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Abstract. Partial deletions on the long arm of chromosome 13 
lead to a number of different phenotypes depending on the size 
and position of the deleted region. The present study investigated 
2 patients with 13q terminal (13qter) deletion syndrome, which 
manifested as anal atresia with rectoperineal fistula, complex 
type congenital heart disease, esophageal hiatus hernia with 
gastroesophageal reflux, facial anomalies and developmental 
and mental retardation. Array comparative genomic hybridiza-
tion identified 2 regions of deletion on chromosome 13q31‑qter; 
20.38 Mb in 13q31.3‑qter and 12.99 Mb in 13q33.1‑qter in 
patients 1 and 2, respectively. Comparisons between the results 
observed in the present study and those obtained from patients 
in previous studies indicate that the gene encoding ephrin B2 
(EFNB2) located in the 13q33.3‑q34 region, and the gene coding 
for endothelin receptor type B, in the 13q22.1‑31.3 region, may 
be suitable candidate genes for the observed urogenital/anorectal 
anomalies. In addition, the microRNA‑17‑92a‑1 cluster host gene 
and the glypican 6 gene in the 13q31.3 region, as well as EFNB2 
and the collagen type IV a1 chain (COL4A1) and COL4A2 
genes in the 13q33.1‑q34 region may together contribute to 
cardiovascular disease development. It is therefore possible that 
these genes may be involved in the pathogenesis of complex type 
congenital heart disease in patients with 13q deletion syndrome.

Introduction

Chromosome 13q deletion syndrome, a rare genetic disorder, 
is characterized by partial deletions of one of the long arms 
of chromosome 13, which leads to a number of human birth 
defects. The clinical symptoms vary widely among patients 
and may include, developmental delays (mental and growth 

retardation), facial anomalies (microcephaly, hypertelorism, 
flattened nasal bridge and micrognathia), and severe malfor-
mations in the distal limbs, central nervous system (posterior 
encephalocele, holoprosencephaly and neural tube defects), 
eyes (micro‑ophthalmia and retinoblastoma), heart (congenital 
heart defects), lungs, kidneys, gastrointestinal tract and geni-
tourinary tract (penoscrotal transposition and hypospadias, 
ambiguous genitalia, reduced anogenital distance, imperforate 
anus, bicornuate uterus and imperforate anus with vaginal 
fistula or cloaca) (1‑4).

Clinical characteristics and severity depend on the size of the 
deleted region and the location on chromosome 13. Chromosome 
13 deletion syndrome was first described in 1969  (1), and 
efforts since then have been made to identify the critical region 
involved in specific anomalies using genotype‑phenotype 
analysis (5,6). However, due to the limited number of cases and 
the different levels of penetrance, the causative genes have yet 
to be determined. Previous studies have proposed the existence 
of the following 3 groups of genotype‑phenotypes based on 
the involvement of the critical 13q32 band in the deletion (2,5): 
i) proximal deletions with a non‑deleted 13q32 band are observed 
primarily in patients with mild mental retardation, growth delay 
and inconstant retinoblastoma; ii) a 13q32 band deletion is 
associated with severe congenital malformations; iii) a distal 
deletion without a 13q32 deletion has been observed in patients 
with severe mental retardation, no brain malformation or growth 
delay. Previous studies involving the use of array comparative 
genomic hybridization (CGH) coupled with fluorescence in situ 
hybridization, reverse transcription‑quantitative polymerase 
chain reaction (qPCR) and multiple ligation‑depended 
probe amplification to determine the precise breakpoint 
of the unbalanced chromosomal translocation have been 
conducted (3‑5,7‑11). This analysis has provided information 
regarding the molecular genotype‑phenotype in chromosome 
13 deletion syndrome.

In the present study, two patients diagnosed with chromo-
some 13 deletion syndrome, which harbored 13q31.3q terminal 
(qter) and 13q33.1qter deletions, respectively, were recruited 
for genotype‑phenotype analysis using array‑CGH and qPCR.

Case report

The present study was approved by the institutional review 
board of Shengjing Hospital affiliated to China Medical 
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University (Shenyang, China). Written informed consent 
regarding participation and the publication of clinical infor-
mation was obtained from the parents of patients 1 and 2, and 
all clinical investigations were conducted according to the 
principles expressed in the Declaration of Helsinki.

