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Abstract. Major depressive disorder (MDD) is a prevalent 
disorder that causes considerable disability in social func-
tioning and is a risk factor for physical diseases. Recent 
clinical reports have demonstrated a marked association 
between MDD and physiological dyshomeostasis induced 
by metabolic disorders, including diabetes, hormone abnor-
malities and autoimmune diseases. The authors of the present 
study have previously analyzed comparative gene expression 
profiles in the prefrontal cortex (PFC) of a chronic mild stress 
(CMS) animal model of MDD. Hepatocyte nuclear factor 
4α (Hnf4α) was identified as a central regulator that exerted 
significant influence on genes associated with physiological 
homeostasis. The aim of the present study was to investigate: 
i) the molecular mechanism of the depressive state in the PFC, 

and ii) the involvement of genes extracted from the compara-
tive gene expression profiles, particularly those applicable to 
MDD in clinical practice. Core analysis of the previous PFC 
microarray results was performed using Ingenuity Pathway 
Analysis (IPA). Subsequently, IPA was used to search for 
molecules that are regulated by Hnf4α, and exist in the PFC 
and serum. From the core analysis, 5 genes that are associated 
with cell death and are expressed in the cortex were selected. 
Four of the extracted genes, insulin‑like growth factor 1, 
transthyretin, serpin family A member 3 and plasminogen, 
were markedly affected by Hnf4α. S100 calcium‑binding 
protein A9 (S100a9) and α2‑HS‑glycoprotein (Ahsg) were 
also chosen as they exist in serum and are also affected 
by Hnf4α. A significant group difference in the expression 
of these two genes was detected in the PFC, thalamus and 
hippocampus. The protein levels of AHSG and S100A9 in the 
PFC and hippocampus of the CMS group increased signifi-
cantly when compared with the control group. These findings 
support the close association of Hnf4α (through genes such as 
S100a9 and Ahsg) with the development of various diseases 
induced by deregulation of physiological homeostasis during 
the progression of MDD.

Introduction

Major depressive disorder (MDD) is one of the most prevalent 
mental disorders in developed countries such as Japan, and its 
frequency is rapidly increasing (1,2). However, the etiological 
and psychobiological mechanisms for the development of 
MDD remain unclear, even though pharmacological agents 
for MDD have been extensively investigated, with a particular 
focus on serotonergic, adrenergic and/or dopaminergic 
dysfunction  (3). Clinical and basic research of depressive 
status has indicated that there are close associations and strong 
interactions among the prefrontal cortex (PFC), thalamus and 
hippocampus (4‑7). For example, stressful conditions increase 
activity in the PFC and limbic or prelimbic regions, resulting 
in hyperactivity of the hypothalamic‑pituitary‑adrenal axis 
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and hippocampus (4,5). Despite such associations between 
these parts of the brain in healthy people and in depressive 
subjects, the mechanism underlying their interactions remains 
unknown.

Previous studies have indicated significant associations 
between MDD and biomarkers that can be detected in serum, 
including cytokines, brain‑derived neurotrophic factor (BDNF) 
and hormones in patients treated with corticosteroids or 
interferon therapy (8‑12). For example, levels of serum BDNF 
decreased and levels of inflammatory cytokines increased in 
patients with MDD (13‑15). However, these factors were also 
affected by diurnal variation or by physical conditions (16,17). 
Therefore, there is still insufficient evidence to support their 
validity and applicability as diagnostic markers or as biological 
indicators for assessing the severity of MDD. Thus, even though 
MDD is a disorder associated with psychological, sociocul-
tural or neurobiological factors and also with more pervasive 
physiological dysfunctions, the underlying mechanisms for 
interactions between these factors have yet to be elucidated.

The group have previously performed molecular analyses 
to assess the associations between MDD and dysregulation 
of physiological homeostasis. Hepatocyte nuclear factor 
4α (Hnf4α) was identified as a candidate central regulator 
that has crucial influence on immunological function, lipid 
metabolism, coagulation, hormonal activity and the synthesis 
of amines (18). As Hnf4α is a transcription factor, it is difficult 
to measure in serum, and the target molecules regulated by 
Hnf4α that are detectable in serum have not been examined. 
Therefore, the influence of Hnf4α on the development of 
clinical MDD or depressive status in humans has not been 
determined.

