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Abstract. Diabetes is commonly associated with liver lipid 
metabolism disorders. AMP‑activated protein kinase (AMPK) 
has a key role in regulating lipid metabolism. Grape seed 
procyanidin B2 (GSPB2), a natural polyphenol polymer, 
ameliorates mitochondrial dysfunction and inhibits oxida-
tive stress or apoptosis via AMPK pathways. In the present 
study, the hypothesis that GSPB2 treatment may ameliorate 
liver lipid metabolic disorders by activating AMPK and 
downstream pathways was tested in diabetic mice. Db/m 
mice were used as controls, and diabetic db/db mice were 
randomly divided into 2 groups for treatment: Vehicle and 
GSPB2 (30 mg/kg/day for 10 weeks). Animals were weighed 
every week. Fasting blood was collected prior to sacrifice to 
measure fasting blood glucose (FBG), triglycerides (TG) and 
total cholesterol (TC). Hepatic TG and free fatty acid (FFA) 
levels were analyzed. Hepatic sections were examined by 
light microscopy following hematoxylin and eosin staining. 
The expression of hepatic AMPK, phosphorylated acetyl‑CoA 
carboxylase (ACC), carnitine palmitoyl transferase 1 (CPT1) 
and 4‑hydroxynonenal (4‑HNE) was measured by western blot 
analysis. Liver mitochondria were isolated to assess electron 
transport complex I (CI), complex II (CII) and complex IV 
by high‑resolution respirometry. The results demonstrated 
that GSPB2 significantly decreased body weight and serum 
TG, TC and FFA levels, but not FBG levels in diabetic mice. 

GSPB2 visibly decreased lipid droplet accumulation in the 
liver and significantly reduced hepatic TG and FFA levels. In 
diabetic mice, GSPB2 restored liver AMPK and ACC phos-
phorylation, increased CPT1 protein expression, ameliorated 
lipid peroxidation damage, which was assessed by comparing 
4‑HNE levels, and partially restored the damaged mito-
chondrial respiratory capacity of CI and CII in the liver. In 
conclusion, long‑term oral treatment with GSPB2 may benefit 
hepatic lipid metabolism disorders, potentially by decreasing 
hepatic lipid synthesis and increasing hepatic FFA β‑oxidation 
via the AMPK‑ACC pathway.

Introduction

Diabetes has become a global health epidemic. In 2012, the 
economic burden of diagnosed diabetes was estimated to be in 
excess of $245 billion in the United States alone, representing 
a >40% increase in cost over 2007 estimates, with most of 
this burden attributed to the treatment and management of 
diabetes (1,2). Diabetes is commonly associated with lipid 
metabolism disorders and abnormal serum lipid levels, which 
accelerate the progression of diabetes and lead to atheroscle-
rosis and cardiovascular diseases (3,4), the primary causes of 
death in patients with diabetes. The liver has a pivotal role 
in regulating lipid metabolism, accounting for the production 
and degradation of fatty acid (FA), cholesterol, glycolipids, 
ketone bodies, phospholipids, steroids and triacylglycerols (5). 
Fatty liver disease is highly prevalent in patients with type 2 
diabetes mellitus (6). Increased circulating levels of free FAs 
(FFAs) lead to increased delivery of FFAs to the liver, which 
subsequently drive the synthesis of excess triglycerides (TG) 
in the liver; the accumulation of excess liver fat is worsened 
by impaired hepatic FA oxidation in patients with type 2 
diabetes  (5). Ameliorating hepatic lipid metabolism disor-
ders may be an effective way of improving whole‑body lipid 
metabolism, decelerating the progression of diabetes compli-
cations and improving the prognosis of patients with diabetes.

