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Abstract. Hepatocellular carcinoma (HCC) is one of the 
leading causes of cancer-associated mortality worldwide. 
Hepatitis B virus (HBV) and hepatitis C virus (HCV) are 
two common risk factors for HCC. The majority of patients 
with HCC present at an advanced stage and are refractory 
to therapy. It is important to identify a method for efficient 
diagnosis at early stage. In the present study gene expression 
profile data, generated from microarray data, were pretreated 
according to the annotation files. The genes were mapped 
to pathways of Ingenuity Pathways Analysis. Dysregulated 
pathways and dysregulated pathway pairs were identified and 
constructed into individual networks, and a main network 
was constructed from individual networks with several edges. 
Random Forest (RF) classification was introduced to calculate 
the area under the curve (AUC) value of this network. Subse-
quently, 50 runs of Monte Carlo cross-validation were used to 
screen the optimal main network. The results indicated that a 
total of 4,929 genes were identified in the pathways and gene 
expression profile. By combining dysregulated pathways with 
Z<0.05 and dysregulated pathway pairs with Z<0.2, individual 
networks were constructed. The optimal main network with 
the highest AUC value was identified. In the HCV group, the 
network was identified with an AUC value of 0.98, including 
41 pairs of pathways, and in the HBV group, the network was 
identified with an AUC value of 0.94, including eight pairs 
of pathways. In addition, four pairs were identified in both 
groups. In conclusion, the optimal networks of HCV and HBV 
groups were identified with the highest AUC values. The use 

of these networks is expected to assist in diagnosing patients 
effectively at an early stage.

Introduction

Hepatocellular carcinoma (HCC) is one of the leading causes 
of cancer-associated mortality worldwide, particularly in men, 
being the second most frequent cause of cancer-associated 
mortality (1). Viral hepatitis, including hepatitis B virus 
(HBV) and hepatitis C virus (HCV), is a common risk factor 
for HCC (2,3). The majority of patients with HCC present at an 
advanced stage, and are refractory to chemotherapy and radio-
therapy (4,5). Understanding the mechanism of carcinogenesis 
is pivotal for the diagnosis of HCC (6). It has been shown that 
using screening procedures for diagnosing HCC results in 
improved survival rates for patients, compared with those with 
symptomatic disease at presentation (7).

Several biomarkers have been investigated for the diagnosis 
of HCC, including clinical, radiological and laboratory modali-
ties, with or without liver biopsy. The majority of patients with 
HCC are usually asymptomatic until the late stages. Generally, 
it is difficult to make a clinical diagnosis of HCC at an early 
stage due to the deep position of the liver within the body. The 
most frequently used HCC marker for diagnosis is the serum 
concentration level of α fetoprotein (AFP), the level of which 
is increased in patients with HCC (8). However, inconsistent 
sensitivity and specificity have been reported in AFP‑L3 in 
previous studies (9), therefore, it may not be a valuable prog-
nostic biomarker in patients with known HCC.

There has been significant progress in understanding 
the mechanism of HCC based on microarray technology, 
including differentially expressed genes, which can overcome 
the limitations of clinical prognostic factors (10). Several 
growth factors, including epidermal growth factor receptor, 
hepatoma-derived growth factor and insulin-like growth 
factor, have been reported to be involved in the progression 
of HCC (11,12). In addition, apoptotic genes, anti-apoptotic 
genes and tumor suppressor genes in have been identified in 
hepatocarcinogenesis (13,14). However, results have not been 
uniform and share only a limited number of potential genes.

To overcome the limitations of a gene-based approach, 
pathway analysis was introduced, which provides biological 
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information to facilitate characterization of the functional 
network and the associations between selected significant 
genes (15). Until now, a number of methods have been suggested 
to identify core pathways for diagnosis, including individual 
pathway aberrance score (iPAS) analysis (16) and principal 
component analysis (17). Although HBV- and HCV-infected 
HCC are not distinguishable in histological and clinical 
evaluations, microarray analyses have shown that different 
molecular mechanisms underlie the development of HBV- and 
HCV-positive HCC (15,17,18).

In the present study, pathway-based iPAS analysis 
with Random Forest (RF) classification and Monte Carlo 
cross-validation were used to identify pathway-based networks 
of HBV- and HCV-positive HCC. The disease datasets of HBV 
and HCV were compared with healthy data, generating different 
networks following 50 runs of Monte Carlo cross-validation. 
This method aimed to provide clinical molecular insights into 
the mechanism of HBV- and HCV-positive HCC.