The aim of the present study was to investigate: i) the 
molecular mechanism of the depressive state in the PFC; and 
ii) the involvement of genes extracted from comparative gene 
expression analysis that may mediate the associations between 
MDD and physiological diseases using a chronic mild stress 
(CMS) animal model of MDD. In addition, the present study 
determined whether specific molecules regulated by Hnf4α 
may exist in the PFC and serum, and examined the possibility 
that these molecules may be reliable indicators of clinical 
MDD.

Materials and methods

Details regarding the experimental animals, the CMS proce-
dure, sample collection, RNA purification, microarray analysis, 
reverse transcription‑quantitative polymerase chain reaction 
(RT‑qPCR), western blotting and Ingenuity Pathway Analysis 
(IPA) have been described in our previous studies (18,19).

Animals. A total of 50 experimentally naïve male C57BL/6N 
mice (Japan SLC, Inc., Shizuoka, Japan) were used. Mice 
were 9‑10 weeks old and weighed 22.3 g on average at the 
start of the experiment. Mice were housed in groups of 3, 4 
or 5 in polycarbonate cages that were placed in a colony room 
maintained at a constant temperature (22±1˚C) and humidity 
(50‑60%), under a 12‑h light/dark cycle (lights on at 7:00 am) 
with free access to food and water.

Animals were randomly assigned to one of two groups: 
The control group (C group) mice and the chronic mildly 

stressed (CMS) group mice, as previously described (18). The 
procedure to induce CMS is described in Table I and was 
performed over 4 weeks. A total of 16 mice from each group 
were euthanized by decapitation using a guillotine, and brain 
samples were collected for molecular analyses.

Animal experiments were conducted according to the 
Guide for Care and Use of Laboratory Animals published 
by the National Institutes of Health, and was approved by 
the Ethical committee of Behavioral and Medical Science 
Research Consortium (Hyōgo, Japan; approval IDs: 2012‑B‑09 
and 2012‑B‑10). All efforts were made to minimize the number 
of mice used and the suffering of animals.

RNA purification. Total RNA was purified from the mouse 
brain using a Sepasol‑RNA I Super kit (Nacalai Tesque, 
Inc., Kyoto, Japan), according to the manufacturer's instruc-
tions, and was treated with 5 units of RNase‑free DNase 
I at 37˚C for 30 min to remove genomic DNA contamina-
tion. Following phenol/chloroform (Wako Pure Chemical 
Industries, Ltd., Osaka, Japan) extraction and 100% ethanol 
(Wako Pure Chemical Industries, Ltd.) precipitation, as previ-
ously described (18,19), total RNA was dissolved in deionized 
distilled water. RNA concentrations were determined using a 
NanoDrop‑1000 spectrophotometer (NanoDrop Technologies; 
Thermo Fisher Scientific, Inc., Pittsburgh, PA, USA).

Microarray analysis. The microarray analysis of the whole 
genome was outsourced to Takara Bio, Inc. (Mie, Japan). The 
protocol details are described below (series entry, GSE49867).

RNA quality check. RNA was re‑quantified using a NanoDrop‑ 
2000 spectrophotometer (NanoDrop Technologies; Thermo 
Fisher Scientific, Inc.), according to the manufacturer's 
protocol, and the quality was monitored with an Agilent 2100 
Bioanalyzer (Agilent Technologies, Inc., Santa Clara, CA, 
USA).

Labeling protocol (1 color). Cyanine‑3 (Cy3)‑labeled cRNA 
was prepared from 0.1 µg total RNA using the Low Input 
Quick Amp Labeling kit (Agilent Technologies, Inc.), followed 
by RNeasy column purification (Qiagen, Inc., Valencia, CA, 
USA), according to the manufacturer's protocol. Dye incor-
poration and the cRNA yield were checked with a NanoDrop 
ND‑2000 spectrophotometer (NanoDrop Technologies; 
Thermo Fisher Scientific, Inc.).

Hybridization protocol. A total of 0.6 µg Cy3‑labeled cRNA 
was fragmented at 60˚C for 30 min in a reaction volume of 
25 µl containing 1X Agilent fragmentation buffer and 2X 
Agilent blocking agent, following the manufacturer's instruc-
tions (Agilent Technologies, Inc.). Upon completion of the 
fragmentation reaction, 25 µl 2X Agilent hybridization buffer 
was added to the fragmentation mixture and hybridized 
to an Agilent SurePrint G3 Mouse GE 8x60 K array (cat. 
no. G4858A‑028005) for 17 h at 65˚C in a rotating Agilent 
hybridization oven (Agilent Technologies, Inc.).