Clinical descriptions. Patient 1 (gender, female; age, 
14  months) was diagnosed with anal atresia with recto-
perineal fistula following birth, and was referred to Shengjing 
Hospital for surgery in June 2009 due to recurrent constipa-
tion. Patient 1 was born at full‑term by Caesarean section, 
and was the first‑born child to non‑consanguineous parents. 
Following birth, the patient was blue and was diagnosed with 
a heart murmur as well as an imperforate anus with navicular 
fossa fistula. At 1 month of age, the patient suffered recurrent 
seizures. At 14 months‑old, physical examination identified 
marked growth retardation, with a height of 69 cm, which was 
<3 standard deviations below the average for the patient's age; 
a body weight of 7.8 kg and a head circumference of 44 cm. In 
addition, facial dysmorphism was observed, including hypo-
telorism, blepharophimosis and a broad nasal bridge with a flat 
philtrum. In addition, psychomotor milestones, determined by 
developmental quotient evaluation, were markedly delayed, as 
they were equivalent to the level observed in a 5‑month‑old 
child. Angioma was observed in the lateral side of the left 
foot and digits. A systolic‑diastolic phase heart murmur and 
a number of complex type congenital heart defects were 
identified by echocardiography including ventricular septal 
defect, double outlet right ventricle (DORV) defects, single 
atrium (SA) defects, mixed type atrial septal defect (ASD), 
persistent left superior vena cava (PLSVC) defects and severe 
pulmonary stenosis (PS). Radiography analysis of the fistula 
and anoplasty revealed a fistula with a 0.3‑cm opening at the 
navicular fossa (also known as the fossa of the vaginal vesti-
bule) located before the terminal rectum, which was 1.5 cm in 
length, stopping 0.5‑cm from the anterior wall of the rectal 
blind end. Magnetic resonance imaging (MRI) of the brain 
revealed cortical atrophy, agenesis of the corpus callosum, 
cerebral ventricle dilation, a small cerebral cortex hippo-
campus, bilateral otitis media and mastoiditis. The patient was 
treated with anoplasty and the fistula was closed, however, the 
cardiac anomalies were not corrected.

Patient 2 was a newborn (gender, female; age, 46 h), born 
at full‑term to a 39‑year‑old mother and 43‑year‑old father by 
Caesarean section due to oligohydramnios. The parents were 
non‑consanguineous. At birth, patient 2 weighed 2,460 g (<3rd 
centile), was 42 cm in length (<3rd centile) and demonstrated 
a head circumference of 31.5 cm (<3rd centile). The patient 
presented with poor feeding and vomiting following birth. Facial 
dysmorphism was observed, including a round face with a small 
forehead, hypotelorism and blepharophimosis. The patient's 
heartbeat was strong with a regular rhythm, and no murmur 
was observed. A nasogastric tube was passed into the stomach 
with great difficulty, and an esophageal hiatus hernia and 
gastroesophageal reflux were identified following upper gastro-
intestinal contrast X‑ray analysis. MRI results revealed limited 
damage to the cerebral white matter, which was only observed 
in the posterior horn of the left lateral ventricle, and suggested an 
optimistic prognosis. Following treatment with gastrointestinal 
decompression, the patient's vomiting was greatly relieved.

Cytogenetic analysis. Cytogenetic investigation using 
Giemsa‑banding with trypsin as the proteolytic enzyme (GTG 
banding) was performed on metaphase spreads of peripheral 
blood lymphocytes using standard procedures  (12). The 
following detailed procedures were followed: heparinized 
human whole blood (0.5 ml) was cultured at 37˚C for 70 h in 
8 ml Gibco Chromosome Medium (Thermo Fisher Scientific, 
Inc., Waltham, MA, USA). Cells were arrested with colchicine 
(10 ug/ml) for 90 min. Chromosome preparations were made 
by incubating the cell suspension in 0.075 mol/l potassium 
chloride at 37˚C for 30 min, followed by a fixation step in a 
freshly prepared mixture of 3:1 methanol:acetic acid at ‑20˚C 
for 30 min. GTG banding was performed by incubating the 
glass slides in a 0.05% trypsin solution at 37˚C for 15 sec, 
followed by rinsing the slides in PBS buffer and staining in 
a 5% Giemsa stain for 8 min at room temperature. The slides 
were rinsed with water and air dried. Cytogenetic analysis 
was performed on GTG‑banded metaphase spreads collected 
from the patients and their parents at a resolution of 400 bands 
according to standard lab procedures. A total of 15 metaphases 
were analyzed for each individual sample.

