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Abstract. The aim of the current study was to identify hub 
pathways of rheumatoid arthritis (RA) using a novel method 
based on differential pathway network (DPN) analysis. The 
present study proposed a DPN where protein‑protein inter-
action (PPI) network was integrated with pathway‑pathway 
interactions. Pathway data was obtained from back-
ground PPI network and the Reactome pathway database. 
Subsequently, pathway interactions were extracted from the 
pathway data by building randomized gene‑gene interactions 
and a weight value was assigned to each pathway interaction 
using Spearman correlation coefficient (SCC) to identify 
differential pathway interactions. Differential pathway inter-
actions were visualized using Cytoscape to construct a DPN. 
Topological analysis was conducted to identify hub pathways 
that possessed the top 5% degree distribution of DPN. 
Modules of DPN were mined according to ClusterONE. A 
total of 855 pathways were selected to build pathway inter-
actions. By filtrating pathway interactions of weight values 
>0.7, a DPN with 312 nodes and 791 edges was obtained. 
Topological degree analysis revealed 15 hub pathways, such 
as heparan sulfate/heparin‑glycosaminoglycan (HS‑GAG) 
degradation, HS‑GAG metabolism and keratan sulfate degra-
dation for RA based on DPN. Furthermore, hub pathways 
were also important in modules, which validated the signifi-
cance of hub pathways. In conclusion, the proposed method 
is a computationally efficient way to identify hub pathways of 
RA, which identified 15 hub pathways that may be potential 
biomarkers and provide insight to future investigation and 
treatment of RA.

Introduction

Rheumatoid arthritis (RA) is a common, complex and long 
lasting autoimmune disorder that originates in the joints (1). 

It typically manifests with signs of inflammation, the affected 
joints becoming swollen, warm, painful and stiff, particularly, 
early in the morning upon waking or following prolonged 
inactivity  (2). However, the underlying mechanism behind 
RA remains to be fully elucidated. Increased understanding 
of the immune mechanisms has led to the development of a 
considerable number of novel therapeutic agents that alter the 
progression of the disease and reduce mortality (3). Previous 
genetic studies on RA, including recent genome wide asso-
ciation studies, have identified 32 risk loci among individuals 
of European ancestry, including  major histocompatibility 
complex class II DR β 1 (HLA‑DRB1), protein tyrosine phos-
phatase non‑receptor type 22 (PTPN22) and other loci with 
shared autoimmune associations (4,5). Meanwhile, peptidyl 
arginine deiminase type IV (PADI4) has been identified as a 
major risk factor in people of Asian descent; however, not in 
those of European descent (6). Few studies have investigated 
other biological markers that are associated with RA aside 
from genetic loci, such as the signaling pathways involved.

Pathway analysis has become a common method to gain 
insight into the underlying biology of genes and proteins, as 
it reduces the complexity and increases explanatory power 
fo analysis (7). However, previous studies primarily focused 
on identifying the altered pathways between normal and 
cancer groups, or the common genes between two pathways, 
whereas investigation of the differential interactions between 
two pathways across disease samples and normal samples is 
infequent (8,9). Additionally, network‑based methods provide 
more stable and effective measures to investigate functions of 
genes in certain diseases, and and to understand the connections 
betweeen different genes (10). Scoring pathways by evaluating 
the coherency of gene expression changes and combining gene 
expression quantification over multiple datasets may a lead to 
novel insights in pathway‑associated studies.

Therefore, the present study proposed a novel method to 
identify hub pathways of RA based on differential pathway 
network (DPN), which investigated the differential interac-
tions between pathways in RA. In order to perform this, 
pathway data was obtained from background protein‑protein 
interaction (PPI) networks and the Reactome pathway data-
base. Subsequently, the differential pathway interactions were 
extracted from the pathway data and gene‑gene interactions 
were built randomly. The differential pathway interactions 
were visualized using Cytoscape to construct a DPN. Modules 
of DPN were mined according to ClusterONE. Topological 
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analysis of DPN was conducted to identify hub pathways that 
may be potential targets for treatment of RA.

Materials and methods

Gene expression data. The gene expression profile of RA with 
access no. E‑GEOD‑45291 (11) was obtained from a public 
functional genomics data repository ArrayExpress (http://
www.ebi.ac.uk/arrayexpress/). E‑GEOD‑45291, which was 
deposited on A‑GEOD‑13158‑ [HT_HG‑U133_Plus_PM] 
Affymetrix HT HG‑U133+PM Array Plate Platform 
(Affymetrix, Inc., Santa Clara, CA, USA), consisted of 378 RA 
samples and 20 normal controls. The probe‑level dataset in 
CEL file format was converted into expression measures and 
a total of 7,352 genes were identified in the expression profile.

Pathway data. In the present study, global PPI interactions 
were downloaded from the Search Tool for the Retrieval of 
Interacting Genes/Proteins database (http://string‑db.org/), 
which has catalogued a total of 787,896 PPI in human. By 
mapping the gene expression profile E‑GEOD‑45291 on the 
global PPI network, the present study identified a background 
PPI network with 6,666 nodes and 196,304 interactions.

Information from gene sets representing different biolog-
ical pathways was downloaded from the Reactome pathway 
database (www.reactome.org) and a total of 1,675 pathways 
were obtained. The Reactome database is an online‑curated 
resource for human pathway data and provides infrastructure 
for computation across biological reaction networks (12). The 
number of interacting genes between each pathway and the 
background PPI network were calculated, and pathways with 
intersections <5 were discarded in order to improve pathway 
stability. Pathways with a small number of genes are more 
easily understood; therefore pathways with gene sets >100 
were also excluded (13). A total of 855 pathways were reserved 
as pathway data for further analysis. An ID for each pathway 
was assigned in ascending order.