Following hybridization, microarrays were washed for 
1 min at room temperature with GE Wash buffer 1 (Agilent 
Technologies, Inc.) and for 1 min at 37˚C with GE Wash buffer 
2 (Agilent Technologies, Inc.).
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Scanning protocol. Following washing, slides were immedi-
ately scanned on the Agilent DNA Microarray Scanner (cat. 
no. G2565CA; Agilent Technologies, Inc.) using a one‑color 
scan setting for 8x60 K array slides (scan area, 61x21.6 mm; 
scan resolution, 3‑µm; the dye channel set was to green, and 
the green photomultipier was set to 100%).

Data processing. The scanned images were analyzed with 
Feature Extraction Software v10.10.1.1 (Agilent Technologies, 
Inc.) using default parameters to obtain background subtracted 
and spatially detrended processed signal intensities.

Value definition. Scaled signal intensities were adjusted to an 
average intensity value of 2,500 (in arbitrary units).

IPA. Microarray data were analyzed using IPA software version 
spring 2016 (Ingenuity® Systems; http://www.ingenuity.com), to 
provide functionality for the interpretation of gene expression 
data. The network explorer of IPA was used to identify relevant 
interactions, functions and diseases among the CMS and C 
group genes, and to determine the shortest direct paths between 
genes. Firstly, to investigate the molecular mechanism of MDD 
and the influence of Hnf4α, core analysis settings of microarray 
results were performed as follows: Network, Interaction; Data 
Sources, all; Confidence, Experimentally Observed; Species, 
human and mice; Tissues, Cerebral cortex; Mutation, all.  
Subsequently, for investigating novel molecules that are able 
to be detected in serum, core analysis settings were set to 
default. Analysis was performed as described in our previous 
studies (18,19).

RT‑qPCR. To validate the results obtained by the microarray 
analysis and IPA, RT‑qPCR was performed. Total RNA 
(10 ng/reaction) extracted from the CMS and C groups was used 
with the RNA‑direct SYBR® Green Real‑Time PCR Master mix: 
One‑step qPCR kit (Toyobo Co., Ltd., Osaka, Japan), according 
to manufacturer's protocol. Samples were run in duplicate 
reactions in 96‑well plates. Median threshold cycle values were 
used to calculate fold changes (FCs) between the samples of 
the two groups. FC values were normalized to GAPDH expres-
sion, using the relative standard curve method. qPCR was 
performed using an Applied Biosystems 7500 Real‑Time PCR 
System (Thermo Fisher Scientific, Inc.), under the following 

thermocycling conditions: 30 sec at 90˚C and 20 min at 61˚C for 
reverse transcription according to the manufacturer's protocol, 
followed by 45 cycles of 98˚C for 1 sec, 67˚C for 15 sec and 74˚C 
for 35 sec. The primer sequences for RT‑qPCR are presented in 
Table II, and the production of these primers was outsourced to 
Sigma‑Aldrich; Merck KGaA (Darmstadt, Germany).