DNA isolation and array‑CGH analysis. Genomic DNA was 
isolated from the peripheral blood samples using the DNeasy 
Blood & Tissue kit (Qiagen GmbH, Hilden, Germany). DNA 
quality was confirmed by gel electrophoresis with a 1.5% 
agarose gel, and the yield was confirmed by spectrophotomery 
(NanoDrop ND‑1,000; NanoDrop Technologies; Thermo 
Fisher Scientific, Inc., Wilmington, DE, USA). Genomic DNA 
was labeled using the Affymetrix Cytogenetics Reagent kit 
(Affymetrix, Inc., Santa Clara, CA, USA) and the labeled 
DNA was loaded on to an Affymetrix Cytogenetics Array 
Cytoscan 750K Chip (containing 7.5 million copy number 
markers; Affymetrix, Inc.), which was performed by Gene 
Tech (Shanghai, China). The array was scanned and the data 
were analyzed using the Affymetrix Chromosome Analysis 
Suite (version 2.1; Affymetrix, Inc.).

qPCR validation. PCR was performed on lymphocyte DNA 
extracts using the 7900HT Fast Real‑Time PCR System 
(Applied Biosystems; Thermo Fisher Scientific, Inc.). A total 
of 3 sequence‑tagged sites on chromosome 13 (D13S797 in 
13q33.2, D13S628 in 13q31.1 and D13S258 in 13q21.33) 
were detected. The primers used are shown in Table I. The 
NCBI reference sequence of D13S797 used to determine copy 
number alterations was NG_012694.1 (https://www.ncbi.
nlm.nih.gov/nuccore/255958284) from 19563 nt to 19758 nt, 
the amplified product length is 196  bp. NCBI reference 
sequence for D13S258 was AL356754.18 (https://www.ncbi.
nlm.nih.gov/nuccore/AL356754) from 969 nt to 1239 nt, the 
amplified product length is 271 bp. NCBI reference sequence 
for was AL160154.11 (https://www.ncbi.nlm.nih.gov/nucleo-
tide/14160914); from 1004 nt to 1243 nt, the amplified product 
length is 240 bp. PCR reactions were prepared using the SYBR 
Premix Ex Taq II PCR reagent kit (Takara Biotechnology Co., 
Ltd., Dalian, China) according to the manufacturer's instruc-
tions. Amplification was performed in a final reaction volume 
of 10 µl, containing 50 ng genomic DNA, 0.4 µM PCR forward 
primer, 0.4 µM PCR reverse primer, ROX Reference Dye II 
(1X) and SYBR Premix Ex Taq (Tli RNase H Plus; 1X). The 
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thermal cycling conditions were as follows: initial denaturation 
at 94˚C for 30 sec, followed by 40 cycles of denaturation at 
95˚C for 5 sec and annealing at 60˚C for 35 sec. Amplification 
levels were calculated using the 2−ΔΔCq method (13).

The array‑CGH results are shown in Fig. 1 and Table II, 
and a summary of the regions on chromosome 13 identified 
in the present and previous studies (3,4,6‑8,10,11,14‑22) are 
reviewed in Fig. 2. Cytogenetic analysis of patient 1 revealed 
a karyotype of 46,XX,del(13)(pter→q31; data not shown), and 
the array‑CGH results revealed a distal 20.38 Mb deletion in 
the 13q31.3‑qter region, from 94,724,977 to 115,107,733 bp 
(terminal end). A total of 59 Refseq genes were detected in this 
region of deletion, as determined by analysis by Affymetrix 
Chromosome Analysis Suite software. The qPCR results 
verified the presence of a deletion at D13S797 only, but not at 
D13S628 and D13S258 (data not shown). The karyotype and 
qPCR results of the parents of patient 1 were normal, demon-
strating that the deletion was not hereditary (data not shown).

GTG banding analysis revealed that the karyotype of patient 
2 was 46,XX,del(13)(pter→q33:)(data not shown), and the 
array‑CGH results revealed a distal deletion of 12.99 Mb in the 

13q33.1‑qter region spanning 102,110,842 to 115,107,733 bp. 
Analysis by Affymetrix Chromosome Analysis Suite software 
revealed that a total of 34 Refseq genes are located in this 
region of deletion. The qPCR results verified the deletion at 
positions D13S797 and D13S628, but not D13S258 (data not 
shown). The karyotype and qPCR results of the parents of 
patient 2 were normal (data not shown), which suggested that 
this deletion was not hereditary.

