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Abstract. Drug resistance is an obstacle in the treatment 
of chronic myelogenous leukemia (CML), and is a common 
reason for treatment failure or disease progression. However, 
the underlying mechanisms of cyclophosphamide resistance 
remain poorly defined. In the present study, microarray data 
concerning cyclophosphamide-sensitive and -resistant chronic 
myelogenous leukemia cell lines were analyzed. A total 
of 258 differentially-expressed genes (DEGs) were identi-
fied between these two groups, from which 139 DEGs were 
upregulated and 119 were downregulated. Several candidate 
genes that were associated with cyclophosphamide resistance 
were also identified. These DEGs were subsequently classi-
fied using Gene Ontology and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment pathway analysis. A total 
of 487 biological processes and 17 KEGG pathways were 
revealed to be enriched. Furthermore, an interaction network 
was established to identify the core genes that regulated cyclo-
phosphamide resistance. Signal transducer and activator of 
transcription 5A (STAT5A), FYN proto-oncogene, Src family 
tyrosine kinase and spleen associated tyrosine kinase were 
revealed to be the hub genes in multiple enriched biological 
processes and signaling pathways, indicating that these were 
involved in mediating cyclophosphamide sensitivity in CML 
cells. The expression levels of 5 DEGs were also confirmed in 
two human CML cell lines (K‑562 and KU812) by reverse tran-
scription‑quantitative polymerase chain reaction. Furthermore, 
selective knockdown of STAT5A and S100 calcium binding 
protein A4 (S100A4) recovered cyclophosphamide sensitivity 
in K‑562 cells, suggesting their involvement in drug resistance. 
The present study identified several potential genes and 
pathways contributing to cyclophosphamide resistance, and 
confirmed the involvement of STAT5A and S100A4 in drug 

resistance. These results enable improved understanding of the 
mechanisms underlying drug resistance in CML cells.

Introduction

Chronic myelogenous leukemia (CML) is a type of myeloprolif-
erative neoplasm predominantly characterized by uncontrolled 
growth of myeloid cells in the bone marrow and blood. It has 
an incidence of 1-2 cases per 100,000 adults, and accounts for 
~15% of all adult leukemia (1,2). CML is composed of three 
distinct disease phases: An initial chronic phase (CP), an inter-
mediate accelerated phase, and a terminal blast phase (BP) (3). 
In total, ~90% of patients are diagnosed during the CP. The 
transition from CP to BP may occur as quickly as 3 years. The 
median survival rate is 3-6 months for CML patients in the 
BP without any treatment (4). The pathogenesis of CML has 
been well‑described since 1960 (5). It is caused by a chromo-
somal translocation known as the Philadelphia chromosome 
(Ph). This genetic translocation occurs between the Abelson 
murine leukemia (ABL) gene located in chromosome 9 and 
the breakpoint cluster region (BCR) gene in chromosome 22, 
resulting in a fusion gene called BCR‑ABL (6). The fused gene 
expresses an oncoprotein with a constitutively active tyrosine 
kinase that promotes cell growth and replication via regulating 
downstream pathways, including RAS, rapidly accelerated 
fibrosarcoma kinases, c-Jun N-terminal kinases, v-myc 
avian myelocytomatosis viral oncogene homolog and signal 
transducer and activator of transcription (STAT), resulting 
in the development of disease (7-11). Additional complex 
translocations have been reported in 5-8% patients with CML, 
excluding chromosomes 9 and 22. A t(3;9;22) 3‑way transloca-
tion has been observed in patients with CML, who tend to have 
an aggressive stage and a poor outcome (12).

Patients with CML have multiple treatment options, 
including commercially available tyrosine kinase inhibi-
tors (TKIs), omacetaxine, which inhibits protein synthesis, 
and several conventional anti-cancer agents (13). Allogeneic 
stem cell transplantation is a potential final option prior to 
CML progression, despite a high risk of mortality. However, 
its implementation depends on the status of patients and the 
identification of an appropriate stem cell donor (14). These 
therapeutic methods have improved the 10-year overall 
survival rate to 80‑90% (1,15). The majority of patients 
respond to first‑line drug therapy; however, treatment failure 
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still occurs in certain cases due to resistance and intoler-
ance (16). Therefore, drug resistance is a current challenge 
faced by scientists and patients. It is critical to continue the 
identification of novel drug targets for patients with CML. 
Understanding the underlying mechanisms of drug resistance 
is also an emergent issue for researchers.

In the present study, the critical genes responsible for resis-
tance of a conventional drug named cyclophosphamide were 
identified in patients with CML. Cyclophosphamide remains 
one of the most commonly used chemotherapy drug, 50 years 
subsequent to its synthesis. It is used as a single agent or in 
combination with other agents for multiple diseases, including 
solid tumors, hematologic malignancies, autoimmune disor-
ders, stem-cell mobilization, and immunosuppression for blood 
and marrow transplantation (17). In spite of its wide therapeutic 
application, little is known about the mechanisms underlying 
the acquired resistance that is frequently observed in patients. 
In the present study, an Affymetrix microchip was used to 
identify differentially expressed genes between sensitive and 
resistant cells in response to treatment with cyclophosphamide. 
Analysis of KEGG pathways and protein‑protein interactions 
was subsequently performed to reveal the potential factors 
mediating cyclophosphamide resistance in CML.

