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Abstract. The progression of glioblastoma (GBM) is driven 
by dynamic alterations in the activity and connectivity of 
gene pathways. Revealing these dynamic events is necessary 
in order to understand the pathological mechanisms of, and 
develop effective treatments for, GBM. The present study 
aimed to investigate dynamic alterations in pathway activity 
and connectivity across radiotherapy and chemoradiation 
conditions in GBM, and to give system-level insights into 
molecular mechanisms for GBM therapy. A total of two differ-
ential co-expression networks (DCNs) were constructed using 
Pearson correlation coefficient analysis and one sided t-tests, 
based on gene expression profiles and protein‑protein interac-
tion networks, one for each condition. Subsequently, shared 
differential modules across DCNs were detected via signifi-
cance analysis for candidate modules, which were obtained 
according to seed selection, module search by seed expansion 
and refinement of searched modules. As condition‑specific 
differential modules mediate differential biological processes, 
the module connectivity dynamic score (MCDS) was imple-
mented to explore dynamic alterations among them. Based on 
DCNs with 287 nodes and 1,052 edges, a total of 28 seed genes 
and seven candidate modules were identified. Following signifi-
cance analysis, five shared differential modules were identified 
in total. Dynamic alterations among these differential modules 
were identified using the MCDS, and one module with signifi-
cant dynamic alterations was identified, termed the dynamic 
module. The present study revealed the dynamic alterations 
of shared differential modules, identified one dynamic module 
between the radiotherapy and chemoradiation conditions, and 

demonstrated that pathway dynamics may applied to the study 
of the pathogenesis and therapy of GBM.

Introduction

Glioblastoma (GBM) is the most common and aggressive 
form of human primary brain malignancy, with ~17,000 diag-
noses/year (1). GBM is associated with poor prognosis and a 
lack of effective therapeutic options, due to the impracticality 
of extensive tumor resection and poor drug delivery in the 
brain (2). Recently, combined chemoradiation, using concomi-
tant and adjuvant temozolomide and radiotherapy, has been 
used with a modest degree of efficacy (3). High-throughput 
genomic data derived from patients with GBM are read-
ily-available for analyses aiming to identify biomarkers for 
measuring therapeutic efficacy (4).

Identification of a target gene in tumors is often compli-
cated by broad genomic copy number aberrations, multiple 
mechanisms of activating and inactivating genetic and 
epigenetic alterations, and the complexity of pathway regula-
tion (5). Target-gene identification may be confounded by 
contaminating non-tumor cells or the molecular heterogeneity 
of the tumor (6). Genes do not act in isolation; it is necessary to 
elucidate and annotate all functional interactions among genes 
in the cell to understand cellular functions (7). Therefore, 
identifying pathways or modules may be a useful and reliable 
approach, and is a good choice to elucidate the pathological 
mechanism of GBM. As genes in the same pathway tend to 
exhibit correlated expression, analyzing the co-expression 
network is an effective strategy. In the present study, multiple 
differential co-expression networks (DCN) were applied to 
investigate multiple differential modules of GBM in radio-
therapy and chemoradiation conditions.

Pathway dynamics may be attributed to alterations in 
gene expression and connectivity among genes (i.e. pathway 
rewiring). The latter has previously been demonstrated to serve 
a role in disease progression and treatment responses (8,9). 
However, few studies have focused on pathway dynamics in 
the treatment of GBM. Therefore, the present study aimed to 
detect dynamic differential modules across radiotherapy and 
chemoradiation conditions in GBM. Dynamic alterations and 
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connectivity were evaluated using the module connectivity 
dynamic score (MCDS). Dynamic modules were identified, 
which provided insights into the molecular mechanisms of 
treatment for GBM.

Materials and methods

Gene expression profile. In the present study, the gene 
expression profile E‑GEOD‑7696 (4,10) for GBM and normal 
samples was obtained from the ArrayExpress database  
(ebi.ac.uk/arrayexpress). E-GEOD-7696 was composed of four 
healthy samples, 28 GBM samples treated with radiotherapy, 
and 52 GBM samples treated with chemoradiation. In order 
to control the quality of the data, standard data preprocessing 
was performed, consisting of background correction using 
the Robust Multi-array Average algorithm (11), normalization 
based on the quantiles method (12) and probe match using 
the Micro Array Suite algorithm (13). Each probe ID was 
mapped to the gene symbol using the annotate package (14) 
and screened using the feature filter method to discard dupli-
cated genes (15). A total of 20,545 genes were identified for 
subsequent analysis.

Construction of multiple DCNs. For each condition, DCN 
construction consisted of two steps: Constructing a binary 
co-expression network (BCN), and assigning a weight to each 
edge in the BCN based on differential gene expression between 
each treatment condition and normal condition.