Materials and methods

Gene expression data. Microarray gene expression data 
of E‑MTAB‑950 and its annotation files were downloaded 
from the ArrayExpress database (http://www.ebi.ac.uk/ 
arrayexpress) (19). This included 42 normal samples, 149 
HCV samples and 8 HBV samples. All software and hard-
ware analyses were provided by Honghui Biotech Co., Ltd. 
(Jinan, China). The gene expression profile data was gener-
ated from the A-AFFY-44-Affymetrix GeneChip Human 
Genome U133 Plus 2.0 platform (Affymetrix, Inc., Santa 
Clara, CA, USA), and the platform title was ‘Transcription 
profiling by array of human normal liver, HBV, HCV liver 
samples’. According to the platform annotation files, the 
probes were mapped to gene symbols. If more than one 
probe was mapped to a single gene, the average level of 
the probes was used as the final gene expression value. In 
total, 20,545 genes were obtained, and the gene expression 
levels were normalized with quantile normalization using 
the preprocess Core package version 1.36.0 (https://github.
com/bmbolstad/preprocessCore) (20).

Pathway data. Ingenuity Pathways Analysis (IPA) is a 
pathway database (http://www.ingenuity.com/), and pathways 
were downloaded from this database in the present study. In 
total, 589 biological pathways were obtained, including 5,169 
genes. The genes in the expression profile were mapped to the 
IPA pathways, from which 4,929 genes were obtained. With 
gene expression values in each pathway, Fisher's exact test was 
applied to evaluate the enrichment. P-values of the pathways 
were corrected by the false discovery rate of Benjamini-Hoch-
berg (21).

Gene level statistics. The mean and standard deviation of 
gene expression levels in the normal group were calculated 
following normalization (20). For the disease group, the 
genes in the pathways were normalized using the quantile 
normalization method on combining a single disease case 
with all normal samples. The gene level statistics of each gene 
in a disease case were standardized as the mean ± standard 
deviation.

Pathway level statistics. For each pathway, the gene level 
statistics of all the genes in the pathway were extracted. The 
mean gene level statistic was considered the pathway level 
statistic. The following formula was used, in which n repre-
sents the number of genes belonging to the pathway:

Assessment of significance. To assess the dysregulated 
pathways associated with the lesionedliver, significance was 
assessed. The mean ± standard deviation of the pathway level 
statistics in the normal samples was calculated. The signifi-
cance was determined to assess the pathway level statistics in 
the disease group, with the normal group as a reference. The 
Z value of a specific pathway in each sample was obtained. 
Z<0.05 was considered to indicate a dysregulated pathway.

Discriminating score (DS) of pathway pairs. To evaluate the 
associations between pathway pairs, aDS (22,23) was intro-
duced. The mean ± standard deviation of the expression level 
of genes belonging to a pathway in each sample was calculated. 
A pathway was randomly combined with another pathway, 
generating a pathway pair.

Significance assessment of pathway pairs. For each pathway 
pair in the normal sample, the mean ± standard deviation of 
the DS values was calculated. Significance was determined 
to assess differential pathway pairs following combining a 
disease sample with all normal samples, generating a Z value 
of each pathway pair in an individual sample. Z<0.2 was 
considered to indicate a differential pathway pair.

Network construction. Individual networks were constructed 
by combining dysregulated pathways and dysregulated 
pathway pairs in individual samples. The main network of 
HCV was constructed from individual networks in which 
edges appeared >5 times. The main network of HBV was 
constructed from individual networks, the edges of which 
appeared >1.

RF classification. In machine learning, RF is an important 
classifier, which contains a multi‑decision‑making tree. RF 
is an extension of a classification and regression tree, which 
builds a class prediction model using class-labeled input 
samples (24), and calculates a ranking of input variables 
ordered by the extent of association with classification (25). In 
the present study, the RF algorithm was introduced to evaluate 
the performance of the DS value in the main network. In this 
classification, two parameters were used: Number of variables 
randomly sampled as candidates at each split (mtry)= and 
number of trees grown (ntree)=500. The DS values of the 
pathway pairs in the main network were randomly divided 
into a training set and test set, followed by RF classification. 
The area under the curve (AUC) was estimated using a 10-fold 
cross-validation method.