Materials and methods

Data collection. The Gene Expression Omnibus (GEO) 
database (www.ncbi.nlm.nih.gov/geo) was searched and 
microarray expression data (GSE7114) was obtained for 
two groups of chronic myelogenous leukemia cell lines that 
are either sensitive or resistant to cyclophosphamide treat-
ment. The parental sensitive cell line was KBM‑7/B5 and its 
4-hydroperoxycyclophosphamide (4-HC)-resistant subline was 
B5-180. Each group had 5 biological replicates. Unprocessed 
data sets (.cel files) were collected for further analysis. The 
Affymetrix Human Genome U95 Version 2 Array was used 
in the experiments (Affymetrix; Thermo Fisher Scientific, 
Inc., Waltham, MA, USA). The probe annotation files were 
downloaded accordingly for further research.

Data processing and filtering. Several algorithms have been 
developed to quantify the microarray signal. GCRMA (version 
2.36.0) (18) was used in the present study. The normalization 
process consisted of three steps: Model-based background 
correction, quantile normalization and summarizing.

In order to filter out uninformative data including control 
probe sets and other internal controls, as well as removing 
genes which were expressed uniformly close to background 
detection levels, the nsFilter function of the genefilter 
package (19) in R language was used. However, this filter does 
not remove probe sets without Entrez Gene identifiers or that 
have identical Entrez Gene identifiers.

Differentially‑expressed gene (DEG) analysis. Statistical 
comparisons were performed between the sensitive and the 
resistant groups in response to cyclophosphamide treatment. 
Limma (20) in R language was applied to identify the differ-
ential expression of the comparison. For probes with identical 
Entrez Gene identifiers, only those probes that occupied the 
largest variance were kept for further DEG analysis. Only 

those genes with a log2 (fold change) >1 and adjusted P-value 
<0.01 were recognized as significantly differentially expressed 
between the two sample groups. The adjusted P-value was 
obtained through applying Benjamini and Hochberg's (BH) 
false discovery rate correction on the original P-value, and the 
fold change threshold was selected based on the focus of the 
present study on significantly DEGs.

Hierarchical clustering. Hierarchical clustering (21) was 
performed to classify the analyzed samples based on the gene 
expression profiles. Hierarchical clustering was performed 
using DEGs to observe the global gene expression patterns. The 
DEGs, which were classified in specific biological processes 
(GO terms) and KEGG pathway analysis, were further extracted 
and the expression pattern of those DEGs was characterized. 
The resultant heatmaps for the DEGs were classified as targeted 
biological processes or KEGG pathways using R package.

GO and KEGG pathway analysis. The R packages GO.db (22), 
KEGG.db (23) and KEGGREST (24) were utilized to detect 
Gene Ontology categories and KEGG pathways with signifi-
cant overrepresentation in DEGs compared with the whole 
genome. The significantly enriched biological processes were 
identified as P<0.01. For KEGG pathway analysis, the P‑value 
was set to <0.05.

Construction of biological network. Protein-protein interac-
tion (PPI) databases were downloaded from the HPRD (25), 
BIOGRID (26), and PIP (27) databases. The pair interac-
tions, which were included in any of the three databases, 
were selected to be included in the curated PPI database of 
the present study. As a result, 561,405 pair interactions were 
collected in this database. Cytoscape (28) was utilized to 
construct a PPI network. Interacting gene pairs existing in 
this curated PPI database were imported as a stored network. 
Following functional enrichment analysis, DEGs specified 
in dramatically altered biological processes (GO terms) and 
KEGG pathways were mapped to the corresponding networks 
to analyze the interactions.

Reverse transcription‑quantitative polymerase chain reaction 
(RT‑qPCR). A total of 5 genes were selected for RT‑qPCR, in 
order to validate the microarray data. The human CML cell 
lines K‑562 and KU812, cultured following ATCC's methods, 
were treated with 0, 10 or 100 µg/ml 4-HC for 30 min. 
K‑562 was cultured in ATCC‑formulated Iscove's modified 
Dulbecco's medium (catalog no. 30-2005) supplemented 
with 10% fetal bovine serum (FBS) and KU812 was cultured 
in ATCC-formulated RPMI-1640 medium (ATCC 30-2001) 
supplemented with 10% FBS. Total RNA was isolated using the 
RNeasy Mini kit (Qiagen, Inc., Valencia, CA, USA) according 
to the manufacturer's protocol. Following the manufacturer's 
protocol, reverse transcription and qPCR were performed 
using the High-Capacity cDNA Reverse Transcription kit and 
SYBR Green PCR kit, respectively (both Invitrogen; Thermo 
Fisher Scientific, Inc.). Results were quantified using the 
delta Cq method (29). The thermocycling conditions were as 
follows: 50˚C for 2 min, 1 cycle; 95˚C for 10 min, 1 cycle; 95˚C 
15 sec‑> 60˚C 30 sec‑> 72˚C 30 sec, 40 cycles; and finally 72˚C 
10 min, 1 cycle.
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The primer sequences used for PCR amplification were 
as follows: Spleen associated tyrosine kinase (SYK) forward, 
5'-GTG TCA TTC AAT CCG TAT GAG CC-3' and reverse, 
5'‑TTT CGG TCC AGG TAA ACC TCC‑3'; aldehyde dehydro-
genase 2 family (mitochondrial; ALDH2) forward, 5'-ATG 
GCA AGC CCT ATG TCA TCT-3', and reverse, 5'-CCG TGG 
TAC TTA TCA GCC CA‑3'; midkine (neurite growth‑promoting 
factor 2; MDK) forward, 5'-CGC GGT CGC CAA AAA GAA 
AG‑3' and reverse, 5'‑TAC TTG CAG TCG GCT CCA AAC‑3'; 
signal transducer and activator of transcription 5a (STAT5A) 
forward, 5'-GCA GAG TCC GTG ACA GAG G-3', and reverse, 
5'‑CCA CAG GTA GGG ACA GAG TCT‑3'; S100 calcium 
binding protein A4 (S100A4) forward, 5'-GAT GAG CAA CTT 
GGA CAG CAA-3', and reverse, 5'-CTG GGC TGC TTA TCT 
GGG AAG‑3'; human 18s forward primer: 5'‑GTA ACC CGT 
TGA ACC CCA TT-3' and reverse, 5'-CCA TCC AAT CGG TAG 
TAG CG-3'. Gene expression was normalized to 18s.

