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Abstract. The aim of the present study was to investigate the 
prognostic value of genes that participate in the development 
of gastric adenocarcinoma, via exploring gene cross talk in 
disease‑related pathways. Differentially expressed genes 
(DEGs) in the gastric samples were identified by analyzing 
the expression data downloaded from the GEO database. 
The DEGs were subjected to the human protein‑protein 
interaction (PPI) network to construct the PPI network of 
DEGs, which was then used for the identification of key 
genes in cancer samples via the expression deviation score 
and degree in the network. A total of 635 DEGs, including 
432 downregulated and 203 upregulated ones were screened 
in the gastric adenocarcinomas samples. The PPI network of 
DEGs comprised 590 DEGs and 4,299 interaction pairs. A 
total of 200 key genes were obtained, which were significantly 
enriched in six downregulated and six upregulated pathways. 
Cross talk genes in the connected pathways were analyzed, 
and the Kyoto Encyclopedia of Genes and Genomes pathways 
hsa00980 (Metabolism of xenobiotics by cytochrome P450) 
and hsa00982 (Drug metabolism) were reported to share 
8 cross talk genes: ADH7, ALDH3A1, GSTA1, GSTA2, 
UGT2B17, UGT2B10, ADH1B and CYP2C18. Among all 
cross talk genes, ADH7, ALDH3A1 and CLDN3 were the 
most specific genes. The high‑ and low‑risk samples identified 
by the prognosis model presented a remarkable difference in 
total survival time, indicating its robustness and sensitivity 
as the prognosis genes for gastric adenocarcinoma. ADH7, 
ALDH3A1, GSTA1, GSTA2, UGT2B17, UGT2B10, ADH1B, 
CYP2C18ADH7, ALDH3A1 and CLDN3 may be used as the 
prognosis markers and target biomarkers for chemotherapies 
in gastric adenocarcinoma.

Introduction

Gastric cancer affects ~1 million people every year, and 
70‑85% of them will die within 5  years following diag-
nosis (1). Gastric adenocarcinoma is one of the leading causes 
of cancer related death worldwide, even though there is a rapid 
development of medical technology, with a higher incidence in 
Asian countries, including China (2). A high‑salt diet, infec-
tious agents and smoking are the environmental risk factors 
for gastric adenocarcinoma (3). Although resection could be 
curative, the prognosis of gastric adenocarcinoma patients at 
advanced stage is still very poor following radical resection 
and surgical treatment (4,5). Therefore, it is urgently needed 
to identify the prognostic and predictive biomarkers or models 
to develop the most effect methods to improve the clinical 
outcome in gastric adenocarcinoma.

The contribution of genetic alterations to the initiation and 
development of gastric cancer have been reported in many 
studies. For example, TGR5 is overexpressed in most gastric 
intestinal‑type adenocarcinomas  (6). The upregulation of 
CD24 is correlated with venous invasion, lymphatic invasion 
and lymph node metastasis of gastric carcinoma (7). Expression 
levels of ABCB1, ABCG2 and CD133 are correlated with the 
differentiation degree of gastric cancer (8). The connections 
between genetic variation and the prognosis status of gastric 
adenocarcinoma patients have also been explored, and the 
overexpression of HER2 and EGFR were identified as the 
prognostic factors in gastric cancer (9). HER3 expression was 
associated with the decreased survival of gastric cancer, acting 
as a prognosis factor for patients at the advanced stage (10). 
Tumoral FOXP3 expression in gastric adenocarcinomas is 
reported to be related with the favorable clinicopathological 
variables (11). Although these studies have identified some 
prognosis genes in stomach cancer, the demand for more prog-
nostic biomarkers remains to be met for developing targeted 
therapies.