AMP‑activated protein kinase (AMPK), a heterotrimeric 
serine‑threonine kinase, is an important cellular energy sensor 
in the majority of tissues (7). A previous study demonstrated 
that dysfunction of hepatic AMPK in diabetes represents a key 
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mechanism for hepatic lipid accumulation and hyperlipidemia 
associated with diabetes (8). AMPK phosphorylation in the 
liver results in the stimulation of FA oxidation and inhibi-
tion of lipogenesis (9,10); active AMPK phosphorylates and 
inactivates certain rate‑limiting enzymes in the liver that are 
associated with lipolysis, such as acetyl‑CoA carboxylase 
(ACC). ACC catalyzes malonyl CoA synthesis, which is 
a major building block for de novo FA synthesis and also 
functions as an allosteric inhibitor of carnitine palmitoyl 
transferase 1 (CPT1) (10). Unphosphorylated ACC inhibits 
CPT1, which is the rate‑limiting enzyme responsible for the 
transfer of long‑chain fatty acyl CoA to the mitochondria for 
β‑oxidation (11). Therefore, AMPK activation is an important 
therapeutic target in hepatic lipid metabolism disorders and 
hyperlipidemia, specifically in diabetes (12).

Procyanidins are a complex family of polyphenol polymers 
that are present in a wide variety of natural products, including 
grape wines, fruits and vegetables. Grape seed proanthocyanidin 
extracts (GSPEs) have been demonstrated to exhibit a variety of 
potent pharmacological activities, including functions against 
oxidative stress, inflammation and atherosclerosis (13,14). Grape 
seed procyanidin B2 (GSPB2) is one of the major components 
of GSPEs and possesses similar pharmacological activities. 
Furthermore, in diabetes models, GSPEs have lipid‑lowering (15) 
and hepatocyte protective effects (16), and lead to the activation 
of AMPK; GSPE treatment has been demonstrated to ameliorate 
mitochondrial dysfunction and inhibit oxidative stress or apop-
tosis in mesangial cells treated with high‑dose glucosamine (17) 
or in diabetic nephropathy (18), via AMPK‑dependent signaling. 
Considering that inactivation of hepatic AMPK is a key event in 
the pathogenesis of hyperlipidemia in diabetes (12), GSPB2 may 
be a useful agent to ameliorate liver lipid metabolism disorders 
and to improve hyperlipidemia in diabetes. To the best of our 
knowledge, this hypothesis has not been previously investigated.

The present study aimed to evaluate the effect of GSPB2 
on liver lipid metabolism in the db/db diabetic mouse model 
and the potential underlying mechanism. The db/db mice are a 
well‑established animal model for the investigation of diabetic 
complications. We hypothesize that GSPB2 may ameliorate 
liver lipid metabolic disorders in db/db mice via the activation 
of AMPK and downstream pathways.

Materials and methods

Animals and treatments. Male C57BLKS/J db/db and db/m 
mice (n=24; 7  weeks old; average weight, 32.1  g) were 
purchased from the Model Animal Research Center of Nanjing 
University (Nanjing, China). They were housed in standard 
animal cages and received laboratory pellet chow and tap 
water ad libitum in a constant environment (room tempera-
ture, 20‑22˚C; humidity, 40‑60%) with a 12‑h light/dark cycle. 
All experimental procedures were approved by the Animal 
Ethics Committee of Shandong University (Jinan, China). 
Mice were adapted for one week prior to initiation of the 
study. Age‑matched db/m mice were used as a control group 
(Control, n=8). GSPB2 (>90% pure) was purchased from 
Tianjin Jianfeng Natural Produce R&D Co., Ltd (Tianjin, 
China). Db/db mice were randomly divided into two groups 
for treatment (n=8 each): Vehicle (DM group; normal saline 
solution) and GSPB2 (DMT group; 30 mg/kg body weight per 

day in normal saline solution orally for 10 weeks). Each group 
was observed between weeks 8 and 18 of age without any other 
intervention. Animals were weighed each week. At the end of 
the intervention, all mice were fasted overnight and sacrificed. 
Fasting blood was collected and the liver tissue was dissected. 
The sera and tissues were stored at ‑80˚C.

Measurement of body weight, fasting blood glucose (FBG) and 
serum lipids. Animals were weighed every week. Fasting blood 
was collected prior to sacrifice and centrifuged at 7,700 x g 
for 10 min at 4˚C to measure FBG, TG and total cholesterol 
(TC) using an automatic biochemistry and analysis instrument 
(ADVIA‑1650 autoanalyzer; Bayer AG, Leverkusen, Germany). 
Serum FFA levels were determined with a FFA Detection kit 
using the acylCoA synthetase‑acylCoA oxidase (ACS‑ACOD) 
method, according to the manufacturer's protocol (Wako Pure 
Chemical Industries, Ltd., Osaka, Japan).