RNA interference. To investigate the effect of the STAT5A and 
S100A4 genes on sensitivity to 4‑HC in K‑562 cells, expres-
sion of the STAT5A and S100A4 genes was inhibited by small 
interfering RNA (siRNA). K‑562 cells were seeded into 6‑well 
plates at 1x105 cells per well and cultured in medium without 
antibiotics following ATCC methods. Cells were transfected 
following 24 h culture with siRNAs at a final concentration 
of 40 nM using Lipofectamine RNAiMAX (Ambion; Thermo 
Fisher Scientific, Inc.). Commercially available Silencer 
Select Pre-designed siRNAs for STAT5A, S100A4 and a nega-
tive control (Ambion; Thermo Fisher Scientific, Inc.) were 
used. The sequences of siRNAs for STAT5A and S100A4 
were 5'-ATGGTTTCAGGTTCCACAG-3' and 5'-TGA GCT 
TGA ACT TGT CAC C‑3', respectively. The sequence for the 
Control-siRNA was 5'-UAA GGC UAU GAA GAG AUA C-3'. 
Cells were subsequently collected for mRNA isolation following 
transfection for 36 h.

In vitro 4‑HC treatment assay. To investigate the inhibition 
of STAT5A and S100A4 on sensitivity to 4‑HC, K‑562 cells 
(5x104 cells/ml) from each experimental group (siControl, 
siSTAT5A, siS100A4) were treated with 0, 10 or 15 µg/ml 
4‑HC and incubated for 30 min at 37˚C. Following 4‑HC treat-
ment, cells were washed twice with chilled culture medium 
(RPMI; ATCC 30‑2001) with 10% fetal bovine serum (FBS; 
ATCC 30‑2020), then plated. K‑562 cells were plated in meth-
ylcellulose containing 25% FBS or in liquid culture in RPMI 
containing 10% FBS. Colonies were counted on day 7 of 
methylcellulose cultures with an inverted microscope (IX53; 
Olympus Corporation, Tokyo, Japan) under x10 magnification. 
A total of three fields were assessed from each group using 
Olympus CellSens™ Microscope Imaging Software (Olympus 
Corporation) to count the number of cells. The total number 
of viable cells in liquid cultures was determined twice within 
a 7‑day period. Viability was determined using trypan blue 
exclusion criteria.

Statistical analysis. Data are presented as the mean ± standard 
deviation. The statistical significance of the differences 
between experimental groups was calculated using GraphPad 
Instat 3 (GraphPad Software, Inc., La Jolla, CA, USA). A 
paired t-test was used for difference analysis between two 

groups and one-way analysis of variance was used for the 
comparison of three or more groups. P<0.05 was considered to 
indicate a statistically significant difference.

Results

DEG analysis. The publicly available microarray dataset 
GSE7114 was obtained from the GEO database. Comparative 
analysis was performed between sensitive groups and resistant 
groups to identify genes with significantly differential expres-
sion. At log2 (fold change) >1 and adjusted P-value <0.01, a 
total of 258 DEGs were identified, among which 139 DEGs 
were upregulated and 119 DEGs were downregulated (Table I). 
The top 50 upregulated and downregulated DEGs were listed 
in Tables II and III, respectively. Several potential genes 
connected with cyclophosphamide resistance were identified 
from these DEGs, including aldehyde dehydrogenase 1 family 
member 1 (ALDH1A1), ALDH2, aldo-keto reductase family 1 
member B (AKR1B1), MDK, S100A4 and TIMP metallopepti-
dase inhibitor 1 (TIMP1). All of these were previously known 
to be associated with drug-resistance, and were primarily 
functionally linked to drug metabolism, cell proliferation and 
the anti-apoptotic process.

Construction of the biological network. A heatmap of hier-
archical clustering of all DEGs was generated to visualize 
differential gene expression status between the sensitive groups 
and resistant groups (Fig. 1A). In order to further verify the 
biological networks, all significantly regulated PPIs identified 
from the HPRD, BIOGRID, and PIP databases were utilized 
to construct a biological network using cytoscape software. 
Several sub-networks were indicated (Fig. 1B). The majority of 
the proteins were involved in one or more sub-networks. The 
three central genes that constituted the hubs of the network 
were STAT5A, FYN proto-oncogene, Src family tyrosine 
kinase (FYN) and SYK, suggesting that these may be involved 
in cyclophosphamide resistance in patients with CML. As the 
network of all DEGs was too complex to successfully elucidate 
the function of sub‑networks, detailed analysis was required.