Western blotting. For western blotting, mouse brains were 
minced in Lysis buffer [1% Nonidet P‑40, 20 mM Tris‑HCl 
(pH 8.0), 150 mM NaCl, 10% glycerol] containing a protease 
inhibitor cocktail (Complete™; Roche Diagnostics, Tokyo, 
Japan). They were then homogenized on ice using a sonicator 
(Sonifier II; Branson; Emerson Ultrasonics, CT, USA), and 
each lysate was centrifuged at 4˚C in 13,000 x g for 3 min 
and the supernatant was collected. The protein concentration 
in each specimen was determined with a Bradford protein 
assay kit (Bio‑Rad Laboratories, Inc., Hercules, CA, USA), 
according to the manufacturer's protocol. Samples were 
denatured in Laemmli's sample buffer (cat. no. #09499‑14; 
Nacalai Tesque, Inc.) for 5 min at 95˚C, electrophoresed in a 
12.5% sodium dodecyl sulfate polyacrylamide gel, and trans-
ferred onto a polyvinylidene difluoride membrane (Hybond‑P; 
Amersham; GE Healthcare Life Sciences, Chalfont, UK). 
Membranes were blocked for 1 h at room temperature with 
1% bovine serum albumin in phosphate‑buffered saline 
(PBS) containing 0.1% Triton X‑100 (T‑PBS), then incubated 
with primary antibodies at 4˚C overnight. The membranes 
were probed with polyclonal rabbit anti‑insulin‑like growth 
factor 1 (IGF1; dilution 1:100; cat. no. #NBP1‑45641; Novus 
Biologicals, LLC, Littleton, CO, USA), polyclonal rabbit 
anti‑transthyretin (TTR; dilution 1:200; cat. no. sc‑13098; 
Santa Cruz Biotechnology, Inc., Dallas, TX, USA), poly-
clonal rabbit anti‑S100 calcium‑binding protein A9 (S100A9; 
dilution 1:1,000; cat. no. #NB110‑89726; Novus Biologicals, 
LLC), polyclonal rabbit anti‑α2‑HS‑glycoprotein (AHSG; 
dilution 1:250; cat. no. #bs‑2922R; BIOSS, Beijing, China), 
monoclonal rabbit anti‑β‑actin (ACTB; dilution 1:1,000; cat. 
no. #5125S; Cell Signaling Technology, Inc., Danvers, MA, 
USA) and monoclonal rabbit anti‑GAPDH (dilution 1:1,000; 
cat. no. #3683S; Cell Signaling Technology, Inc.) antibodies. 
Membranes were then incubated for 3 h at room temperature 
with horseradish peroxidase‑conjugated donkey anti‑rabbit 
immunoglobulin G secondary antibody (dilution 1:2,000; cat. 

Table I. Weekly schedule for the induction of chronic mild stress.

Day	 Light phase	 Dark phase

1	 Water deprivation (8 h)/isolation	 Changed room/isolation
2	 Isolation (12 h)	 Overnight illumination (36 h)
3	 A wet cage (4 h)/isolation (12 h)	 Changed room/isolation
4	 Cage tilt (8 h)/isolation (12 h)	 Changed room/isolation
5	 Physical restraint (4 h)/isolation (12 h)	 Changed room/isolation
6	 Forced swimming (30 mins)/isolation (12 h)	 Changed room/isolation
7	 Electric shocks (60 times)/isolation (12 h)	 Changed room/isolation

Animals were randomly assigned to one of two groups: The control group and the chronic mildly stressed mice group, as previously 
described (16). The Table describes the weekly procedure to induce CMS, which was repeated 4 times and was performed over 4 weeks.
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no. #NA9340V; GE Healthcare Life Sciences). Washing with 
T‑PBS was performed following each treatment. Antibody 
reactions were captured using the photo‑image analyzer, 
LAS‑4010 (Fujifilm Corporation, Tokyo, Japan). The density 
of specific protein bands was measured twice using ImageJ 
software version 1.6 (National Institutes of Health, Bethesda, 
MD, USA). AHSG and S100A9 expression was normalized 
to GAPDH, whereas IGF1 and TTR expression was normal-
ized to ACTB. The mean of the measured bands in controls 
was set to one. The present study also assessed HL‑60 whole 
cell lysate (cat. no. #NB800‑PC3, Novus Biologicals, LLC) 
and mature liver lysate, isolated from the same mice, as posi-
tive controls of S100A9 and AHSG, respectively.

Statistical analysis. All results are expressed as the 
mean ± standard deviation. Sigmaplot™ (version 11.0; Systat 
Software, Inc., San Jose, CA, USA) was used for all statis-
tical analyses. Differences between the two groups were 
analyzed by Student's t‑test or the Mann‑Whitney U‑test. 
P<0.05 was considered to indicate a statistically significant  
difference. All analyses were performed >2 times to confirm 
the results.

Results

Isolation and classification of cortex‑specific genes in CMS 
mice. The microarray results have been published previ-
ously (18). A total of 494 genes whose expression was >2X 
or <1/2 that of the C group were extracted from the CMS 
group. The IPA results from the microarray data using the 
first settings are shown in Table III. In this analysis, 5 genes 
were identified, coagulation factor II (F2), Igf1, plasminogen 
(Plg), Ttr and serine (or cysteine) peptidase inhibitor, clade A, 
member 3 (Serpina3). In addition, Igf1, Plg, Serpina3 and Ttr 
were affected by Hnf4α (Fig. 1A).