During the development of cancers, certain genetic changes 
will lead to the functional abnormality of related pathways, 
which may influence other pathways and result in a progression 
of cancer. Cross talk genes refer to the genes that connecting 
two or more pathways, in which the abnormality of one pathway 
can be passed to another because of these genes. The cross talk 
between EPAS‑1/HIF‑2α and the PXR signaling pathway were 
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reported as the regulatory factor for multi‑drug resistance of 
stomach cancer cell (12). The SKP2 gene was demonstrated to 
regulate cancer progression by participating in the cross talk 
with other major cancer signaling pathways (13,14). Moreover, 
the STAT3 gene is reported to interact with the SKP2/p27/p21 
pathway to regulate the invasion and motility of gastric cancer 
cells (15).

To explore potential novel biomarkers for the treatment 
and prognosis of gastric adenocarcinoma, microarray data of 
gastric adenocarcinomas were screened and downloaded from 
GEO and TCGA databases, and the cross talk between genes 
was analyzed in disease‑related pathways.

Materials and methods

Microarray data. Gene expression microarray data 
(GSE13861) were downloaded from GEO (Gene Expression 
Omnibus) database (https://www.ncbi.nlm.nih.gov/geo/), 
including 65 primary gastric adenocarcinomas samples, 
16 interstitial gastric adenocarcinoma samples and 
19 surrounding normal fresh frozen tissues. Gene annotation 
data were also downloaded from Illumina HumanWG‑6 v3.0 
expression beadchip (https://www.ncbi.nlm.nih.gov/geo/query/ 
acc.cgi?acc=GPL6884). Only gastric adenocarcinomas 
samples and surrounding normal samples were analyzed in 
following analysis.

Data normalization. Microarray data were transformed into 
gene symbols, and the average expression values were used as 
the expression levels of genes. The Z‑score method (16) was 
applied for data normalization and the expression variations 
of genes in cancer samples were also extended by this method.

Differentially expressed genes screening. The BioConductor 
version 1.6 (R‑2.1) Limma package  (17) (http://www. 
bioconductor.org/packages/release/bioc/html/limma.html) 
was utilized for the screening of differentially expressed 
genes (DEGs) between gastric adenocarcinomas samples 
and surrounding normal samples. False discovery rate (FDR) 
<0.01 and |logfc|>1.2 were the cut‑off criteria.

Protein‑protein interaction network. The protein‑protein 
interaction (PPI) pairs were downloaded from BioGrid 
(http://thebiogrid.org/) and HPRD (http://www.hprd.org/) 
database, which were then overlapped to obtain the whole 
human PPI network. Next, the proteins, which are correlated 
with at least 3 DEGs in the human PPI network were screened, 
and these proteins and their interactions were visualized in the 
PPI network of DEGs.

Topological analysis. The topological properties of both the 
human and DEG PPI network were analyzed using the Cytoscape 
software version 3.4.0 (http://www.cytoscape.org/)  (18), 
including nodes' degree, average shortest path, network 
centrality, eccentricity and topological factors. The topological 
property differences between these two PPI network were 
compared.

Key gene selection in PPI interaction network. Key genes 
among the DEGs were selected according to the deviation 

score and degree in the PPI network. To calculate the 
deviation score, the expression interval I (average expression 
value + standard deviation (SD), average expression value‑SD) 
of each gene was firstly defined according to their expressions 
in normal samples. If the expression of a gene is beyond the 
interval of I, this gene will be considered to be key genes 
involved in gastric adenocarcinomas. The extra expression 
value of the gene will be next used for the calculation of 
deviation score. The formula for the deviation computing is 
listed as below:

di represents the gene expression value of sample i, and, if di 

is larger than average expression value + SD, then the value 
of d will be recorded as average expression value + SD; if di 

is lower than average expression value‑SD, then, the value of 
d will be recorded as average expression value‑SD. The score 
was normalized to the range of 0‑10 by using distance. Degree 
was normalized by using the log2 value. Finally, W was calcu-
lated to get the rank of genes.