Biological processes analysis. The differentially expressed 
genes determined by microarray analysis were subjected to GO 
and KEGG pathway analysis. The data were generated based on 
GO terms with P-values <0.01 to identify biological processes. 
A total of 487 biological processes that were overrepresented 
by DEGs were identified (Table IV). Table V lists the top six 
significantly enriched biological processes, including regula-
tion of biological quality, immune system process, response 

Table I. Statistical distribution of DEGs.

DEGs Probe Gene

Total DEGs 5885 4824
Significantly DEGsa 300 (167/133)b 258 (139/119)b

alog2 (Fold Change) >1 and adjusted P-value <0.01. b (upregu-
lated/downregulated). DEG, differentially‑expressed gene.
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Table III. Top 50 downregulated genes [log2 (fold change) <-1 
and adjusted P-value <0.01].

Gene Log2 Adj.
symbol (fold change) P-value P-value

PRG2 152.01 3.48x10-07 1.33x10‑09

CA2 40.15 2.14x10-07 5.50x10-10

MS4A3 33.15 6.47x10-07 3.30x10‑09

PRTN3 28.69 2.23x10-07 6.75x10-10

CST7 28.36 8.19x10-08 1.83x10-10

IL32 21.11 1.83x10-05 2.59x10-07

RNASE2 19.05 1.51x10-05 2.07x10-07

COX7A2 17.67 3.53x10-07 1.41x10‑09

CEBPE 12.49 5.32x10-08 9.71x10-11

EPB41L2 8.47 4.17x10-07 1.86x10‑09

AZU1 8.13 1.84x10-04 5.76x10-06

GBE1 7.72 1.72x10-05 2.42x10-07

CCR8 7.45 1.85x10-05 2.66x10-07

CFD 6.59 1.37x10-04 3.87x10-06

S100P 6.49 2.31x10-03 1.64x10-04

ALOX5AP 5.59 3.28x10-03 2.67x10-04

RRAGA 5.48 7.09x10-07 3.72x10‑09

SRGN 5.36 1.25x10-04 3.34x10-06

NDRG1 5.06 1.28x10-03 7.55x10-05

BNIP3 4.89 3.95x10-03 3.44x10-04

TEX30 4.81 4.00x10-06 3.01x10-08

CORO2A 4.76 7.20x10-07 4.13x10‑09

BPI 4.75 4.71x10-04 2.03x10-05

KBTBD11 4.35 3.92x10-05 6.75x10-07

EBP 4.23 1.32x10-05 1.74x10-07

SERINC5 4.21 4.01x10-06 3.13x10-08

P4HB 4.12 4.83x10-07 2.31x10‑09

ITM2A 4.12 6.50x10-05 1.45x10-06

RXRA 4.07 4.43x10-04 1.87x10-05

ICAM3 3.97 2.36x10-06 1.58x10-08

ATF5 3.75 2.53x10-04 8.87x10-06

WWP1 3.60 1.26x10-04 3.40x10-06

ARFGEF1 3.52 3.00x10-05 4.91x10-07

PRDX2 3.42 7.52x10-07 4.55x10‑09

SYK 3.42 2.38x10-05 3.67x10-07

MX2 3.35 2.03x10-05 2.97x10-07

LMO2 3.25 2.78x10-04 1.00x10-05

CCNE2 3.23 3.00x10-03 2.39x10-04

DGAT1 3.22 4.64x10-05 8.77x10-07

EFR3A 3.13 7.20x10-07 4.11x10‑09

PTDSS1 3.06 1.29x10-05 1.69x10-07

HLA‑A 3.00 1.92x10-05 2.78x10-07

CYB5A 2.95 3.29x10-04 1.24x10-05

TNFAIP8 2.92 2.62x10-07 9.34x10-10

PEX2 2.92 2.45x10-04 8.42x10-06

MAD1L1 2.88 1.72x10-05 2.38x10-07

SAT1 2.87 1.25x10-03 7.31x10-05

NCALD 2.83 2.61x10-03 1.95x10-04

CEBPD 2.82 6.66x10-06 6.54x10-08

IKZF1 2.80 2.23x10-03 1.56x10-04

Table II. Top 50 upregulated genes [log2 (fold change) >1 and 
adjusted P-value <0.01].