Investigation of novel genes with a connection between depres‑
sion and physiological homeostasis. To investigate novel 
molecules that are associated with physiological homeostasis, 
are able to be detected in serum and are regulated directly by 
Hnf4α, a number of molecules from all of the extracted genes 
were chosen automatically (Fig. 1B). In the present study, 
the main focus was the analysis of S100a9 and Ahsg as they 
were directly affected by only Hnf4a (thus excluding multiple 
regulation) and may be detected in serum with simple probes 
in microarray analysis.

IPA analysis of 494 genes indicated that S100a9 and Ahsg 
may affect the development of a number of physical diseases. 
S100a9 affects arteriosclerosis associated with vascular 
diseases or ischemia of the brain and rheumatic diseases 
(Table IV). Ahsg is associated with lipid concentration, rheu-
matic diseases and glucose tolerance (Table V).

RT‑qPCR. Previously, Spearman's rank collection test 
identified a significant correlation between the microarray 
and RT‑qPCR data for S100a9 and Ahsg in the PFC (18). 
Additional comparisons for F2, Igf1, Plg and Ttr in the PFC 
between groups are shown in Table VI. S100a9 expression 
was significantly decreased in the hippocampus, although not 
in the thalamus (Fig. 2A). By contrast, Ahsg expression was 
significantly increased in the thalamus, although not in the 
hippocampus (Fig. 2B).

Western blotting. When the protein levels of IGF1 and TTR 
were measured in the PFC, thalamus and hippocampus, no 
differences were observed between the C and CMS groups 
(Fig. 3A‑C). The augmented expression of S100A9 and AHSG 
in the PFC, thalamus and hippocampus of CMS mice was 
further examined. In accordance with the microarray and 
RT‑qPCR results, quantitative analysis of the representative 
blots indicated enhanced synthesis of these two proteins in 

Table II. Primer sequences used for reverse transcription‑quantitative polymerase chain reaction.

Gene	 GenBank accession no.	 Type	 Primer sequence (5'→3')

Ahsg	 NM_011994	 Sense	 CATAAAGCCAGCAGCAACACT
	 	 Anti‑sense	 AGAGCACCTTTCAGAGTCGT
F2	 NM_010168	 Sense	 CTTACCAGCCAAGACCCT
	 	 Anti‑sense	 AGTTTTCCACGAGTTTCACC
Gapdh	 NM_008084	 Sense	 CCTTCCGTGTTCCTACCCCCAAT
	 	 Anti‑sense	 TTGATGTCATCATACTTGGCAGGTTTCTC
Igf1	 NM_010512	 Sense	 ATTTCCAGACTTTGTACTTCAGAAGCGATG
	 	 Anti‑sense	 TCACAGAGGCAGATCTTAAATAATTGAGT
Plg	 NM_008877	 Sense	 TCGCTGGATGGCTACATAAGCACA
	 	 Anti‑sense	 GCCAAACAGTCCGAGACACC
S100a9	 NM_007631	 Sense	 GCAGCATAACCACCATCATCGAC
	 	 Anti‑sense	 CTGTGCTTCCACCATTTGTCTGA
Ttr	 NM_013697	 Sense	 CCTGCTCAGCCCATACTCCT
	 	 Anti‑sense	 CTTTGGCAAGATCCTGGTCCTC

Ahsg, α2‑HS‑glycoprotein; F2, coagulation factor II; Igf1, insulin‑like growth factor 1; Plg, plasminogen; Serpina3, serine (or cysteine) 
peptidase inhibitor, clade A, member 3; S100a9, S100 calcium‑binding protein A9; Ttr, transthyretin.
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the PFC of the CMS mice. S100A9 expression in the PFC 
of the CMS group was higher compared with that in the C 
group (Fig. 4A and B). In contrast with the mRNA levels in the 
hippocampus, S100A9 levels were significantly higher in the 
hippocampus of CMS mice when compared with those of the 
C group; however, there was no difference in S100A9 levels 
in the thalamus (Fig. 4A and B). Similar to the microarray 
and RT‑qPCR results, ASHG levels in the PFC of the CMS 
group were significantly increased when compared with those 
in the C group (Fig. 4A and C). By contrast, no difference was 
observed in the thalamus or hippocampus (Fig. 4A and C).