Genes with higher deviation score and node degree in the 
PPI network have much more important roles in the gastric 
adenocarcinoma samples, and they will be recognized as the 
key genes. In this analysis, the genes with W rank of the top 
100 and last 100 will be selected at the key genes.

Pathway enrichment and hierarchical clustering. The key 
genes with the top 50  W scores were conducted KEGG 
pathway enrichment using DAVID (https://david.ncifcrf.
gov/) (19). The KEGG pathway is a collection of manually 
drawn pathway maps representing data regarding the 
molecular interaction and reaction networks, including 
metabolism, genetic information processing, environmental 
information processing, cellular processes, organismal 
systems, human diseases and drug development (www.
genome.jp/kegg/pathway.html). The FISHER hypergeometric 
distribution test (20) was applied, P<0.05 was the threshold. 
The significant pathways were then performed hierarchical 
clustering analysis, the changes of pathways (the pathscore) 
in every sample was presented by gene expression in the 
pathways. The pathscore was computed using the following 
formula.

m represents the upregulated genes and n represents the 
downregulated genes in pathway p, while represents the 
average expression level of upregulated gene i or down‑regu-
lated gene j in normal samples. The deviation of pathway 
in cancer samples was calculated using Euclidean Distance, 
pathscore is the log value of pathway deviation. Pathscores 
larger than 0 represent the upregulation of the pathway, 
while the lower than 0 represents the downregulation of 
the pathway. The hierarchical clustering of pathways was 
conducted using the correlation center method, as previously 
described (21).
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Pathway correlation analysis and identification of cross 
talk genes. The correlations between pathways were 
calculated using the Spearman's rank correlation analysis, 
and the pathways that were positively connected and 
negatively connected were collected separately. Following 
that, the cross talk genes between connected pathways were 
identified.

Prognosis gene screening. The cross talk genes among 
connected pathways were used for the construction of prognosis 
model via the Random Forests algorithm. For the testing of 
the prognosis model, all samples were divided into 10 parts, 
in which nine parts of samples were used as the training set, 
and the left one part of samples was used for the validation 
set of the model. After 10 times' testing and validation, the 
ROC (receiver operating characteristic) curve was drawn 
to evaluate the ability of classification and the robust of the 
prognosis model. The precision, recall rate and F1‑score were 
calculated to assessed the accuracy of the model. The F1 score 
was computed using the following formula: �������������F1=2x (preci-
sion x recall)/(precision + recall).

Prognosis gene validation in TCGA database. The expression 
profiles of 287 gastric adenocarcinoma samples, along with 
the clinical data were downloaded from the TCGA database 
(tcga‑data.nci.nih.gov) for the validation of the prognosis 
model. The samples were considered as high risk if at least 
one cross talk gene was differentially expressed, whereas the 
samples with no differentially expressed cross talk genes were 
considered as low risk. Finally, the robustness and sensitivity 
of the cross talk genes were tested by comparing the survival 
curves of the high‑risk and low‑risk gastric adenocarcinoma 
samples.

Results

Differentially expressed genes. A total of 635 DEGs, including 
432 downregulated and 203 upregulated ones were screened in 
gastric adenocarcinomas samples comparing to surrounding 
normal samples. The distribution of P‑values and fold change 
was presented in Fig. 1.

Protein‑protein interaction network. The human PPI network 
was composed of 14,553 proteins and 662,360 interacting 
pairs, and, in the PPI network of DEGs there were 590 nodes 
(DEGs) and 4,299 lines (interactions) (Fig. 2).

Topological properties of PPI network. The distribution of 
node degree in the PPI network is presented in Fig. 3. It was 
observed that ‘4’ was the most common node degree. The 
curve of average shortest path, network centrality, eccentricity 
and topological coefficient presented >1 peak, indicating that 
there are multiple functional modules in the PPI network.