BCN. A protein-protein interaction (PPI) network was 
extracted from the human STRING database (16), which was 
composed of 787,896 interactions among 16,730 genes. By 
taking intersections with the gene expression data, a sub-PPI 
network was generated, including 15,130 genes and 725,216 
interactions. In order to evaluate the co-expression probability 
of gene pairs, the Pearson correlation coefficient (PCC) (17) 
was implemented to assess the edge scores in the PPI network, 
and the absolute value of PCC for an interaction was denoted to 
be Δ. Genes with interactions of Δ≥0.8 were selected to build 
the BCN. In order to facilitate the analysis and comparison 
among different conditions, the intersected interactions with 
Δ≥0.8 in the different conditions were selected. For the BCNs 
in different conditions, the genes were the same although the 
number of edges and their scores were different.

Weight assignments. A weight value was assigned to each 
edge in the BCN based on the differential gene expression 
between each treatment and the normal condition. Prior to 
weight assignment, the q value of differential gene expression 
between each treatment condition (radiotherapy and chemo-
radiation) and the normal condition was calculated using a 
one-sided t-test (18). A weight was subsequently assigned to 
each edge based on the q value. The weight Wi,j on edge (i,j) in 
the co‑expression network was defined as follows:

Where qi and qj stood for the q value for genes i and j, respec-
tively; S was the node set of the co-expression network; and 
PCC (i,j) represented the absolute value of the PCC between 
genes i and j based on their expression profiles.

Following the BCN and weight assignment steps, higher 
weight values were assigned to the co‑expressed and signifi-
cantly differentially‑expressed genes. A total of two specific 
DCNs were identified in GBM, one for the radiotherapy condi-
tion and one for the chemoradiation condition. Mathematically, 
for the two DCNs, the node sets were the same, although the 
edge sets were different due to the different weights.

Extraction of multiple differential modules from multiple 
DCNs. The multiple differential module algorithm was based 
on seed gene expansion and significance analysis, consis-
tent with a previous study identifying gene modules across 
multiple co-expression networks (19). The schema consisted of 
four steps: Seed selection; module search by seed expansion; 
refinement of candidate modules; and significance analysis for 
candidate modules.

Seed selection. The seed selection step ranked genes in two 
specific DCNs according to the topological feature of the 
gene in the network. For each DCN, G=(S,T), the adjacency 
matrix was expressed as A=(aij). A function, g, was used and 
the importance of gene i in the corresponding network was 
assessed, g(i) (20).

And

Where A'ij stood for the degree normalized weighted 
adjacency matrix; D was a diagonal matrix with element  

, j belonging to N(i), which was the set of neighbors of 
i in G. The equation indicated that the importance of a node 
depended on the number of neighbors, the strength of the 
connections and the importance of the neighbors. Subsequent 
to calculating the ranks of a node in two individual networks, 
a z-score for each rank was computed (21). The gene rank was 
obtained by averaging the z-scores across two DCNs and the 
top 10% of genes were selected as seed genes.

Module search by seed expansion. A graph entropy-based 
objective function (ΔE) was used to assess the scale of a 
module search starting with a seed gene (22). The seed gene (x) 
was taken as a module O={x}, and the new candidate module 
as O'=O ∪{y}. For each vertex y in its neighborhood in all 
networks, N(x) =UiNi(x), y є N(x) was defined, in which  Ni (x) 
was the neighbor set in Gi as the candidate for M. The entropy 
decrease between O and O' was evaluated as follows:

of which
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Where  was the sum of all the vertices in O 
and network k; and Oi (1≤i≤τ) was the group of modules 
being sought where τ was the number of modules. E(O') was 
calculated similarly. ΔE(O', O)>0 indicated that the addition 
of vertex y improved the connectivity of the former candidate 
modules. The vertex y whose addition maximized ΔE was 
added to O. The searching process was not terminated until 
there was no decrease subsequent to adding genes iteratively, 
leading to the maximum decrease in ΔE. Following this 
process, candidate modules were identified in two DCNs.

Refinement of candidate modules. During this step, candi-
date modules with a gene size of <5 were removed due to 
poor connectivity. In addition, the large number of candidate 
modules may have led to overlap between them; the Jaccard 
index (23) was used to refine the overlap between candidate 
modules. In the present study, a Jaccard index of 0.5 was 
utilized.