Monte Carlo cross‑validation. To obtain the optimal network, 
Monte Carlo cross-validation (26) was performed using the 
expression profile data. Data were randomly divided into the 
training set and test set. The validation was processed from 



MOLECULAR MEDICINE REPORTS  16:  2411-2416,  2017 2413

procedure 2.2 to 2.5 and repeated 50 times. For each valida-
tion, the differential pathways and differential pathway pairs 
were identified, which were constructed into a new individual 
network and a main network, in addition to the AUC. When 
all 50 runs were completed, the main networks were ranked 
by the values of the AUC. The network with the highest 
AUC value was considered the optimal network. The optimal 
networks of HBV and HCV underwent contrastive analysis, 
and an intersection network was obtained.

Results

Pathway enrichment analysis. There were 20,545 genes in 
the gene expression profile. When the genes were mapped to 
589 IPA pathways, a total of 4,929 genes were identified in 
the pathways and gene expression profile. By ranking path-
ways with gene numbers, the top 4 pathways with the highest 
numbers of genes were determined, as listed in Table I.

Network analysis. By combining the dysregulated pathways 
with Z<0.05 and dysregulated pathway pairs with Z<0.2, indi-
vidual networks were constructed. The occurrence number of 
pathway pairs in the individual networks was recorded in 50 
runs of Monte Carlo cross-validation. In the HCV group, 15 
pathway pairs occurred >40 times with 5 pathway pairs occur-
ring 50 times, as shown in Fig. 1. In the HBV group, 8 pathway 
pairs occurred >40 times, with 1 pair occurring 50 times, as 
shown in Fig. 2.

A main network of HCV was constructed from the indi-
vidual networks whose edges appeared >5 times, and a main 
network of HBV was constructed from individual networks 
whose edges appeared >1. Following 50 runs of Monte Carlo 
cross-validation, 50 networks were constructed. By ranking 
the networks by their AUC values, the highest was considered 
the optimum main network.

In the HCV group, the optimal network contained 41 pairs 
of pathways, as shown in Fig. 3, and the AUC value was 0.98. 
In the HBV group, the optimal network contained 8 pairs of 
pathways, as shown in Fig. 4, and the AUC value was 0.94. 
Following comparative analysis, 4 pathway pairs were identi-
fied in the two groups, which are listed in Table II.

Discussion

Microarray analyses have indicated that different molecular 
mechanisms underlie the development of HBV- and 
HCV-positive HCC. To identify biomarkers in HBV- and 
HCV-positive HCC in the present study, a pathway-based 
approach was applied by combining iPAS analysis and Monte 
Carlo cross-validation.

The data from the present study indicated a similar 
mechanism in HCV and HBV. In the results of the Monte 
Carlo cross-validation, among pathway pairs, which occurred 
50 times, the pair ‘acetone degradatoin I’ and ‘Bupropion 
degradation’ was identified in both the HCV and HBV group. 
In the optimal main network, ranked by the AUC values,  
4 pathway pairs were present in the two groups.

There were more differences between HBV- and 
HCV-positive HCC at the pathway level. In the heatmap of 
pathway pairs, 4 more pairs were identified with an occurrence 

of 50 times in the HCV group. In the optimal main networks, 
with the exception of the 4 identical pathway pairs, 38 addi-
tional pathway pairs were identified in the HCV group and 4 
additional pathway pairs were identified in the HBV group.

In the HCV group, compared with thenormal control, 
HCV induced dysregulated biological pathways, including 
DNA damage response, hormone degradation, carbohydrate 
degradation, cell cycle, cholesterol biosynthesis, amino acid 
degradation and biosynthesis and signaling pathways. The 
main network with the highest AUC was considered optimal 
for diagnosing HCV-positive HCC. In the main network, 
the pathways connected with several other pathways were 
considered important. It is generally accepted that cholesterol 
biosynthesis is important in the production of HCV, and the 
targeting enzyme has been suggested as a potential antiviral 
strategy against HCV (27). The pathway of adenine and 
adenosine salvage VI was connected to 5 other pathways. 
A cluster of 10 adenines encodes a core protein from HCV, 
which is considered to direct programmed ribosomal frame 
shifting (28). In 2008, the involvement of transcriptional slip-
page in this recoding event was first demonstrated (29). The 
pathway of Melatonin degradation I was linked to 4 pathways. 
It has been demonstrated that melatonin has proapoptotic and 
antiangiogenic properties in HepG2 liver tumor cells (30), 
through a molecular mechanism involving the upregulation 
of TIMP metallopeptidase inhibitor 1, and attenuation of the 
expression and activity of matrix metalloproteinase-9 via 
nuclear factor-κB signal pathway inhibition. Therefore, the 
present study hypothesized that, in patients with HCV-positive 
HCC, its degradation-related pathway is downregulated. 
The pathway of bupropion degradation was also found to 
link with 4 other pathways. Bupropion is a commonly used 
an antidepressant. Previously it was found to exert marked 
anti‑inflammatory effects via downregulating tumor necrosis 
factor-α, interleukin-1β and interferon (IFN)-γ (31). It 
was demonstrated that bupropion was effective in treating 
IFN-α-induced depressive and somatic symptoms in patients 
with HCV infection (32).