The topological properties of the human PPI network and 
DEG PPI network were compared (Table I), it is indicated that 
DEGs had a lower degree (3.86 vs. 7.01), eccentricity (5.43 
vs. 6.511) and betweenness centrality (0.0038 vs. 0.0049), longer 
average shortest path length (3.23 vs. 2.97) and topological 

Figure 1. Volcano plot of genes. The volcano plot indicates the magnitude 
of differential expression between gastric adenocarcinoma samples and 
surrounding normal samples. The horizontal line marks the threshold 
(P<0.01) to define one gene as upregulated (red) or downregulated (blue), 
combining the change >2 fold.

Table I. Topological properties comparison of DEG PPI 
network and human PPI net‑work.

	 DEG PPI	 Human PPI
Features	 network	 network

Degree	 3.8600	 7.0100
Eccentricity	 5.4300	 6.5100
Average shortest path length	 3.2300	 2.970
Closeness centrality	 0.3600	 0.3500
Topological coefficient	 0.2400	 0.1700
Betweenness centrality	 0.0038	 0.0049

DEG, differentially expressed genes; PPI, protein‑protein interaction.

Table II. Connected pathway numbers of the cross talk genes.

Cross talk	 Pathway	 Cross	 Pathway
gene	 number	 talk gene	 number

GSTA2 	 2	 ADH1B 	 3
UGT2B17 	 3	 ALDH3A1 	 2
UGT2B10 	 2	 COL4A1 	 2
ACAT1 	 2	 CLDN3 	 2
CLDN1 	 3	 ADH7 	 4
MCEE 	 2	 CLDN7 	 2
E2F3 	 2	 ADH1B CYP2C18	 3
		  CDK4
CLDN4 	 2	 CDK4 	 3

Table III. Support vector machine model report.

	 Precision	 Recall	 F1‑score

Cancer sample	 0.97	 0.94	 0.95
Normal samples	 0.82	 0.9	 0.86
Average/total	 0.93	 0.93	 0.93
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Figure 3. Topological properties of protein‑protein interaction network.

Figure 2. Protein‑protein interaction network. Differentially expressed genes are marked in purple, while the expanding genes are marked in orange.
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coefficient (0.238 vs. 0.17), as well as equal closeness 
centrality (0.357 vs. 0.35) compared to the normal human 
genes. All these changes suggested that in the PPI network, 

i) the contribution of genes became lower; ii) the specificity 
of the network was increased; iii) the signal conducting power 
among genes became weak.

Figure 4. Hierarchical clustering analysis of pathways. All gastric adenocarcinoma samples and normal tissue samples are on the x‑axis, while the significantly 
enriched pathways are on the y‑axis. The color changes from red to blue represent the changes from high score to low score of each pathway in the samples.

Figure 5. Correlation analysis of functional pathways. The bright yellow/orange represents the positive correlation between pathways, while dark blue represents 
the negative correlations.
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Key genes and the enriched pathways. In all, by calculating 
the deviation score and the log2 transformation of the degree, 
200 key genes were obtained. These genes had significant 
expression deviation from normal samples, while possessed 
higher degrees in the PPI network.

Pathway enrichment analysis reported six upregulated 
pathways and six downregulated pathways, which had no 
crossovers. The significant pathways were the cancer, cell cycle, 
cell apoptosis, immunity and metabolism‑related pathways, 
suggesting the underlying mechanism of the initiation and 
progression of gastric adenocarcinoma. The disorder of cell 
cycle may contribute the development of cancer and the 
abnormality of metabolism may be involved in the metastasis 
of cancer cells, disease recurrence and apoptosis escape.