Significance analysis for candidate modules. The statistical 
significance of candidate modules from two specific DCNs 
was computed on the basis of the null score distribution 
of the candidate modules, generated using randomized 
networks. Each randomized network was composed of edges 
captured from the specific PPI network, and the number 
of edges was the same in the randomized network and the 
DCN. Using degree‑preserved edge shuffling, each network 
was completely randomized 100 times. A module search was 
performed for the randomized networks in order to identify 
the module scores. Subsequently, the empirical P-value of a 
module was defined as the probability of the module exhib-
iting the observed score or less by chance. P-values were 
corrected using the Benjamini-Hochberg method (24), and 
candidate modules with P<0.05 were considered to be differ-
ential modules between each of the treatment and normal 
conditions.

Connectivity dynamics of shared differential modules. Due to 
condition‑specific differential modules exhibiting differential 
activities and mediating differential biological processes, 
the module connectivity dynamic score (MCDS) was imple-
mented to explore dynamic alterations among them (25). The 
overall MCDS of a differential module was defined as the 
average MCDS of all pairwise comparisons. The statistical 
significance of MCDS for a differential module was computed 
in a similar way as that for candidate modules. If the MCDS 
for a differential module had P<0.05, it was denoted to be a 
dynamic module with increased dynamic alterations.

Results

Analysis of pathway dynamics is a novel approach in GBM. 
An important innovation in the present method was the ability 
to identify shared differential modules from two specific 
DCNs, each of which represented a different perturbation 
condition. There were two conditions of GBM (radiotherapy 
and chemoradiation) in the present study. Therefore, two 
DCNs and two group differential modules were obtained for 
the two conditions, compared with the normal condition.

Construction of DCNs. For each treatment condition, the gene 
co-expression for the PPI (including 15,130 genes and 725,216 
interactions) was calculated based on the PCC, and gene 
pairs with Δ≥0.8 were considered significantly co‑expressed 
and used to build the BCN. A weight value was assigned to 
each edge in the BCN based on differential gene expression 
between radiotherapy/chemoradiation and the normal condi-
tion. A total of two condition‑specific DCNs with 287 nodes 
and 1,052 edges were constructed in GBM, one for the radio-
therapy condition (Fig. 1A) and one for the chemoradiation 
condition (Fig. 1B). These DCNs exhibited the same node sets, 
although the weights of edges were different. The frequency 
distribution of edge weights between the two conditions is 
presented in Fig. 2. In the chemoradiation-specific DCN, 
the average weight (0.0801) was decreased compared with 
the radiotherapy condition (0.0997). Out of 1,052 edges, 89 
exhibited increased weight values and 956 exhibited decreased 
weights in the chemoradiation condition compared with the 
radiotherapy condition, and the weights of seven edges were 
the same in the two conditions.

Identification of shared differential modules. In the present 
study, a systemic differential module algorithm was employed 
to identify the shared differential modules across radiotherapy 
and chemoradiation conditions in GBM. According to the 
topological properties of the importance of genes and the 
rank of genes across two DCNs (calculated by averaging 
the z-scores), a total of 28 seed genes were obtained and are 
presented in Table I. The top rank seed gene was solute carrier 
family 17 member 7 (z-score=21.797). A module search by seed 
expansion was carried out based on the entropy decrease ΔE  
(O, O') between O and O', and a total of seven shared candidate 
modules were detected following refinement with the Jaccard 
index ≥0.5 in the two conditions.

In order to calculate the statistical significance of the seven 
shared candidate modules across the two conditions, the null 
score distribution analysis was performed. A randomized 
network with 1,052 edges was constructed in order to examine 
the modules, and a total of 1,846 modules were obtained. 
Candidate modules which met the threshold of P<0.05 were 
regarded as differential modules, and five shared differential 
modules were identified (Fig. 3). It was observed that the 
weights of the five shared differential modules in the two 
conditions were different. The properties of the five differen-
tial modules are presented in Table II.

Connectivity dynamics of shared differential modules. As 
component modules share the same set of genes between two 
DCNs, although they may differ in their connectivity, MCDS 
was used to capture dynamic alterations in the shared differen-
tial modules and the significance of the MCDS was calculated. 
Among the five shared differential modules, only one exhibited 
a significant dynamic alteration between the radiotherapy and 
chemoradiation conditions (P=0.0436; Fig. 4). Consequently, 
this module was denoted to be a dynamic module.

Discussion

Networking is able to provide significant instructions for 
mining unknown connections in incomplete networks. 
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Although the availability of data on large-scale protein inter-
actions is increasing with the development of high throughput 
testing technology, certain important interactions are rarely 
studied, including significant pathways (26). This may be 
resolved to some extent by utilizing modules of the complex 
network (27). However, from a systems biology outlook, 
diseases are caused by perturbations of the gene network and 
such perturbations dynamically alter the disease process (25). 
Therefore, the present study investigated dynamic alterations 
in module activity and connectivity across the radiotherapy 
and chemoradiation conditions of GBM.