Discussion

Congenital heart disease, anorectal/genitourinary and gastro-
intestinal tract malformations are the predominant anomalies 
observed in 13q deletion syndrome, particularly as a part of 
VACTERL association, a disorder characterized by vertebral 
anomalies, anal atresia, cardiac defects, tracheoesophageal 
fistula, renal anomalies and limb defects (14,23‑25). The aim 
of phenotype‑genotype association analysis between these 
anomalies and deleted regions of chromosome 13, is to iden-
tify a limited number of candidate genes located in narrow 
regions of deletion that may provide novel targets for molecular 

Table I. Primer sequences of STS markers used for PCR analysis.

STS	 Forward primer 	 Reverse primer 

D13S797	 5'‑GGTTTGCTGGCATCTGTATT‑3'	 5'‑TGTCTGGAGGCTTTTCAGTC‑3'
D13S258	 5'‑ACCTGCCAAATTTTACCAGG‑3'	 5'‑GACAGAGAGAGGGAATAAACC‑3'
D13S628	 5'‑CGCCACTTTTCTAAATGCC‑3'	 5'‑GGAGTAACAAATAGCAAGGCT‑3'

STSs, sequence tagged sites.

Figure 1. Array‑comparative genomic hybridization results of patient 1 (12922; blue regions) and patient 2 (12948; pink regions) as indicated by copy number 
state using the Affymetrix Cytoscan 750K. The deleted region 13q31.3‑qter of patient 1 from 94,724,977 bp to 115,107,733 bp is indicated by red box with light 
blue outline, with the darker blue line indicating that copy number state is 1 (normal copy number state is 2). The deleted region 13q33.1‑qter of patient 2 from 
102,110,842 bp to 115,107,733 bp is indicated by red box, with the pink line indicating that the copy number state is 1. OMIM, Online Mendelian Inheritance 
in Man.
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pathogenesis research into the development of heart, anorectal/
genitourinary and gastrointestinal tract diseases.

Anorectal/genitourinary anomalies in 13q deletion 
syndrome are generally rare and vary in manifestation and 
severity. Typical cases observed in male patients involve anal 
atresia with severe hypospadias and perineal fistula, whereas 
other patients may present with distal hypospadias without 
anorectal anomalies. By contrast, females are often diagnosed 
with anal atresia and vaginal fistula (4,7). Human embryological 
studies have demonstrated that the primitive urogenital sinus 
and anorectal canal originate from the primitive cloaca, 
and there are number of molecular events that govern the 
developmental processes underlying cloacal septation, closure 
of the perineum and scrotum, urethral tubularization and 
penoscrotal positioning (26‑28). The results obtained from 
patient 1 in the present study, together with those obtained 
from patients with genitourinary/anorectal anomalies in 13q 
deletion syndrome from previous studies (3,4,6‑8,11,14‑18), 
have identified two critical regions, 13q33.3‑qter and 
13q22.1‑31.3. In recent years, the non‑morbid online Mendelian 
Inheritance in Man (OMIM) gene, ephrin B2 (EFNB2) located 
in 13q33.3, has been recognized as a strong candidate gene for 
hypospadias or anorectal anomalies in 13q deletion syndrome 
in a number of studies (4,7‑9,18). Animal experiments have 
demonstrated that a partial loss‑of‑function EFNB2 mutation 
in heterozygous male mice induces severe hypospadias and 
incomplete cloacal septation, and female mice exhibit similar 
defects in their external genitalia (29). Molecular data has 
further verified that the reverse signal, EFNB2 activation by 
EPH receptor B2 (EPHB2) on EPHB2‑expressing cells, is 
exhibited in a dominant‑negative manner in Efnb2LacZ/+ mice 
with hypospadias, which display a reduction in the effect of 
tyrosine phosphorylation (29). The haploinsufficiency of the 
EFNB2 gene product may provide a causative explanation 
for the clinical results observed in patient 1 of the present 
study. However, a limited number of studies have observed no 
mutations in the EFNB2 gene among 331 patients with isolated 