Hepatic lipid analysis. The stored liver samples (100 mg) 
were lysed and homogenized in 2 ml of a solution containing 
150 mmol/l NaCl, 0.1% Triton X‑100 and 10 mmol/l Tris, 
using a polytron homogenizer (cat. no. NS‑310E; Microtec Co., 
Ltd., Chiba, Japan) for 1 min at room temperature. Liver TG 
level was analyzed with a Tissue triglyceride assay kit using 
the glycerol phosphate oxidase‑peroxidase method (Applygen 
Technologies, Beijing, China) and normalized to protein levels 
measured using a bicinchoninic acid (BCA) Protein Assay kit 
(Beyotime Institute of Biotechnology, Haimen, China). Liver 
homogenate FFA level was determined with a FFA Detection 
kit using the ACS‑ACOD method (Wako Pure Chemical 
Industries, Ltd.) and normalized to protein levels, as previ-
ously described (19).

Hepatic pathological examination. The excised parts of livers 
were immediately fixed in 4% paraformaldehyde at room 
temperature for 12 h and embedded in paraffin. After solidifi-
cation, 5‑µm sections were cut from blocks. After hematoxylin 
and eosin (H&E) staining, sections were examined by light 
microscopy at a magnification of x100.

Western blot analysis. Western blot analysis was performed 
on samples of livers obtained from the three groups of mice. 
Mice livers were homogenized in radioimmunoprecipitation 
lysis buffer (Beyotime Institute of Biotechnology), sonicated 
for 20 sec at 4˚C and normalized with the BCA Protein Assay 
kit (Beyotime Institute of Biotechnology). Equal amounts of 
protein (50 mg) were separated by 10% SDS‑PAGE, trans-
ferred to polyvinylidene difluoride membranes, incubated with 
blocking buffer (5% non‑fat dry milk and 0.05% Tween‑20 in 
TBS) for 1 h at room temperature and probed with antibodies 
for phosphorylated AMPK (1:1,000 dilution; cat. no. #5256; 
Cell Signaling Technology, Inc., Danvers, MA, USA), AMPK 
(1:1,000 dilution; cat. no. #2532; Cell Signaling Technology, 
Inc.), phosphorylated ACC (1:1,000 dilution; cat. no. #3661; 
Cell Signaling Technology, Inc.), CPT1 (1:1,000 dilution; cat. 
no. ab128568; Abcam, Cambridge, UK), 4‑hydroxynonenal 
(4‑HNE, 1:1,000 dilution; cat. no. ab46545; Abcam) and GAPDH 
(1:1,000 dilution; cat. no. #2118; Cell Signaling Technology, 
Inc.) overnight at 4˚C. Membranes were subsequently  
incubated with horseradish peroxidase‑conjugated goat 
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anti‑rabbit or anti‑mouse (1:4,000 dilution; cat. nos. ZB‑2301 
and ZB‑2305; ZSGB‑BIO; OriGene Technologies, Inc., Beijing, 
China) as secondary antibodies for 2 h at room temperature 
and visualized by chemiluminescence immunoblotting detec-
tion (Amersham Imager 600; GE Healthcare Bio‑Sciences, 
Pittsburgh, PA, USA). The intensity of each protein band was 
quantified by densitometry using ImageJ software (version 
1.48; National Institutes of Health, Bethesda, MD, USA).

Isolation of liver mitochondria. Liver tissue (0.5‑0.8 g; n=4 
per group) was excised immediately after mice were sacrificed 
and immersed in ice‑cold mitochondrial isolation buffer [MIB; 
210 mM mannitol, 70 mM sucrose, 10 mM HEPES, 1 mM 
EDTA; final pH, 7.2; with 0.5% FA‑free bovine serum albumin 
(BSA)]. Tissue was minced and homogenized with additional 
MIB and 0.5% BSA by using a Potter Elvehjem homogenizer 
and loose‑fitting Teflon pestle. Mitochondrial isolation involved 
differential centrifugation at 4˚C, as previously described (20). 
The mitochondrial pellet was resuspended in MIB without BSA 
and centrifuged for an additional 10 min at 9,600 x g at 4˚C 
for further mitochondrial purification. The final mitochondrial 
pellet was resuspended in MIB and the protein concentration 
was determined by the Biuret method (20).