The present method presents an opportunity to study the 
dynamics of gene modules in ≥2 conditions, and the MCDS 
metric is able to distinguish between dynamic and static 
shared differential modules. The dynamic module identi-
fied in the present study differed from the others in multiple 
aspects, including their topological properties. In particular, 

Figure 1. Graphical representation of differential co‑expression networks in glioblastoma. (A) Radiotherapy condition and (B) chemoradiation condition. 
Nodes represent genes and edges represent interactions between them. The width of an edge represents the weight between two genes.

Figure 2. Weight frequency distribution of gene physical interactions 
in radiotherapy- and chemoradiation-specific differential co-expression 
networks in glioblastoma.
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the activity and connectivity of the dynamic module was 
correlated with alterations in the different tumor conditions, 
suggesting that dynamic modules may serve a more important 
role during the treatment of tumor progression. Therefore, the 
study of pathway dynamics may lead to novel insights into 
tumor pathogenesis and therapy.

In the present study, two DCNs were constructed, five 
shared differential modules identified, and one dynamic 
module identified with increased dynamic alterations in activity 
and connectivity, across the radiotherapy and chemoradiation 
conditions in GBM. In the two DCNs, the number of nodes and 
edges were the same, although the weights were different; this 
was additionally observed in the shared differential modules 
across the radiotherapy and chemoradiation conditions. By 
applying MCDS and the significance analyses, one dynamic 
module with nine nodes and 13 edges was identified, of which 
dynein axonemal assembly factor 1 (DNAAF1) and zinc finger 
MYND type-containing 10 (ZMYND10) were the seed genes. 
DNAAF1 was the start seed gene and ZMYND10 exhibited the 
highest degree. ZMYND domain-containing proteins are a 
protein family whose members are associated with transcrip-
tional regulators and may modulate the process of malignant 

transformation (28). As a member of the ZMYND family, 
ZMYND10 has been demonstrated to localize to the cyto-
plasmic puncta in respiratory epithelial cells and to regulate 
transcription of dynein proteins (29). In addition, ZMYND10 
has been demonstrated to act as a tumor suppressor, arresting 
the cell cycle at the G1 phase, downregulating cyclin D1 
promoter activity and inhibiting the clonogenic growth of 
nasopharyngeal carcinoma cells (30). It has been reported 
that methylation of β-catenin in lung cancer/ZMYND10 was 
detected in >95% of primary glioma tumors (28). Therefore, 
it is hypothesized that ZMYND10 may be associated with the 
treatment of GBM. Future studies will investigate the associa-
tion of the dynamic module identified in the present study with 
the treatment of GBM.

In conclusion, the present study investigated the dynamic 
alterations of module activity and connectivity, and identified 
1 dynamic module across the radiotherapy and chemoradiation 
conditions in GBM, which provides insights into the molecular 

Figure 3. Shared differential modules in the radiotherapy and chemoradiation 
conditions. (A-a) Module 1 radiotherapy condition, (A-b) module 1 chemo-
radiation condition, (B-a) module 2 radiotherapy condition, (B-b) module 
2 chemoradiation condition, (C-a) module 3 radiotherapy condition, (C-b) 
module 3 chemoradiation condition, (D-a) module 4 radiotherapy condition, 
(D-b) module 4 chemoradiation condition, (E-a) module 5 radiotherapy 
condition and (E-b) module 5 chemoradiation condition. Nodes represent 
genes and edges represent interactions between them. Yellow nodes represent 
seed genes. The width of an edge represents the weight between two genes.

Table I. Seed genes and their average z-scores in differential 
co-expression networks.

No. Seed gene Average z-score

  1 SLC17A7 21.797
  2 GAD2 21.693
  3 CPLX2 18.762
  4 CCK 17.799
  5 SLC12A5 14.862
  6 PACSIN1 11.924
  7 SYN1 11.897
  8 CHGA 11.799
  9 GABRA1 10.869
10 CORO1A 6.718
11 CD53 6.685
12 TYROBP 6.253
13 UNC13C 5.989
14 PDYN 5.701
15 STX1A 4.964
16 CACNG3 3.985
17 LAPTM5 3.973
18 LY86 3.935
19 ARHGAP9 3.593
20 C3AR1 3.448
21 GMFG 3.164
22 HCK 3.091
23 CYBA 3.036
24 DPT 3.026
25 DNAAF1 2.959
26 HCLS1 2.771
27 PSMD10 2.750
28 ZMYND10 2.737
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mechanism of GBM treatment and potential biomarkers for 
the therapy of GBM.
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