Gene  Log2 Adj.
symbol (fold change) P-value P-value

ALDH1A1 175.23 2.12x10-11 3.38x10-15

LGALS1 25.05 2.14x10-07 6.13x10-10

CTSH 24.08 7.97x10-08 1.65x10-10

ALDH2 17.36 1.20x10-10 3.81x10-14

MARCKS 11.73 8.73x10-10 4.17x10-13

RAPGEF2 11.72 4.00x10-06 3.03x10-08

MDK 11.08 1.42x10-05 1.89x10-07

ID1 10.68 4.72x10-07 2.18x10‑09

FSCN1 8.30 6.66x10-06 6.66x10-08

PMP22 8.23 1.80x10-07 4.29x10-10

SIGLEC6 8.19 5.37x10-07 2.65x10‑09

GLRB 8.06 2.62x10-07 9.35x10-10

CTSL 7.66 1.27x10‑09 8.09x10-13

ANGPT1 7.31 2.81x10‑09 3.13x10-12

ITGA2B 6.93 1.07x10-05 1.32x10-07

RAB31 6.71 7.81x10‑09 9.95x10-12

RUNDC3B 6.69 2.81x10‑09 3.10x10-12

DUSP6 6.30 1.07x10-05 1.31x10-07

ICAM2 6.04 4.62x10-06 3.87x10-08

KLF1 5.91 4.66x10-06 4.01x10-08

IFI44 5.77 2.52x10-08 4.01x10-11

S100A4 5.50 1.16x10-05 1.48x10-07

ACSM3 5.47 7.74x10-03 8.22x10-04

PAX6 5.42 5.92x10-06 5.42x10-08

FYN 5.40 4.00x10-06 2.95x10-08

CPVL 5.17 1.04x10-05 1.23x10-07

RRAS2 5.08 1.64x10-08 2.35x10-11

DLC1 5.04 4.62x10-06 3.90x10-08

YES1 5.02 4.81x10-05 9.20x10-07

LCP2 4.89 7.20x10-07 4.01x10‑09

LAT 4.87 2.06x10-06 1.35x10-08

TPST2 4.84 2.59x10-07 8.25x10-10

STEAP1 4.53 6.42x10-06 6.03x10-08

KAZN 4.26 7.52x10-07 4.53x10‑09

CD48 4.07 1.27x10-04 3.48x10-06

IL2RA 4.04 2.84x10-03 2.20x10-04

COL2A1 4.03 3.37x10-04 1.28x10-05

TAL1 3.98 2.82x10-04 1.03x10-05

PRAME 3.96 8.47x10-05 2.04x10-06

TNFSF10 3.91 2.71x10-03 2.06x10-04

ASS1 3.80 1.28x10-04 3.52x10-06

GUSBP11 3.72 8.09x10-03 8.71x10-04

TIMP1 3.61 3.34x10-05 5.64x10-07

ZHX2 3.60 6.98x10-05 1.60x10-06

STAR 3.59 4.52x10-04 1.92x10-05

PHLDA2 3.52 9.21x10-06 1.03x10-07

TSC22D1 3.46 4.05x10-07 1.68x10‑09

ID3 3.43 4.57x10-05 8.37x10-07

AKR1B1 3.32 3.67x10-04 1.47x10-05

PICALM 3.30 1.22x10-04 3.17x10-06
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to chemicals, apoptotic process, signaling pathways and cell 
proliferation. Heatmaps and biological networks of the six 
significant biological processes were generated: Biological 
quality (Fig. 2A), immune system process (Fig. 2B), response 
to chemicals (Fig. 2C), signaling pathways (Fig. 2D), apoptotic 
process (Fig. 2E) and cell proliferation (Fig. 2F). This network 
analysis identified a number of potential genes that may be 

associated with cyclophosphamide resistance. Therefore, GO 
analysis provided a valuable mechanistic insight into cyclo-
phosphamide resistance in CML cells.

KEGG pathway enrichment of DEGs. For KEGG pathway 
enrichment analysis, a count >4 and a P-value <0.05 were 
set as the threshold, and 17 KEGG pathways were identi-
fied (Table IV). The top significant KEGG pathways were 
hematopoietic cell lineage, natural killer cell mediated 
cytotoxicity, arginine and proline metabolism, lysosome, 
phagosome, osteoclast differentiation and Fc epsilon RI 
signaling pathway (Table VI). Heatmaps and biological 
networks of KEGG pathways were generated, including 
natural killer cell mediated cytotoxicity (Fig. 3A), phago-
some (Fig. 3B), osteoclast differentiation (Fig. 3C) and the 
Fc epsilon RI signaling pathway (Fig. 3D). The major genes 
identified from these networks were those involved in the cell 
cycle, proliferation, signaling transduction, cell adhesion and 
the immune response.

Identification of central genes from signal networks. The 
analysis of networks for biological processes and KEGG 
pathways permitted the identification of genes involved in 
these processes and pathways, as well as associations between 
upstream and downstream signaling transduction. The 
results revealed that three genes (STAT5A, FYN and SYK) 
were frequently present as hubs of corresponding networks, 
highlighting their functions as important markers for cyclo-
phosphamide resistance.

Validation of microarray data. To verify the expression of 
the DEGs identified in microarray experiments, RT‑qPCR 
was performed using two human CML cell lines (K‑562 and 
KU812). The expression levels of 5 genes were tested (SYK, 
ALDH2, MDK, STAT5A and S100A4), and mRNA expres-
sion levels of SYK were significantly decreased and mRNA 
expression levels of ALDH2, MDK, STAT5A and S100A4 
were significantly increased following 4-HC treatment in 

Table V. Top six significantly altered GO biological processes.

GO-BP-ID P-value Count Term

GO:0065008 4.09x10-15 98 Regulation of biological 
   quality
GO:0002376 4.82x10-15 82 Immune system process
GO:0042221 1.70x10-12 98 Response to chemical
GO:0006915 2.45x10‑09 59 Apoptotic process
GO:0023052 1.08x10-08 123 Signaling pathway
GO:0008283 1.32x10-08 58 Cell proliferation

GO, Gene Ontology.

Table IV. Obtained GO biological processes and KEGG 
pathways.

Analysis P-value No.

GO biological process <0.01 487
KEGG pathway <0.05 17

GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and 
Genomes.