Mitochondrial respiratory capacity. Oxygen consumption 
was measured by high‑resolution respirometry (Oroboros 
Instruments, Innsbruck, Austria). A standard substrate/inhib-
itor titration protocol was used as described previously (21) 
for functional analysis of mitochondrial respiratory‑chain 
complexes after adding isolated mitochondria (0.15  mg) 
to respiration medium [110 mM mannitol, 0.5 mM EGTA, 
3 mM MgCl2, 20 mM taurine 10 mM KH2PO4, 60 mM K 
lactobionate, 0.3 mM DTT and 0.1% BSA (FA‑free), adjusted 

to pH 7.1; 37˚C] (22). Briefly, after stabilization (3‑5 min), 
real‑time oxygen concentration and flux data were collected 
sequentially. Complex I (CI)‑dependent mitochondrial respi-
ration was induced by adding glutamate (10 mM), malate 
(5 mM) and ADP (1 mM). Complex II (CII)‑dependent respi-
ration was induced by adding rotenone (0.5 µM) to selectively 
inhibit CI, followed by succinate (10 mM), which is a CII 
substrate. Antimycin A (5 µM) was then added to inhibit CIII, 
followed by the addition of TMPD (0.5 mM) and ascorbate 
(2 mM) as artificial electron donors for CIV. To ensure that the 
respiratory capacity of CIV was not limited by cytochrome 
c depletion, respiration was measured after the addition of 
cytochrome c (10 µM).

Statistical analysis. Statistical analysis was performed using 
SPSS 16.0 (SPSS Inc., Chicago, IL, USA) and GraphPad Prism 
4 (Graphpad Software Inc., La Jolla, CA, USA). Data were 
analyzed by one‑way analysis of variance followed by a least 
significant difference post hoc test. Results are presented as the 
mean ± standard error of the mean, unless otherwise stated. 
P<0.05 was considered to indicate a statistically significant 
difference.

Results

GSPB2 decreases the body weight and serum lipid levels in 
diabetic mice. DM and DMT mice had substantially more 
body weight compared with age‑matched control mice at the 
beginning of the study (8 weeks of age; P<0.05; Fig. 1A). Four 
weeks later however (starting at 11 weeks of age and throughout 
the study duration), GSPB2 treatment significantly decreased 
the body weight of DMT group compared with the DM group 
(P<0.05; Fig. 1A). FBG was significantly higher in DM and 

Figure 1. GSPB2 decreases the body weight and serum lipid levels of diabetic mice. (A) Body weight was measured in control, DM and DMT mice each week 
and for the 10‑week duration of the GSPB2 oral administration study (30 mg/kg/day). (B) Fasting blood glucose, (C) serum triglycerides, (D) total cholesterol 
and (E) free fatty acid levels in the serum of control, DM and DMT groups. Data are presented as the mean ± standard error (n=8 per group). *P<0.05 vs. control 
and †P<0.05 vs. DM. GSPB2, grape seed procyanidin B2; DM, diabetic mice treated with vehicle alone; DMT, DM treated with GSPB2.
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DMT mice compared with control mice (P<0.05; Fig. 1B), 
and GSPB2 treatment did not significantly affect FBG levels 
compared with the DM group (P>0.05; Fig. 1B). Compared 
with control mice, the DM group exhibited higher serum 
levels of TG (P<0.05; Fig. 1C), TC (P<0.05; Fig. 1D) and FFA 
(P<0.05; Fig. 1E). GSPB2 treatment significantly decreased 
the TG, TC and FFA levels compared with the DM group  
(all P<0.05), however, serum TG and FFA levels remained 
higher compared with control mice in the DMT group 
(Fig. 1C‑E).