Hierarchy analysis discovered that the pathscore of the 
12 significant pathways could distinguish cancer samples from 
normal samples. In addition, it is observed that the deviations 
of each pathways in cancer samples and normal samples 
shared similar changing trends (Fig.  4). The correlations 

between all these 12 pathways were visualized using a heatmap 
(Fig. 5). The genes existing in >1 pathways were the cross talk 
genes, and the differential expression of these genes imply 
the abnormality of the related pathways. The complicated 
connections of pathway‑gene and gene‑gene are displayed in 
Fig. 6, which comprised 52 nodes (12 pathways/44 genes) and 
111 lines (the relationship). Among their connection pairs, the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways 
hsa00980 (Metabolism of xenobiotics by cytochrome P450) 
and hsa00982 (Drug metabolism) shared eight cross talk genes: 
ADH7, ALDH3A1, GSTA1, GSTA2, UGT2B17, UGT2B10, 
ADH1B and CYP2C18. There were 17 genes that are involved 
in >1 pathway, including ADH7 (shared by four pathways); 
UGT2B17, CLDN1, ADH1B, CYP2C18, and CDK4 (shared by 
three pathways) (Table II).

Prognosis gene screening. A support vector machine 
prognosis model was constructed using the cross talk genes, 
and the ROC curve of five‑fold cross validation is presented in 

Figure 6. Pathway‑pathway connection network. Pathways are shown in green boxes, genes are in pink circles. The connected pathways of differentially 
expressed genes are linked by blue lines, while the correlated pathways are linked by orange lines. The size of each hub pathways/genes are the representatives 
of their degrees in the network.
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Fig. 7. It was observed that the lowest precision of the prediction 
was 0.85, and the average precision was 0.94, indicating the 
robustness and precision of the prognosis model. The model 
also exhibited a high recall rate and Fl‑score (Table III).

The classification ability of the cross talk genes to normal 
and cancer samples was also presented using a 3D visualization 
method (Fig. 8). Among all cross talk genes, ADH7, ALDH3A1 
and CLDN3 exhibited the most specific classification 
characteristics.

Moreover, the prognosis model was validated using other 
independent expression profiles downloaded from TCGA. The 
samples with at least one differentially expressed cross talk 
genes were defined as the high‑risk samples, while the samples 
with no differentially expressed cross talk gene were defined as 
the low‑risk samples. The survival curve of the high‑risk and 
low‑risk samples is presented in Fig. 9, and the result indicated 
that these two groups of samples were different significantly 
in total survival time (P=0.03), indicating its robustness and 
sensitivity as the prognosis genes for gastric adenocarcinoma.

Discussion

In the present study, a total of 635 DEGs were screened in the 
gastric adenocarcinoma samples, including 432 downregulated 
ones and 203 upregulated ones. The PPI network of DEGs 
were composed of 590 DEGs and 4,299 interaction pairs. A 
total of 200 key genes were identified, which were significantly 
enriched in six downregulated and six upregulated pathways. 
Cross talk genes in the connected pathways were then analyzed, 
and KEGG pathways hsa00980 (Metabolism of xenobiotics by 
cytochrome P450) and hsa00982 (Drug metabolism) shared 
8 cross talk genes: ADH7, ALDH3A1, GSTA1, GSTA2, 
UGT2B17, UGT2B10, ADH1B and CYP2C18. Among all 
cross talk genes, ADH7, ALDH3A1 and CLDN3 were the 
most specific. The high‑ and low‑risk samples identified by 
the prognosis model established by cross talk genes presented 
a remarkable difference in total survival time, indicating its 
robustness and sensitivity.

Correlates between expression of various metabolizing 
enzymes with risk of malignancies have been observed 
for many years (22). It was reported that the dysfunction of 
pathways hsa00980 (Metabolism of xenobiotics by cytochrome 
P450) and hsa00982 (Drug metabolism) would induce the 
drug resistance or adverse reaction during the chemotherapy 
for gastric adenocarcinoma by interrupting drug metabolism 
and promoting drug excretion (23‑25). These two pathways 
were demonstrated shared 8 cross talk genes, and they are 
the nodes in the pathway‑gene network with high degrees. 
Considering their close connection with other key genes and 
pathways involved in gastric adenocarcinoma, these genes 
and pathways may be the potential targets for the treatment. 
The prognostic roles of these 8 genes for normal samples and 
gastric cancer samples have been validated in the current 
study. Of all these genes, ADH7 and ADH1B belong to the 
alcohol dehydrogenase family, ALDH3A1 is from aldehyde 
dehydrogenase family, GSTA1 and GSTA2 are from the gluta-
thione transferase family, UGT2B17 and UGT2B10 are from 

Figure 7. ROC curve using five‑fold cross validation. ROC, receiver operating 
characteristic.