Figure 1. Heat map of all DEGs and corresponding biological networks. (A) Heat map of hierarchical clustering of all DEGs (5 resistant samples and 5 sensi-
tive samples). Red indicates high relative expression and green indicates low relative expression. (B) A biological network was constructed according to the 
interactions between all DEGs. Pink indicates upregulated expression and green indicates down-regulated expression. The darker the color, the greater the 
difference. DEG, differentially-expressed gene.
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K‑562 (Fig. 4A) and KU812 cells (Fig. 4B). These results were 
in agreement with and supported the microarray data.

Effect of STAT5A and S100A4 on sensitivity to 4‑HC. To further 
determine whether high expression of resistance-associated 
genes conferred decreased sensitivity to 4-HC, the genes 
STAT5A and S100A4, which were highly expressed in K‑562 
cells following treatment with 4-HC, were used to assess 
their potentially drug resistant function in vitro. The mRNA 
expression levels of STAT5A and S100A4 were efficiently 
inhibited by interference with siRNA method, when compared 
with the control (Fig. 5A and B, respectively). Following 
transfection, cells were treated with 0, 10 or 15 µg/ml 4-HC and 
cultured in methylcellulose culture or liquid culture. Table VII 

Figure 2. Heat maps and corresponding biological networks of the top six 
significantly altered biological processes: (A) regulation of biological quality 
(GO:0065008), (B) immune system process (GO:0002376), (C) response to 
chemicals (GO:0042221), (D) signaling pathways (GO:00,23052), (E) apop-
totic process (GO:0006915) and (F) cell proliferation (GO:0008283). Red 
indicates high relative expression and green indicates low relative expression 
in the heat maps. For network analysis, pink indicates upregulated expression 
and green indicates down-regulated expression. The darker the color, the 
greater the difference. GO, gene ontology.

Figure 3. Heat maps and corresponding biological networks of several 
significantly altered Kyoto Encyclopedia of Genes and Genomes pathways: 
(A) natural killer cell mediated cytotoxicity, (B) phagosome, (C) osteoclast 
differentiation and (D) Fc epsilon RI signaling pathway, respectively. Red 
indicates high relative expression and green indicates low relative expression 
in the heat maps. For network analysis, pink indicates upregulated expression 
and green indicates down-regulated expression. The darker the color, the 
greater the difference. GO, gene ontology.
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presents the results as the mean number of total colonies 
counted in 5 replicate experiments. K‑562 cells expressing 
lower levels of the STAT5A gene were more sensitive to 
4-HC when compared with the control. Similar results were 
observed for the S100A4 gene following transfection, which 
also increased the sensitivity of K‑562 cells to 4‑HC.

Discussion

Cyclophosphamide is an alkylating agent that exists as an 
inactive prodrug that requires enzymatic and chemical 
activation to release active phosphoramide mustard. 
Phosphoramide mustard alkylates DNA to produce interstrand 
and intrastrand DNA crosslinks, thus resulting in inhibition 
of DNA synthesis and cell death (30). Although the aldehyde 
dehydrogenase (ALDH) family has been reported to confer 
resistance to cyclophosphamide in multiple tumor cell lines (31), 
explaining cases with cyclophosphamide resistance remains 
difficult. In particular, patients with leukemia and lymphoma 
with low levels of ALDH isozymes are relatively resistant 

to cyclophosphamide (32). Therefore, it is urgent to improve 
understanding of the mechanisms of cyclophosphamide 
resistance, in order to use it in a more efficient way.

In the present study, the Affymetrix Human Genome U95 
Version 2 microarray was used to analyze the global gene 
expression profile between sensitive and resistant CML cells in 
response to cyclophosphamide. A total of 258 DEGs demon-
strated significantly differential regulation, of which 139 
DEGs were upregulated and 119 DEGs were downregulated. 
A biological network was subsequently constructed according 
to PPIs obtained from the HPRD, BIOGRID, and PIP data-
bases. GO and KEGG pathway enrichment analysis were also 
performed to reveal the altered biological events associated 
with cyclophosphamide resistance.

Among the DEGs, several potential genes that may be 
responsible for cyclophosphamide resistance were identi-
fied. For example, ALDH1A1 was the top upregulated gene 
with a log2 fold change of 175.23, and its expression has been 
the major determinant of cellular sensitivity to cyclophos-
phamide (31,33). Another ALDH family member, ALDH2, 
was also revealed to be upregulated in resistant CML cells, 
highlighting the critical function of the ALDH family as a 
predictive marker for drug resistance. The ALDH family 
mediates detoxification of cyclophosphamide by catalyzing 
the oxidation of its intermediate metabolite aldophospha-
mide to carboxyphosphamide, resulting in inactivation of 
cyclophosphamide (17,32).

Another upregulated enzyme that may be involved in drug 
resistance was AKR1B1, an aldose reductase. Overexpression 
of three reductases (carbonyl reductase 1, aldo-keto reductase 
family 1 member A1 and AKR1B1) has been demonstrated 
to inactivate the anti-cancer drug daunorubicin, resulting in 
elevation of chemoresistance in tumor cells (34).

MDK is another DEG that demonstrated upregulation in 
cyclophosphamide-resistant CML cells when compared with 
sensitive cells. It is a heparin-binding growth factor involved in 
cancer development, the promotion of cell growth and survival, 
angiogenesis and anti-apoptosis (35). Notably, over-expression 
of MDK has been demonstrated to be associated with resistance 
to different chemotherapeutic agents, including fluorouracil, 
doxorubicin, cisplatin and adriamycin (36,37). Therefore, 
acquired upregulation of MDK in CML cells may contribute 
to cyclophosphamide resistance.