GSPB2 decreases lipid droplet accumulation and hepatic lipid 
levels. H&E‑stained paraffin sections revealed normal hepatic 
architecture with clear hepatic lobule, radial liver cell cord 
and clear hepatic sinusoid in livers of control mice (Fig. 2A). 
By contrast, livers of the DM group exhibited pathological 
symptoms: Accumulation of lipid droplets in the cytoplasm 
and ballooning degeneration (Fig. 2B). After mice were fed 
GSPB2 for 10 weeks, this hepatocellular damage was amelio-
rated (Fig. 2C). Changes in the liver homogenate lipid levels 
appeared to be similar to serum lipid levels. The DM group 
exhibited significantly higher liver homogenate TG and FFA 
levels compared with controls (both P<0.05; Fig. 2D and E), 
which were significantly decreased by GSPB2 treatment (both 
P<0.05; Fig. 2D and E).

GSPB2 restores liver AMPK and ACC phosphorylation levels, 
increases CPT1 levels and ameliorates lipid peroxidation 
damage. The phosphorylation levels of AMPK and ACC were 
lower in the DM group compared with the control group (both 
P<0.05; Fig. 3). Following GSPB2 treatment, the phosphoryla-
tion of AMPK and ACC was significantly increased compared 
with the DM group (both P<0.05; Fig. 3). Furthermore, CPT1 
protein levels were also significantly higher in the DMT group 
compared with the DM group (P<0.05; Fig.  4A). 4‑HNE 

protein levels, which are markers of cellular lipid peroxida-
tion damage, were significantly increased in the DM group 
compared with control (P<0.05), but were significantly reduced 
following GSPB2 treatment (P<0.05; Fig. 4B).

GSPB2 restores damaged liver mitochondrial respiratory 
capacity. Liver samples from DM mice exhibited a signifi-
cant decrease in the respiration function of all mitochondrial 
complexes (CI, CII and CIV), compared with controls (all 
P<0.05; Fig.  5). However, GSPB2 treatment significantly 
restored the respiratory capacities of CI and CII in the DMT 
group compared with the DM group (both P<0.05; Fig. 5). 
The respiratory capacity of CIV was also increased by GSPB2 
treatment in the DMT group compared with the DM group, 
however, this increase was not significant (P>0.05; Fig. 5).

Discussion

GSPB2 is a dimeric form of GSPE, an extract compound 
from grape seeds with established lipid‑lowering, anti‑athero-
sclerosis and hepatocyte protective properties (15,16,23,24). 
Previous studies from our group have demonstrated the protec-
tive effects of GSPB2 on diabetic complications, including 
diabetic nephropathy and diabetic arterial damage (23,24). As 
diabetes is frequently complicated by hepatic lipid metabo-
lism disorders and high lipid levels, in the present study, we 
hypothesized that GSPB2 treatment may alleviate hepatic 
lipid metabolism disorders and lower serum lipid levels in 
diabetes. Long‑term oral treatment of diabetic mice with 
GSPB2 significantly decreased whole body weight and serum 
lipid levels, as well as hepatic lipid droplet accumulation and 
hepatic TG and FFA levels. GSPB2 restored liver AMPK 
and ACC phosphorylation levels, increased CPT1 protein 
levels and minimized the subsequent damage from lipid 
peroxidation. Furthermore, GSPB2 treatment significantly 

Figure 2. GSPB2 decreases lipid droplet accumulation and hepatic lipid levels. Histological examination of liver tissue (magnification, x100) after hematoxylin 
and eosin staining in (A) control, (B) DM and (C) DMT mice. The red arrows indicate lipid droplets and the black arrows indicate ballooning degeneration in 
hepatic cells. The levels of (D) triglycerides and (E) free fatty acid in the liver homogenates of control, DM and DMT mice were measured by glycerol phos-
phate oxidase‑peroxidase and acylCoA synthetase‑acylCoA oxidase methods. Data are presented as the mean + standard error (n=8 per group). *P<0.05 vs. 
control and †P<0.05 vs. DM. GSPB2, grape seed procyanidin B2; DM, diabetic mice treated with vehicle alone; DMT, DM treated with GSPB2.
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ameliorated hepatic mitochondrial dysfunction and restored 
mitochondrial CI‑ and CII‑dependent respiratory capacity. 
The results of the present study indicate that long‑term oral 
treatment with GSPB2 may benefit hepatic lipid metabolism 
disorders, potentially by increasing hepatic FFA β‑oxidation 
in mitochondria and decreasing hepatic lipid synthesis via 
AMPK‑ACC‑mediated lipid metabolism.