Figure 8. Sample 3D distribution. X, Y and Z axes represent the expression 
levels of the three genes.

Figure 9. Survival analysis of high‑ and low‑risk group of gastric adeno
carcinoma. Log rank test P‑value=0.0300. High risk group, cases with 
alteration(s) in query gene(s); Low risk group, cases without alteration(s) in 
query gene(s).



ZHAO et al:  POTENTIAL BIOMARKERS FOR GASTRIC ADENO-CARCINOMA 1239

the uridine diphosphate‑glucuronosyltransferase 2B family, 
and CYP2C18 is from the cytochrome P‑450IIC family. There 
are evidences proving the connections between these families 
and gastric adenocarcinomas (26‑30).

ADH7 (alcohol dehydrogenase 7), the gene expressed 
primarily in the upper gastrointestinal tract, is proved to be 
participated in the metabolism of xenobiotics by cytochrome 
P450: It is implicated in the metabolism of ethanol occurred 
in gastroesophageal tissues before the absorption in the 
blood  (31,32). Single nucleotide polymorphisms in ADH7 
are reported as a susceptible factor for cancer and drug 
dependence  (33). ALDH (aldehyde dehydrogenase) is the 
enzyme responsible for the oxidation of acetaldehyde, and it is 
reported that cancer cells exhibit a much greater capability in 
ethanol oxidation but less ability for its remove (26). A European 
study indicated the genetic variants at the loci of ADH1 and 
ALDH2 may influence GC risk (27). Jelski et al (34) suggested 
ADH and ALDH may be used as the candidate tumor markers 
in pancreatic cancer. The ADH1B*1 allele is proven to be 
associated with an increased risk of esophageal cancer (35). 
Besides the involvement in the metabolism of xenobiotics 
by cytochrome P450 and drug metabolism pathways, ADH7, 
ALDH3A1 and ADH1B were also the cross talk genes with the 
higher connections with pathways, suggesting the possibility 
for these genes to be used as the biomarkers for the diagnosis 
and prognosis of gastric adenocarcinoma.

Claudins (CLDNs) are the major tight‑junction proteins, 
which expressed at the apical membrane of epithelial cells. 
The main function of CLDNs is the control to paracellular 
permeability and the maintenance of epithelial polarity (36). 
The expression reduction or loss of CLDNs has been revealed 
to be able to promote the invasion and metastasis of malignant 
tumor cells, including the tumor in gastrointestinal tract (37,38). 
CLDNs are good biomarkers for the determination of the 
differentiation and aggressiveness of gastric cancer  (39). 
CLDN3 belongs to the CLDNs family, and it is expressed 
in metaplastic mucosa and gastric carcinomas  (40,41). 
Overexpression of CLDN3 has been recognized as a prognostic 
indicator for ovarian serous carcinomas (42). Jung et al (43) 
reported that CLDN3 is the most important indicator for the 
lymphatic invasion process in gastric cancer. Consistent with 
previous findings, CLDN3 was identified to be a classification 
gene for gastric adenocarcinoma in the present study.

The analysis on cross talk genes between dysfunctional 
pathways is useful in finding the potential biomarkers in 
cancer. ADH7, ALDH3A1, GSTA1, GSTA2, UGT2B17, 
UGT2B10, ADH1B, and CYP2C18 and CLDN3 may be used 
as the prognosis factors and target biomarkers for chemothera-
pies in gastric adenocarcinoma.
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