S100A4 is a member of the S100 family of calcium-binding 
proteins and is involved in a number of cellular processes, 
including cell proliferation, differentiation, apoptosis, tumori-
genesis and cancer metastasis (38). In addition, knockdown of 
S100A4 has been demonstrated to result in an increased sensi-
tivity to gemcitabine in pancreatic cancer cells, suggesting 
that overexpression of S100A4 is associated with chemoresis-
tance (39). Therefore, the upregulation of S100A4 observed in 
the present study may explain the resistance to cyclophospha-
mide in CML cells.

TIMP1 is another gene with a potential involvement in 
drug resistance. High TIMP1 expression levels are related with 
poor prognosis and poor response to chemotherapy in patients 
with breast cancer (40). Similar to this previous study, TIMP1 
was increased in cyclophosphamide-resistant CML cells in the 
present study, supporting the use of TIMP1 as a marker for 
drug sensitivity.

Table VII. Effect of inhibition of STAT5A and S100A4 genes 
on the sensitivity of K‑562 cells to 4‑HC.

4-HC dose 
(µg/ml) siControl siSTAT5A siS100A4

10 116±12a 65±5b 56±4b

 (1.15) (0.43) (0.38)
15 30± 3 8±2b 5±1b

 (0.297) (0.053) (0.034)

aResults represent the mean ± standard deviation of total colonies 
scored in five replicate methylcellulose culture plates, plated 
with 5x104 4‑HC‑treated cells. Values in parentheses represent 
percentage recovery of colonies from 4-HC-treated cells in relation 
to the number of colonies obtained from the matched untreated cells. 
(The same number of untreated cells was cultured). bSignificantly 
different compared with siControl group; P<0.005. STAT5A, signal 
transducer and activator of transcription 5a; S100A4, S100 calcium 
binding protein A4; 4‑HC, hydroperoxycyclophosphamide; si, small 
interfering RNA.

Table VI. Significantly altered KEGG pathways.

KEGG‑ID P‑value Count Term

04640 6.78x10-4 8 Hematopoietic cell lineage
04650 8.02x10-4 10 Natural killer cell mediated 
   Cytotoxicity
00330 1.14x10-3 6 Arginine and proline 
   metabolism
04142 1.35x10-3 9 Lysosome
04145 1.97x10-3 10 Phagosome
04380 7.22x10-3 8 Osteoclast differentiation
04664 3.02x10-2 5 Fc epsilon RI signaling 
   pathway
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It is possible to use GO analysis to identify over-repre-
sentation of biological processes, providing insights into 

mechanisms of chemoresistance in response to cyclophospha-
mide. Similar to the effects discussed previously, significant 
biological processes including the apoptotic process and cell 
proliferation were considered to be associated with drug 
resistance. It is reasonable to infer that the apoptosis processes 
induced in sensitive cells was inactive in resistant cells, thus 
promoting cell proliferation. The challenge is to dissect the key 
molecular mechanisms that drive these biological processes 
that occur in resistant cells. Response to chemical stimuli was 
another important biological event in the acquisition of drug 
resistance. The ALDH family was involved in the process 
of response to chemicals. The results of the present study 
suggested that cyclophosphamide-resistant CML cells may 
respond more effectively to external drug stimuli due to high 
levels of enzymes associated with clearance or inactivation of 
drugs, including the ALDH family.

KEGG enrichment analysis helps identify significant 
pathways that DEGs participate in, providing a compre-
hensive understanding of interactive genes. The pathway 
analysis performed in the present study revealed that 17 
KEGG pathways appeared with a high frequency. The most 
significant pathways were involved in the immune response, 
including natural killer cell mediated cytotoxicity, lysosome, 
phagosome and Fc epsilon RI signaling pathway. These 
findings confirmed those of the GO analysis, confirming 
that the immune system process was one of the significantly 
enriched biological processes. The Fc epsilon RI complex 
forms a high affinity cell‑surface receptor that interacts the 
Fc region of antigen‑specific immunoglobulin E molecules. 
Fc epsilon RI aggregation by antigen induces activation of 
several down-stream signaling pathways, including LYN 
proto-oncogene, Src family tyrosine kinase, SYK, linker for 
activation of T cells, extracellular signal related kinases, c-Jun 
N-terminal kinases and p38 MAP kinase cascades, resulting 
in activation of the immune response (41). The involvement of 
the immune response in treatment with cyclophosphamide has 
been previously reported. Cyclophosphamide possesses dual 
anti-cancer and immunosuppressive properties and so it is 
also used in a variety of autoimmune disorders to inhibit graft 
rejection and graft-versus-host disease (17). When compared 
with sensitive CML cells, over-representation of immune 
response in resistant cells suggested its potential involvement 
in cyclophosphamide resistance. Other enrichment pathways, 
which at first appear irrelevant to cyclophosphamide, may also 
have a function in cyclophosphamide resistance. This requires 
further investigation.

Further signal transduction network analysis revealed that 
multiple genes were involved in significant biological processes 
and pathways. Notably, STAT5A, FYN and SYK, identified 
from biological process and KEGG pathway analysis, were the 
primary genes with the highest frequency at the center of the 
network. STAT5A is a member of the signal transducers and 
activators of transcription (STAT) family that is located in the 
cytoplasm and activated by a variety of cytokines. STATs are 
hypothesized to be important in multiple signaling pathways 
and thus involved in a number of cellular processes, including 
cell survival, proliferation, angiogenesis and immune evasion. 
They are frequently over‑activated in solid tumor and blood 
malignancies. In particular, STAT5A and STAT5B are directly 
activated by oncogenic BCR-ABL tyrosine kinase (42,43). 