Although GSPB2 did not significantly reduce FBG, it 
normalized serum and hepatic elevated lipid levels and reduced 
body weight gain in db/db mice. These results indicate that 
GSPB2 treatment predominantly affects lipid, but not glucose, 
metabolism, suggesting that its main benefit in diabetes may 
occur through a potential protective effect against athero-
sclerosis and cardiovascular diseases  (24,25). The liver is 
the major site for the storage and release of carbohydrates, 
and the synthesis of FAs. In this diabetic model, liver lipid 
accumulation and lipid metabolic disorders were alleviated 
by GSPB2 treatment, therefore, GSPB2 may be an effective 

Figure 3. GSPB2 restores liver AMPK and ACC phosphorylation levels in diabetic mice. Representative western blot analysis of (A) p‑AMPK and total AMPK 
and (B) p‑ACC subunits ACCα at 265 kDa and ACCβ at 280 kDa. Data are presented as the mean + standard error (n=6 per group). *P<0.05 vs. control and 
†P<0.05 vs. DM. GSPB2, grape seed procyanidin B2; AMPK, AMP‑activated protein kinase; ACC, acetyl‑CoA carboxylase; p‑; phosphorylated; DM, diabetic 
mice treated with vehicle alone; DMT, DM treated with GSPB2.

Figure 4. GSPB2 increases CPT1 protein levels and ameliorates lipid peroxidation damage in diabetic mice. Representative western blot analysis of expression 
of (A) CPT1 and (B) 4‑HNE proteins. 4‑HNE protein levels were used as a marker of cellular lipid peroxidation damage. Data are presented as the mean + 
standard error (n=6 per group). *P<0.05 vs. control and †P<0.05 vs. DM. GSPB2, grape seed procyanidin B2; CPT1, carnitine palmitoyl transferase 1; 4‑HNE, 
4‑hydroxynonenal; DM, diabetic mice treated with vehicle alone; DMT, DM treated with GSPB2. 

Figure 5. GSPB2 restores the damaged liver mitochondrial respiratory 
capacity in diabetic mice. Data are presented as the mean ± standard error 
(n=4). *P<0.05 vs. control and †P<0.05 vs. DM. GSPB2, grape seed procyan-
idin B2; CI, electron transport complex I; CII, electron transport complex II; 
CIV, electron transport complex IV; DM, diabetic mice treated with vehicle 
alone; DMT, DM treated with GSPB2.
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agent to improve lipid metabolism, decelerate the progression 
of diabetes complications and improve prognosis in diabetes.

In order to uncover the underlying mechanisms of GSPB2 
on liver lipid metabolism, the current study investigated the 
potential involvement of AMPK. AMPK has a key role in 
regulating lipid metabolism through multiple signaling path-
ways, including directly catalyzing its downstream substrates 
and the transcription of multiple genes  (26). AMPK is 
activated >200‑fold by phosphorylation at Thr172  (7). 
Similar to the results of a previous study (27), the present 
study demonstrated that phosphorylated AMPK levels were 
lower in DM mice compared with controls. Several other 
studies have demonstrated that GSPE treatment ameliorated 
mitochondrial dysfunction and inhibited oxidative stress or 
apoptosis via AMPK‑dependent signaling (17,18). Similarly, 
in the present study, GSPB2 treatment significantly restored 
the hepatic phosphorylation of AMPK. The activation of 
AMPK may lead to the stimulation of FA oxidation and inhi-
bition of lipogenesis (9), reduced hepatic lipid accumulation 
and, in turn, attenuated hyperlipidemia and atherosclerosis 
in DM (12).