Discussion

The present study revealed the following clinical and patho-
physiological features of MDD: i)  F2 and Plg, which are 
strongly regulated by Hnf4α, and Serpina3 may be induced 
in the depressive state PFC through Hnf4α; and ii) S100A9 
and AHSG are potential biomarkers for the development of 
physical disease in patients with MDD.

A total of 5 genes, F2, Igf1, Plg, Serpina3 and Ttr, were 
extracted from the IPA analyses according to the molecular 
mechanisms of MDD in the PFC. As shown in Table III, 2 
out of 10 annotations, ‘cell death of cerebral cortex cells’ and 
‘cell death’, were associated with cell death processes such as 
apoptosis (20‑25). F2, Plg and Serpina3 may increase ‘cell 
death’, and F2 and Serpina3 may also be associated with 
‘apoptosis of neurons’ (23‑25). F2 and Plg were categorized 
as ‘coagulation’, whose dysfunction may be closely associated 

Table III. Disease or function annotation of the prefrontal cortex.

Disease or function annotation	 P‑value	 Molecules	 Numbers

Height of barrel cortex	 7.93E‑03	 Igf1	 1
Uptake of D‑glucose	 7.93E‑03	 Igf1	 1
Volume of barrel cortex	 7.93E‑03	 Igf1	 1
Cell death	 1.22E‑02	 F2, Igf1, Plg, Serpina3, Ttr	 5
Area of barrel cortex	 1.58E‑02	 Igf1	 1
First‑onset paranoid schizophrenia	 1.58E‑02	 Ttr	 1
Proliferation of endothelial cells	 2.36E‑02	 Igf1	 1
Density of blood vessel	 3.90E‑02	 Igf1	 1
Synaptic transmission of cortical neurons	 3.90E‑02	 Igf1	 1
Cell death of cerebral cortex cells	 4.35E‑02	 F2; hippocampal neurons, Igf1 	 3
		  and Serpina3; cortical neurons

Igf1, insulin‑like growth factor 1; F2, coagulation factor II; Plg, plasminogen; Serpina3, serine (or cysteine) peptidase inhibitor, clade A, 
member 3; Ttr, transthyretin.

Table IV. Disease or function annotation of S100 calcium‑ 
binding protein A9.

Disease or function annotation	 P‑value

Accumulation of macrophages	 3.44E‑04
Accumulation of phagocytes	 1.07E‑04
Activation of antigen presenting cells	 2.29E‑04
Activation of leukocytes	 2.62E‑05
Activation of macrophages	 5.68E‑04
Activation of phagocytes	 7.81E‑05
Adhesion of neutrophils	 3.44E‑04
Adhesion of phagocytes	 6.25E‑04
Binding of neutrophils	 1.63E‑05
Binding of phagocytes	 2.41E‑05
Immune response of cells	 1.04E‑04
Inflammation of organ	 8.64E‑08
Inflammatory response	 5.10E‑08
Ischemia of brain	 9.69E‑05
Phagocytosis of blood cells	 7.18E‑04
Phagocytosis of cells	 3.68E‑04
Rheumatic disease	 5.06E‑06
Rheumatoid arthritis	 7.08E‑04
Systemic autoimmune syndrome	 9.69E‑05

Table V. Disease or function annotation of α2‑HS‑glycoprotein.

Disease or function annotation	 P‑value

Arteriosclerosis	 4.35E‑12
Arthritis	 3.42E‑05
Arthropathy	 1.95E‑05
Concentration of lipid	 5.73E‑25
Concentration of triacylglycerol	 2.06E‑17
Immune response of cells	 1.04E‑04
Inflammatory response	 5.10E‑08
Insulin resistance	 3.96E‑09
Phagocytosis	 2.80E‑04
Phagocytosis of cells	 3.68E‑04
Rheumatic disease	 5.06E‑06
Rheumatoid arthritis	 7.08E‑04
Systemic autoimmune syndrome	 9.69E‑05
Vascular disease	 2.93E‑12



IKUBO et al:  CHRONIC MILD STRESS ON PHYSIOLOGICAL HOMEOSTASIS IN THE BRAIN306

with MDD (18,26,27). In addition, postmortem studies of 
depressed patients have revealed morphometric changes, 
such as smaller sized cell bodies in PFC regions (28). Ttr 
mRNA in the PFC was higher in CMS with analgesia models, 
which is consistent with the finding that serum levels of TTR 

in patients with depression were higher compared with those 
of healthy people (29,30). In addition, Igf1, Plg, Serpina3 and 
Ttr were affected by Hnf4α (Fig. 1A) (31‑35). These results 
indicated that Igf1, Plg, Serpina3, and Ttr, which are strongly 
regulated by Hnf4α, and F2 may affect the molecular mecha-
nism of MDD development in the PFC.

