization and Integrate Discovery soft-
ware (25), which consists of the Kyoto Encyclopedia of Genes 
and Genomes and Gene Ontology database. The significance 
of gene groups enrichment was defined by a modified Fisher's 
exact test and P<0.05 was considered to indicate a statistically 
significant difference.

Results

Establishment of three‑caller and HCC data analysis. WES 
was analyzed in one HCC tumor and paired adjacent tissues 
with the three‑caller approach. The present study acquired 
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96.30X and 79.18X coverages for the tumor and paired adja-
cent tissues, respectively, in all of the targeted exonic regions, 
with 93.4% of the base targeted at 20‑fold and ≥99.1% bases 
by a depth of at least two times. To identify the somatic 
mutations, a flow chart was created with the following steps: 
i) Quality evaluation of the raw reads; ii) reads map to a refer-
ence genome; iii) somatic mutation identification with the 
three‑caller approach; iv) variant annotation; v) data visualiza-
tion; and vi) pathway analysis (Fig. 1).

Detecting SNVs in a HCC sample. Variant filtering was 
performed by GATK with the following filter parameters: 
Low coverage (DP <5), low quality (QUAL >30.0 and QUAL 
<5.0), very low quality (QUAL <30), hard to validate [MQ0 ≥4 
and MQ0/(1.0*DP)>0.1)] and quality‑by‑depth (QD <1.5). The 
exome data from the samples were calculated by running these 
parameters and reserved in a VCF file. GATK was primarily 

used for identifying somatic mutations in the sequencing data, 
including SNVs and indels.

In order to identify the low allelic‑fraction mutations, 
MuTect was used to generate more performance in low 
coverage (12). To illustrate how high the sensitivity was based 
on allele fraction and sequencing depth, a strategy was estab-
lished based on the published data to analyze the data (14). As 
shown in Fig. 2, the sensitivity of mutation was detected by 
MuTect approaching >90% at allele frequency 10% with >80X 
sequencing depth and 80% at allele frequency 5% with >80X.

The call ing of SNVs by MuTect software was 
executed through Java (version 1.6.0_45; www.oracle.
com/technetwork/java/javase/downloads/java‑archive‑downloads‑ 
javase6‑419409.html). The default parameters of MuTect were 
kept to identify mutations. Input database texts, including 
reference sequence hg19, dbsnp v.135 and cosmic v54, were 
used for the MuTect algorithm. Somatic point mutations were 
only identified by MuTect; GATK (version 1.5) was used to 
analyze indels. SNVs located in exome regions were screened 
with ≥20 coverage in the tumor, which was coupled with ≥4 
alternate alleles and ≥4 allelic fraction of the altered base. 
The paired normal sample also had 10X coverage at least in 
a certain base. As many low coverage or low allelic fraction 
SNVs were characterized by MuTect, SNVs with variants from 
low purity samples not blindly rejected.

VarScan outperformed the other tools at higher allelic 
fraction. A threshold of 6X for tumor and 8X for normal was 
set, with ≥20% variation frequency. Subsequently, the present 
study preferentially analyzed 20X coverage in the tumor, 
including alternated variation accounting for 10X coverage, to 
eliminate false positives.

The present study proposed 75 candidate somatic vari-
ants through the three‑algorithm strategy (Fig. 3), including 
50 nonsynonymous mutations, 2 nonsense mutations, 

Figure 1. Flowchart depicting the process applied for the identification of 
somatic mutations based on the Illumina sequencing data. Following library 
preparation, samples were sequenced on the His‑seq2,000 Illumina platform. 
The next steps were designed to assess quality and align the reads against 
the hg19 reference genome, which was followed by variant calling with the 
three‑caller strategy. Identified somatic mutations were annotated to explain 
biological functions and the occurrence of disease. BWA, Burrows‑Wheeler 
Aligner; GATK, Genome Analysis Toolkit.

Figure 3. Identification of somatic variants. A number of somatic variants 
were detected using the three‑caller strategy in a pair of hepatocellular carci-
noma samples. The Venn diagram depicted the number of somatic variants 
identified by GATK, MuTect and VarScan. A total of 75 somatic variants 
were identified however, only 2 of the same variants were noted by more 
than one of the algorithms (GATK and Mutect; 2.7% of identified variants). 
Therefore, a combination of the 3 algorithms was more effective. GATK, 
Genome Analysis Toolkit.

Figure 2. Mutation sensitivity calculated by MuTect. A given allele frequency 
value and specific sequencing depth were used to calculate mutation  
sensitivity.
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Figure 4. Identification of MUC16 variants in a pair of HCC samples. The figure depicts the exome sequencing projects of HCC tumor and paired adjacent 
tissues. The blue letter C indicates the presence of a non‑reference allele, and thus a point mutation (T>C) at position_9056725 in MUC16. MUC16, mucin 16; 
HCC, hepatocellular carcinoma.

Table I. Selected somatic mutations predicted by Polyphen to affect protein function.