In the present study, from the H&E‑stained paraffin 
sections and liver homogenate lipid measurements, lipid 
synthesis and accumulation in the liver were demonstrated to 
be reduced in diabetes, possibly by inactivation of ACC by 
AMPK. The phosphorylation of ACC was lower in DM mice 
compared with controls, however, ACC phosphorylation was 
restored by GSPB2 treatment. ACC is a key downstream target 
of AMPK and catalyzes the production of malonyl‑CoA from 
acetyl‑CoA, which is a key intermediate of FA synthesis and 
oxidation (10). Increased AMPK activity phosphorylates and 
inactivates ACCα (at Ser79) and ACCβ (at Ser221) in the liver, 
which results in reduced malonyl‑CoA production (28) and 
may lead to reduced hepatic FA synthesis (9).

CPT1 is the rate‑limiting enzyme that transfers the 
long‑chain fatty acyl CoA to mitochondria for β‑oxidation (11). 
It has been implicated as contributing to elevated FFA levels, 
fat accumulation and decreased ability to oxidize FAs in 
diabetes. The increased levels of malonyl‑CoA caused by ACC 
activation inhibit CPT1, leading to a subsequent decrease in the 
transport of long‑chain FAs into mitochondria and decreased 
FA oxidation (29,30). The shunting of long‑chain FAs away 
from mitochondria leads to an increase in FFA levels and the 
accumulation of fat (29,30). In the current study, GSPB2 signifi-
cantly restored the decreased CPT1 level in DM and increased 
FA movement as fuel into mitochondria for β‑oxidation, which 
would lead to increased oxygen consumption to generate 
ATP. The mitochondrial CI‑ and CCII‑dependent respiratory 
capacity was significantly reduced in DM mice compared with 
controls, however, this was significantly restored by GSPB2 
treatment, which may be due to increased fuel supply for mito-
chondrial ATP production or ameliorated lipid peroxidation.

GSPB2 significantly decreased hepatic FFA levels and 
minimized subsequent lipid peroxidation damage, as measured 
by 4‑HNE proteins levels. 4‑HNE is a measure of lipid peroxi-
dation from reactive oxygen species (ROS). Elevated FFA 
levels increase ROS production in diabetes and obesity (31), 
which exacerbates mitochondrial dysfunction. ROS directly 
damages mitochondrial proteins and promotes the formation 
of the mitochondrial permeability transition pore, increases 

the release of cytochrome c and enhances apoptosis  (32). 
Injured mitochondria cannot effectively reduce oxygen or 
transfer electrons, which results in high levels of ROS that 
further damage tissues, trigger apoptosis and lead to a vicious 
cycle of ROS production and mitochondrial dysfunction (33).

Grape seed extract is generally well tolerated when taken 
orally. It has been used safely for up to 8 weeks in clinical 
trials (34). Administration of the grape seed extract to male 
and female Sprague Dawley rats in the feed at levels of 0.5, 
1.0, or 2.0% for 90 days did not induce any significant toxico-
logical effects (35). In the present study and using GSPB2 at a 
dose of 30 mg/kg body weight per day orally for 10 weeks, no 
obvious toxicity to the mice was observed. However, certain 
side effects of grape seed extract have been reported, including 
a dry, itchy scalp, dizziness, headache, high blood pressure, 
hives, indigestion and nausea (34). Consumption of grape seed 
extract polyphenols may inhibit non‑heme iron absorption 
and may lead to iron depletion in populations with marginal 
iron stores, and also may interact with certain pharmaceutical 
agents and enhance their biologic effects (36). A higher dose 
of grape seed extract may lead to increased toxicity to animals, 
and this requires further investigation. In the current study, 
the effects of GSPB2 on hepatic lipid metabolism disorders 
in diabetic mice were investigated. GSPB2 decreased hepatic 
lipid droplet accumulation and hepatic lipid levels. These 
protective effects appear to be mediated by increased hepatic 
FFA β‑oxidation in mitochondria and decreased hepatic lipid 
synthesis by stimulating an AMPK‑ACC lipid metabolic 
pathway. In order to fully investigate the potential molecular 
mechanism, experiments with either antagonists of AMPK or 
an AMPK knock‑out mouse strain would be required in future 
studies. Overall, GSPB2 may represent a novel therapeutic 
agent to improve whole‑body lipid metabolism, decelerate the 
progression of diabetes complications and improve the prog-
nosis of patients with diabetes.
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