Figure 4. Confirmation of expression levels of five differentially expressed 
genes in (A) K‑562 and (B) KU812 human chronic myelogenous leukemia cell 
lines. Cells were treated with 0, 10 or 100 µg/ml 4‑hydroperoxycyclophohspha-
mide for 30 min, and then collected for reverse transcription‑quantitative 
polymerase chain reaction analysis. Error bars represent the mean ± standard 
deviation of three independent experiments. *P<0.05 and **P<0.01 vs. control. 
SYK, spleen associated tyrosine kinase; ALDH2, aldehyde dehydrogenase  
2 family (mitochondrial); MDK, midkine (neurite growth-promoting factor 
2); STAT5A, signal transducer and activator of transcription 5a; S100A4, S100 
calcium binding protein A4.

Figure 5. Inhibition of STAT5A and S100A4 expression in K‑562 cells. Cells 
were transfected with siControl, siSTAT5A or siS100A4. mRNA expres-
sion levels of (A) STAT5A and (B) S100A4 were determined by reverse 
transcription‑quantitative polymerase chain reaction following transfection. 
Error bars represent the mean ± standard deviation of three independent 
experiments. *P<0.05 and **P<0.01 vs. siControl. STAT5A, signal transducer 
and activator of transcription 5A; S100A4, S100 calcium binding protein 
A4; siControl, control siRNA; siSTAT5A, STAT5A‑specific small interfering 
RNA; siS100A4, S100A4‑specific small interfering RNA.
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Previous studies have demonstrated that inhibition of STAT5A 
restored the sensitivity of colorectal cancer cells to the cyto-
toxic drugs cisplatin and 5‑fluorouracil (44). Therefore, the 
high levels of STAT5A observed in the present study may be 
involved in cyclophosphamide resistance in CML cells. FYN 
is an Src family kinase and a non-receptor tyrosine kinase. 
Therefore, FYN is able to phosphorylate tyrosine residues on 
key targets associated with multiple signaling pathways. The 
initial biological functions of FYN are focused on immune and 
neurological function. However, FYN is also involved in cell 
cycle, growth, proliferation, cell-cell adhesion and cell migra-
tion. FYN is overexpressed in a variety of cancers, including 
glioblastoma, melanoma and prostate cancer. Dasatinib 
is known to inhibit FYN activation and has been tested in 
pre-clinical and clinical trials for cancer treatment (45). A 
previous study has demonstrated the involvement of FYN in 
tamoxifen resistance in breast tumors. Overexpression of FYN 
in tamoxifen-sensitive cells impaired sensitivity in response 
to tamoxifen treatment (46). In addition, siRNA-mediated 
knockdown of FYN restored sensitivity to imatinib, a tyrosine 
kinase inhibitor, in CML cells (47). These reports supported 
the results of the present study, that highlighted FYN as one 
of the targets responsible for cyclophosphamide resistance. 
SYK is also a non-receptor tyrosine kinase, and is involved in 
intracellular signal transduction processes. It is important for 
immune and inflammatory responses, as well as cell survival 
in multiple cancers. SYK has been considered an interesting 
molecular target, and development of SYK inhibitors has been 
used to treat these pathologies (48). There remain no reports 
confirming the involvement of SYK in cyclophosphamide 
resistance, but SYK has been demonstrated to be associated 
with nilotinib resistance in CML cells (49). This network 
analysis provides valuable information on several potential 
genes that may be involved in cyclophosphamide resistance.

In addition, 5 genes were selected to validate their mRNA 
expression levels in 2 human CML cell lines (K‑562 and 
KU812). The expression levels of the 5 genes were in line with 
those from the microarray experiments in the present study, 
including SYK, ALDH2, MDK, STAT5A and S100A4, further 
confirming the important association between expression of 
these genes and drug resistance.

To further evaluate whether increased levels of these 
genes was functionally important for cyclophosphamide 
resistance, siRNA was used to inhibit the expression of two 
highly expressed genes, STAT5A and S100A4, in K‑562 cells. 
The survival of cells following treatment with 4-HC was 
subsequently determined. The results demonstrated that 4‑HC 
significantly decreased cell survival in the siSTAT5A and 
siS100A4 group, while the siControl group exhibited relative 
resistance to 4-HC treatment. Therefore, high expression of 
STAT5A or S100A4 in CML cells was important for cyclophos-
phamide resistance.

In conclusion, microarray technologies were used to 
comprehensively analyze simultaneous changes in gene 
expression between cyclophosphamide-sensitive and resistant 
CML cells, and several potential genes related with cyclo-
phosphamide resistance were identified. Further functional 
validations were also performed, and revealed that STAT5A 
and S100A4 conferred resistance to cyclophosphamide 
to CML cells. These findings provide novel insights into 

cyclophosphamide resistance in CML cells. The genes iden-
tified in the present study may also help to predict resistant 
mechanisms for other drugs, as biomarkers. It may be possible 
to use inhibitors of resistance genes in combination with 
drugs to enhance therapeutic efficacy in the future, resulting 
in improved chemotherapy strategies for patients with cancer.
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