Hugo symbol	 Amino acid change	 SIFT	 SIFT score	 Polyphen	 Polyphen score

CSMD1	 Q2192R	 Damaging	 0.04	 Probably damaging	 0.973
FREM1	 H822Q	 Damaging	 0.01	 Probably damaging	 0.972
GP5	 I230N	 Damaging	 0	 Probably damaging	 0.997
KCNA1	 E422K	 Tolerated	 0.06	 Benign	 0.013
CDC7	 P94Q	 Damaging	 0	 Probably damaging	 1
DMBT1	 R2343W	 Damaging	 0.02	 Probably damaging	 0.998
FAT2	 V3602I	 Tolerated	 0.13	 Benign	 0.118
C10orf90	 R188W	 Tolerated	 0.08	 Benign	 0.015 

CSMD1, CUB and sushi multiple domains 1; FREM1, FRAS1‑related extracellular matrix 1; GP5, glycoprotein V platelet; KCNA1, potassium 
voltage‑gated channel subfamily A member 1; CDC7, cell division cycle 7; DMBT1, deleted in malignant brain tumors 1; FAT2, FAT atypical 
cadherin 2; C10orf90, chromosome 10 open reading frame 90; SIFT, scale‑invariant feature transform.

Table II. Functional categories of the tumor‑specific mutation. 

Biological process	 Count	 P‑value	 Genes	 Fold enrichment

Cell adhesion	 8	 0.0089	 GP5, LGALS3BP, FREM1, FAT2, 	 3.29
			   FCGBP, COL5A3, PCDHGB4, MUC16
Regulation of Ras GTPase activity	 3	 0.0487	 TBC1D3, AGAP3, TBC1D3B, AGAP4	 8.3

GP5, glycoprotein V platelet; LGALS3BP, galectin 3 binding protein; FREM1, FRAS1‑related extracellular matrix 1; FAT2, FAT atypical 
cadherin 2; FCGBP, Fc fragment of IgG binding protein; COL5A3, collagen type V α3 chain; PCDHGB4, protocadherin γ subfamily B, 4; 
MUC16, mucin 16; TBC1D3, TBC1 domain family member; AGAP, ArfGAP with GTPase domain, ankyrin repeat and PH domain.
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20 synonymous mutations and 3 indels. The nonsynonymous 
to synonymous somatic SNV ratio was 2.5.

Analysis of somatic mutations. The predictive impact of amino 
acid substitution on functional evidence was analyzed using 
PolyPhen‑2/SIFT (Table I). The P94Q mutation was predicted to 
affect the protein function of cell division cycle 7 protein, which 
may be associated with neoplastic transformation of some tumors 
and affect protein serine/threonine kinase activity. All of the puta-
tive somatic mutations were validated manually using IGV. The 
T>C transversion at position_9056725 in mucin 16 (MUC16) was 
identified (Fig. 4), which was then validated by Sanger sequencing.

Pathway analysis. The 75 genes with tumor‑specific mutations 
demonstrated significant functional enrichment of cell adhe-
sion and regulation of Ras GTPase activity (P<0.05; Table II). 
Notably, the genes encoding cell adhesion demonstrated the 
most prevalent enrichment (P=0.0089), indicating that the 
enriched mutations of cell adhesion genes may serve pivotal 
roles in HCC development.

Discussion

WES technologies have provided extensive profiles of genomic 
mutations in cancers, however, how to process the gener-
ated dataset effectively for downstream analyses, remains 
a problem. Currently the accuracy of variant calling is still 
influenced by a number of factors. Firstly, low specificity and 
sensitivity of the existing high‑throughput sequencing may 
prevent the generation of accurate mutation profiles  (26). 
Secondly, the BWA algorithms may produce incorrect base 
alignment. Finally, the three algorithm tools, MuTect, VarScan 
and GATK, used for identifying variants, present their 
respective limitations. GATK is a semi‑automated algorithm 
that calculates somatic variants. VarScan identifies the most 
high‑quality SNVs preferentially, while MuTect outperforms 
in low‑quality ones. Some true SNVs are hard to differentiate 
due to a number of factors including clonal heterogeneity, 
strand bias, low allele frequencies, tumor contamination, 
high GC content of genomic regions, sequencing errors and 
non‑specificities in short read mapping (12).

Comparisons between SNVs calls analyzed with GATK, 
MuTect and VarScan, revealed that only a few of the SNVs 
were called by more than one of the tools (Fig. 3), thus it was 
difficult to select candidate SNVs for further validation. The 
disagreement was partially due to prior assumptions underlying 
each algorithm and different error models. Therefore, further 
development of more significant and accurate calling algo-
rithms was required (27), however, combining MuTect/GATK 
with VarScan produced more accurate SNVs. In light of these 
limitations in genomic studies, the three‑caller strategy was 
designed to obtain accurate mutation information for clinical 
assessment.

The present study integrated different software programs 
to form a modular pipeline for processing somatic SNVs and 
indels. A series of software was used to perform data align-
ment, data filtering, reducing duplicate and realignment, 
as well as recalibrating through java. In the study of HCC, 
WES analysis started with the acquisition of raw data to select 
several candidate genes, which alluded to the potential effect 

of cancer‑associated somatic mutations on tumor progression. 
The mutation set‑based analysis revealed a number of potential 
somatic events in HCC, including in CUB and sushi multiple 
domains 1, FRAS1‑related extracellular matrix 1 and MUC16 
genes. The mutations at different base positions of the same 
gene or different genes may lead to disparate functions such as 
activation and inactivation mutations. This may influence their 
physicochemical properties and structure in comparison with 
wild‑type proteins. Functional enrichment analysis revealed 
the biological process enrichment of cancer‑specific muta-
tions, including cell adhesion and regulation of Ras GTPase 
activity. Experiments are required to validate the variants 
which may affect interactions with other proteins and disorder 
crucial signaling pathways (28).

In conclusion, the pipeline for HCC exome sequencing 
data analysis demonstrated in the present study provided 
a convenient strategy to identify the potentially functional 
tumor‑specific mutations, which may support our under-
standing of the underlying mechanisms of HCC development.
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