anorectal malformations (11), nor in patients with persistent 
cloaca and associated kidney malformations  (30). This 
suggests that mutations in the EFNB2 gene do not exclusively 
affect the development of the anorectal and geniourinary tract. 
An additional important region, 13q22.1‑31.3, was identified 
in two patients harboring an interstitial deletion (3), Database 
of Chromosomal Imbalance and Phenotype in Humans using 
Ensembl Resources (DECIPHER) ID 270910]  (31). This 
region contains 27 OMIM genes, including the following 
5 morbid genes: the ceroid‑lipofuscinosis, neuronal 5 gene, the 
endothelin receptor B gene (EDNRB), the SLIT and NTRK 
like family member 1 gene, the microRNA‑17‑92a‑1 cluster 
host gene (MIR17HG) and the glypican 6 gene (GPC6). 
Until recently, none of these genes have been proven to be 
associated with urogenital/anorectal anomalies, however, 
previous studies have indicated they may induce a number of 
congenital malformations (32‑39). By contrast, homozygous 
or heterozygous mutations in EDNRB, located in 13q22.3, are 
thought to give rise to 3 types of allelic disease: Hirschsprung 
disease, albinism, black lock, cell migration disorder 
syndrome (ABCD syndrome) and Waardenburg syndrome, 
which are attributed to a defect in the migration of neural 
crest cells (33‑35). The occurrence of comorbid Hirschsprung 
disease and hypospadisa/anorectal malformations has been 
reported in a number of studies (40‑42). We hypothesize that 
aganglionic alterations that occur as a result of EDNRB defects 
may be involved in the underlying mechanisms of urogenital/
anorectal anomalies. Therefore, the role of the EDNRB gene 
in the development of the urogenital tract requires further 
investigation to elucidate the molecular and pathological 
effects of the EDNRB gene.

Congenital heart disease in 13q deletion syndrome is more 
complex than in isolated cases, and include cases of Tetralogy 
of Fallot combined with additional heart defects (6), at least 2 
heart anomalies in one patient (14,15,19), or rare type complex 
heart anomalies (20,43). In the present study, five of the six 
heart anomalies identified in patient 1 were rare types, and 

Table II. Amplified DNA copy numbers in the 13q31.3‑q34 regions as determined using the Affymetrix Cytoscan 750K.

A, Patient 1

		  Chromosome	 Size	 Marker		  Start	 End
CN state	 Type	 band	 (kbp)	 count	 Confidence	 (bp)	 (bp)

	 LOH	 13q33.1‑q33.3	 6,293.846	 651	 1	 104,002,716	 110,296,562
1	 Loss	 13q34‑q34	 861.336	 320	 0.9014088	 114,246,397	 115,107,733
1	 Loss	 13q31.3‑q34	 19,490.64	 5,095	 0.91336507	 94,724,977	 114,215,617

B, Patient 2

		  Chromosome	 Size	 Marker		  Min	 Max
CN state	 Type	 band	 (kbp)	 count	 Confidence	 (bp)	 (bp)

	 LOH	 13q33.1‑q34	 12,987.398	 1,170	 1	 102,108,307	 115,095,705
1	 Loss	 13q31.3‑q34	 12,996.891	 3,262	 0.9176309	 102,110,842	 115,107,733

CN, copy number; LOH, loss of heterozygosity. 
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included, DORV, SA defects, mixed‑type ASD, PLSVC and 
severe PS. These complex conditions associated with cardio-
vascular anomalies in 13q deletion syndrome, suggest that 

multiple genes may be involved in its pathogenesis. To date, at 
least 2 critical regions, 13q31.3 and 13q33.3‑13q34, have been 
reviewed by the literature (3,6,8,10,14‑16,19‑22) (DECIPHER 