S100a9 in the hippocampus is affected by exposure to 
chronic or repeated social stress, which may promote the 
migration of leukocytes to the brain (36,37). In addition to 
regulating inflammation, S100a9 also regulates responses to 
fibrosis, arteriosclerosis and infarction (38‑43). S100A9 levels 
in the CMS group were higher compared with those in the  
C group, which was consistent with the mRNA levels in the 
PFC. In the hippocampus, S100A9 levels in the CMS group 
were higher compared with those in the C group, which 
was inconsistent with the mRNA levels. According to the 
Allen Brain Atlas (http://mouse.brain‑map.org/), S100a9 
is expressed at low levels in the hippocampal formation 
and thalamus of a normal mouse (http://mouse.brain‑map.
org/gene/show/19965) (44). S100A9, which is regulated by 
Hnf4α was upregulated in the PFC and hippocampus (18,32). 
Thus, S100a9/S100A9 may be upregulated in the depres-
sive state through Hnf4α/HNF4A. This suggests that 

Figure 2. Enhanced expression of S100a9 and Ahsg in the thalamus and hippo-
campus. RT‑qPCR was performed to determine (A) S100a9 and (B) Ahsg 
expression levels in the thalamus and hippocampus (n=7 samples/group). The 
mean concentration of mRNA from the brains of the C group was set to 1, 
and the relative mRNA levels in each brain region are expressed as the mean 
multiplicity of the CMS group relative to the C group. *P<0.05 vs. C group. 
S100a9, S100 calcium‑binding protein A9; Ahsg, α2‑HS‑glycoprotein; 
RT‑qPCR, reverse transcription‑quantitative polymerase chain reaction; C 
group, control group; CMS group, chronic mildly stressed group.

Figure 1. Upregulation of Hnf4α in the depressive state affects a number of 
genes associated with physiological homeostasis. (A) Interactions between 
Hnf4α and 5 genes in the PFC (F2, Igf1, Plg, Ttr and Serpina3) extracted 
from IPA results. (B) Hnf4α regulates a number of genes that were also up‑ 
or downregulated in the depressive state. Among these genes, the present 
study focused on S100a9 and Ahsg (in bold), as they can be measured in 
patients' serum. Hnf4α, hepatocyte nuclear factor 4α; PFC, prefrontal cortex; 
F2, coagulation factor II; Igf1, insulin‑like growth factor 1; Plg, plasminogen; 
Ttr, transthyretin; Serpina3, serine (or cysteine) peptidase inhibitor, clade A, 
member 3; IPA, Ingenuity Pathway Analysis; S100a9, S100 calcium‑binding 
protein A9; Ahsg, α2‑HS‑glycoprotein.

Table VI. Comparison of gene expression levels as deter-
mined by microarray and reverse transcription‑quantitative 
polymerase chain reaction experiments.

GenBank	 Gene	 FC	 FC
accession no.	 symbol	 (RT‑qPCR)	 (microarray)

NM_010168	 F2	 3.613	   7.650
NM_010512	 Igf1	 1.482	   3.568
NM_008877	 Plg	 5.407	   8.441
NM_013697	 Ttr	 8.338	 10.494

FC, fold change; Igf1, insulin‑like growth factor 1; F2, coagulation 
factor II; Plg, plasminogen; Serpina3, serine (or cysteine) peptidase 
inhibitor, clade A, member 3; Ttr, transthyretin. RT‑qPCR, reverse 
transcription‑quantitative polymerase chain reaction.
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S100a9/S100A9 may have a role in chronic social stress and 
also in the development of physical diseases, such as inflam-
mation or ischemia of the brain.