In the present study, the optimal main network was screened 
in the HBV group, which included 8 pathway pairs, of which 
4 pairs were also present in the HCV group. In the remaining 
pathway pairs, the lipoate salvage and modification pathway 
had a higher number of edges, compared with the other path-
ways. It is generally accepted that α-lipoic acid has antioxidant 
and redox-regulatory properties. Due to these characteristics, 
it has been used for the treatment of liver disease (33). In 
addition, it has been shown to suppresses the proliferation of 
different types of tumor cell through facilitating apoptosis 
in breast cancer (34). In the present study, the lipoate-related 
pathway was closely connected with HBV, which provided 
novel insight into the therapy of HBV-positive HCC. In the 
networks, certain pathways have been investigated in previous 
studies, whereas others have received minimal attention and 
require further investigations for verification. In addition, with 
the exception of HBV and HCV diseases, network analysis for 
other liver associated diseases, including hemochromatosis 
on a background of cirrhosis and HCC liver samples, require 
clarification in future investigations.

In conclusion, the present study combined iPAS analysis 
with the RF classification and Monte Carlo cross‑validation to 
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identify pathway-based networks of HBV- and HCV-positive 
HCC. The optimal main networks of the HCV and HBV 

groups were identified with the highest AUC values. With 
these networks, it may be possible to diagnose patients effec-
tively at an early stage.

Figure 1. In the hepatitis C virus group, 15 pathway pairs occurred >40 times, 
with five pathway pairs occurring 50 times. The magenta dots represent 
pathway pairs determined at the validation procedure, while cyan dots repre-
sent non-pathway pairs.

Figure 2. In the hepatitis B virus group, eight pathway pairs occurred 
>40 times, with one pair occurring 50 times. The magenta dots represent 
pathway pairs determined at the validation procedure, while cyan dots repre-
sent non-pathway pairs. 

Table I. Ingenuity pathways analysis pathways overlapped with genes. Common genes indicated the number of genes belonging 
to the pathway and gene expression profile. 

 Genes in   Common
Pathway pathway (n) P-value FDR genes (n)

Axonal guidance signaling 421 <0.05 <0.05 408
Protein kinase a signaling 365 <0.05 <0.05 354
Molecular mechanisms of cancer 335 <0.05 <0.05 331
G‑protein coupled receptor signaling 254 <0.05 <0.05 248

Common genes indicate the number of genes belonging to the pathway and gene expression profile. FDR, false discovery rate.
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Figure 3. In the hepatitis C virus group, the optimal main network contained 41 pairs of pathways. Lines represent the pathway pairs. Blue nodes represent 
all the pathways in the validation procedure. The yellow nodes represent common pathway pairs in the main networks of hepatitis B and hepatitis C virus.

Figure 4. In the hepatitis B virus group, the optimal main network contained eight pairs of pathways. Lines represent the pathway pairs. Blue nodes represent 
all the pathways in the validation procedure. The yellow nodes represent common pathway pairs in the main networks of  hepatitis B and hepatitis C virus.

Table II. Common pathway pairs in the main networks of HBC and HCV.

Pathway A Pathway B Weight (HCV) Weight (HBV)

Salvage pathways of Pyridoxal 5'-phosphate 0.203549 0.19776
pyrimidine ribonucleotides Salvage pathway
ATM signaling Cyclins and cell cycle regulation 0.205993 0.205265
Alanine degradation III Alanine biosynthesis II 0.189711 0.191768
4‑hydroxybenzoate biosynthesis 4‑hydroxyphenylpyruvate biosynthesis 0.189711 0.191768

Weight score was calculated by the Z score method with units of 1. HBV, hepatitis B virus; HCV, hepatitis C virus.
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