Figure 2. The critical regions of chromosome 13 associated with anorectal/genitourinary anomalies (black rectangles), congenital heart disease (grey rect-
angles) and gastrointestinal anomalies (light grey rectangles), respectively. The deleted regions of chromosome 13 reported by previous studies are indicated 
by dark/light bars, and deleted regions in patients 1 and 2 of the present study are indicated by blue and pink bars, respectively.
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ID 253794). In the 13q33.3‑13q34 region, morbid OMIM 
genes collagen type IV α1 chain (COL4A1) and COL4A2, 
were identified as potential candidates for heart development 
in a patient with an interstitial deletion of 13q33.3‑q34 that 
presented with DORV (20). Previous studies have demon-
strated that the collagen IV protein encoded by COL4A1 and 
COL4A2 serves a vital role during early cardiac development, 
and specifically in the development of the atria and outflow 
tract in mouse and human cardiovascular progenitor cells in 
fetal hearts (44,45). EFNB2 located in 13q33.3, though not a 
morbid OMIM gene, is an excellent candidate for congenital 
heart disease. Efnb2‑/‑ null homozygotes display early 
embryonic lethality due to severe defects in cardiovascular 
development (46,47). However, the majority of Efnb2lacZ/lacZ 
homozygotes survive embryonic development and are born 
live only to perish within the first day due to cardiac abnor-
malities  (48). These data suggest that insufficient EFNB2 
expression may serve an important role in the pathogenesis 
of cardiovascular abnormalities. In an additional region of 
13q31.3, which was identified in two patients with a microdele-
tion (DECIPHER ID 253794) (20,29), 2 OMIM morbid genes 
MIR17HG and GPC6 were present. MIR17HG is associated 
with Feingold syndrome type 2 (37), which is an autosomal 
dominant disorder characterized by variable combinations of 
microcephaly, limb malformations, esophageal and duodenal 
atresia, and learning disability/mental retardation. Cardiac and 
renal malformations, vertebral anomalies and deafness have 
been described in a minority of patients. GPC6 is associated 
with omodysplasia 1 (38,39), a rare autosomal recessive skel-
etal dysplasia characterized by severe congenital micromelia 
with shortening and distal tapering of the humeri and femora 
producing a club‑like appearance. Patients with GPC6 muta-
tions may additionally present with cryptorchidism, hernias, 
congenital heart defects and cognitive delay (38,39). Heart 
development is a complex process, which involves atrial and 
ventricular septation, giant vascular sprouting, branching and 
tubularization. It has been hypothesized that multiple proteins 
and factors may be required, with precise timing and spatial 
expression patterns. Therefore, the haploid insufficiency of 
MIR17HG, GPC6, EFNB2, COL4A1 and COL4A2 genes may 
co‑contribute to the complex heart anomalies observed in 
patient 1 with a 13q31.3‑qter deletion in the present study.

Gastrointestinal tract anomalies are rare in 13q dele-
tion syndrome, and primarily involve the esophagus and its 
neighboring organs. They include the development of tracheo-
esophageal fistula, esophageal atresia (4), pyloric stenosis (8) 
and esophageal hiatus hernia with gastroesophageal reflux, and 
gastroesophageal reflux was observed in patient 2 of the present 
study. Additional digestive anomalies include common mesen-
tery, pancreas anomalies, gall bladder agenesis/hypoplasia and 
spleen hypoplasia/supernumerary spleen (6). Two regions span-
ning 13q31.3‑q33.1 and 13q33.2‑q34 are thought to be involved, 
however, it is not conclusive due to the limited number of cases. 
Among the morbid OMIM genes in the 13q31.3‑q33.1 region, 
only MIR17HG in 13q31.3, which induces Feingold syndrome 
type 2, has been associated with tracheoesophageal fistula and 
esophageal atresia (37). However, in the 13q33.2‑q34 region, 
no morbid OMIM gene may provide an explanation for these 
anomalies. The non‑morbid gene EFNB2 in 13q33.3, is thought 
to be involved in intestinal epithelial architecture via the EPH 

receptor B2‑EFNB signaling pathway  (49,50), which may 
explain, in part, these gastrointestinal anomalies. However, this 
does not explain the majority of reported cases, and thus the 
precise regions require further investigation with more detailed 
cytogenetic information and molecular data on the complex 
symptoms of gastrointestinal anomalies.

When combining the information from patient 1 and 2 of 
the present study with the results of previous studies involving 
patients with VACTERL syndrome, it is apparent that the 
urogenital/anorectal anomalies, congenital heart disease and 
gastrointestinal tract anomalies may involve common or over-
lapping regions of deletion in chromosome 13q, and suggests 
they may share a common molecular mechanism. Increasing 
numbers of microdeletions are being identified in patients using 
the array‑CGH technique, and the morbid genes identified may 
therefore provide a greater understanding of the molecular 
mechanisms underlying chromosome 13q deletion syndrome. 
In addition, obtaining molecular data from non‑morbid OMIM 
genes in knockout animal models may reveal the pathological 
processes during development.
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