Clinical research has revealed a significant association 
between Ahsg and cognitive dysfunctions that are frequently 
observed in patients with MDD (45). Ahsg was categorized in 

Figure 3. Expression of IGF1 and TTR proteins in the brains of C and CMS group mice. (A) Protein extracts were prepared from the PFC, thalamus and 
hippocampus of CMS and C group animals. The density of IGF1 and TTR bands were normalized to that of ACTB. The levels of (B) IGF1 and (C) TTR 
proteins in the three brain regions were compared, and no significant differences were observed between the CMS and C groups (n=5 samples/group). C group, 
control group; CMS group, chronic mildly stressed group. IGF1, insulin‑like growth factor 1; TTR, transthyretin; C group, control group; CMS group, chronic 
mildly stressed group; ACTB, β‑actin.

Figure 4. Expression of S100A9 and AHSG proteins in the brains of CMS and C group mice. (A) Protein extracts were prepared from the PFC, thalamus, and 
hippocampus of the CMS and C group animals. The densities of the S100A9 and AHSG bands were normalized to that of GAPDH. (B) The levels of S100A9 
protein in the three brain regions were compared, and significant differences were observed in the PFC and hippocampus between the CMS and C groups. 
*P<0.05 vs. C group (n=3 samples/group). (C) The same analysis was performed for AHSG and significant differences were observed in the PFC. *P<0.05 vs. 
C group. S100A9, S100 calcium‑binding protein A9; AHSG, α2‑HS‑glycoprotein; C group, control group; CMS group, chronic mildly stressed group; PFC, 
prefrontal cortex.
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immune disorders, and also in physical functions of glucose 
and lipid homeostasis (46,47). Our previous results indicated 
that the CMS model had hypertriglycemia, and that there may 
be a significant association between MDD and metabolic 
disorders (18). The present study revealed that Ahsg levels 
in the PFC and thalamus of the CMS group were higher 
compared with those of the C group (Fig. 2B). According to 
the Allen Brain Atlas (http://mouse.brain‑map.org/), Ahsg is 
expressed at relatively low levels in a normal mouse cortex and 
thalamus (http://mouse.brain‑map.org/gene/show/11412) (44). 
In addition, there were significant group differences in the 
level of AHSG in the PFC, similar to those of HNF4A (18). 
Thus, AHSG may affect physiological homeostasis and lead 
to physical diseases, such as metabolic disorders, under MDD 
conditions.

In a meta‑analysis of clinical studies, levels of interleukin 
(IL)‑6 and tumor necrosis factor (TNF)‑α were significantly 
higher in patients with MDD when compared with those in 
normal controls (13). This finding supports a potentially close 
association between MDD and the inflammatory response. In 
our previous study, levels of inflammatory cytokines, such as 
IL‑5 and TNF‑α, were higher in the CMS group when compared 
with those in the C group (18). These results were consistent 
with previous findings from clinical and animal studies, and 
support the occurrence of inflammation during the course of 
MDD (13,48). In addition, a clinical study revealed that serum 
S100A9 levels were greater in patients with an autoimmune 
disorder or rheumatoid arthritis when compared with healthy 
controls (41). From the IPA results, S100a9, Tnfα and Il12 may 
regulate each other (49‑51), which further supports the close 
association between MDD and the inflammatory response. 
As serum AHSG levels are associated with the probability 
of metabolic syndrome and insulin resistance (52,53), these 
two molecules may increase the risk of developing physical 
diseases in patients with MDD.

Regarding the limitations of the present study, S100A9 
and AHSG were measured in only three brain regions in an 
animal model. To more thoroughly examine our hypotheses 
and to verify clinical relevance, particularly in association 
with physiological functions, metabolism should be analyzed 
in peripheral organs. In addition, measurement of the S100A9 
and AHSG serum levels in this model would clarify the inter-
actions between depression and other diseases; however, this 
was not possible in the present study due to a lack of serum. 
Therefore, further studies are required to evaluate these roles 
and the potential associations between other molecules associ-
ated with MDD and physiological homeostasis, including lipid 
metabolism or immune reactions. Finally, Serpina3 was not 
measured by RT‑qPCR, as different subtypes were detected 
multiple times on the microarray (GSE49867 on the Gene 
Expression Omnibus web page; https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE49867).

In conclusion, the present study demonstrated that a number 
of molecules directly regulated by Hnf4α in the PFC may be 
closely associated with the development of MDD. S100A9 
and AHSG were clearly expressed in the brain and may link 
depression with physiological homeostasis. Though there 
were a number of limitations in the present study, the results 
may help to clarify the mechanism mediating the interactions 
between MDD and physiological homeostasis in humans.
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