Pathway network construction. To evaluate the interactions 
between different pathways, the present study used the genes 
in each pathway to construct random gene interactions. 
When the same gene interaction was established between 
two pathways, it was considered that the two pathways were 
correlated. In order to determine the strength of pathway 
interactions, Spearman correlation coefficient (SCC) (14) was 
used for intersected interactions in two pathways. Their abso-
lute differences in RA and normal controls were calculated, 
and the mean value of absolute differences for all intersected 
interactions was denoted as the weight between two pathways. 
Taking pathway 1 for example, genes enriched in pathway 1 
and pathway 2 were used to build gene interaction and then 
these interactions were integrated with the background PPI 
network, the intersections were considered to be pathway 
interactions between pathway 1 and pathway 2. Subsequently, 
the pathway intersections under RA and normal conditions 
were weighted by SCC. The SCC of a pair of interactions 
(x and y), was defined as:

Where s was the number of interactions, g(x, i) or g(y, i) was 
the expression level of interaction x or y in the pathway i under 
a specific condition (RA or normal), ḡ (x) or ḡ (y) represent 
the mean expression level of interaction x or y. Calculating 
the absolute difference of an interaction in RA and normal 
conditions, the mean value of absolute differences of all inter-
actions was defined as the weight value between pathway 1 
and pathway 2. If there was no intersection between pathway 1 
and pathway 2, the two pathways had no interaction.

Subsequently, gene interactions were constructed based on 
genes in pathway 1 and pathway 3, the aforementioned method 
used to determine the interaction and weight value between 
pathway 1 and pathway 3. Therefore, all interactions and 
their weight values for any two pathways were obtained and 
interactions of weight value >0.7 were identified as differential 
interactions and used to construct a DPN which was visualized 
by Cytoscape (15).

Topological analysis. To further investigate the functions 
and importance of pathways in the DPN, the biological 
importance of pathways was characterized using indices of 
topological analysis. Degree quantified the local topology of 
each gene, by summing the number of its adjacent genes (16). 
This provides a simple count of the number of interactions 
of a given node. The degree of a pathway was the sum of 
its adjacent pathways. The pathways at the top 5% of degree 
distribution (the ≥95% quantile) in the significantly perturbed 
networks were defined as hub pathways. The degree D(v) of a 
node v was defined as:

Modules mined from DPN. The emergence of high‑throughput 
techniques for inferring protein interactions on a large‑scale 
has fueled the development of computational techniques to 
systematically mine for potential complexes from the interac-
tion networks (17). Therefore, the present study mined potential 
complexes from the network of pathway interaction using compu-
tational techniques, and the resulting complexes were defined as 
modules. The present study used ClusterONE (18), a method 
for detecting overlapping pathway complexes from weighted 
differential interactions based on seeding and greedy growth, 
was implemented to identify the modules of DPN. It used a 
cohesiveness measure to determine how likely is it for a group 
of pathways to form a complex, based on the weight of the inter-
actions within the group and with the rest of the network (19).

In the first step, ClusterONE identified seed pathways 
and greedy growth them into groups with high cohesiveness. 
When the greedy growth for a group could not progress any 
more, the next seed pathway was selected and the procedure 
was repeated until no more seed pathways remained. In the 
second step, ClusterONE detected highly overlapping cohesive 
groups and merged them into potential complex candidates or 
modules. Furthermore, ClusterONE allowed the identifica-
tion of overlapping complexes if each of the merged groups 
represented individual complexes that shared pathways. The 
modules that met the following thresholds: Size ≥20, density 
≥0.3 and overlap ≥0.5) were selected as significant modules 
for the RA DPN.
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Results

DPN construction. A total of 855 pathways were identi-
fied to establish pathway‑pathway interactions and 295,509 
interactions between pathways were obtained. Each pathway 
interaction was assigned a weight value. Fig. 1 presents the 
distribution of weight values. It was determined that weight 
values of the majority interactions ranged between 0 and 
0.4, particularly 0.1‑0.2. This low weight value may indicate 

that the two pathways had low interaction strength and there 
was little change in the two pathways between the RA and 
normal controls; therefore, interactions of with weight values 
<0.7 were filtered out, and the remaining pathway interac-
tions were selected for further analysis. When inputting these 
differential interactions into the Cytoscape software, a DPN 
with 312 nodes and 791 interactions was visualized (Fig. 2). 
Nodes represented pathways, and edges represented pathway 
interactions.

Hub pathways. In order to determine the functions and impor-
tance of 312 pathways, topological analysis of degree for the 
DPN was conducted. The degree of a pathway was the sum 
of all connected pathways, and pathways with top 5% degree 
distribution in the pathway network were defined as hub path-
ways. Fig. 2 presents hub pathways with pink vertices, and the 
detailed degrees for 15 hub pathways are presented in Table I. 
Each pathway was represented by its matching ID number. 
Heparan sulfate/heparin‑glycosaminoglycan (HS‑GAG) 
degradation with degree 35 (ID: 336), HS‑GAG metabolism 
(ID: 325) with degree 33, keratan sulfate degradation (ID: 
382) with degree 33, DNA‑binding transcription factor RAP1 
signaling (ID: 583) with degree 28 and interleukin‑3, 5 and 
granulocyte‑macrophage colony‑stimulating factor signaling 
(ID: 367) with degree 26 were the top 5 significant hub 
pathways of RA based on the DPN. Notably, the top two hub 
pathways, HS‑GAG degradation and HS‑GAG metabolism, 
were both associated with HS‑GAG, this may indicate that 
HS‑GAG may be important in RA.

Modules. ClusterONE was used to mine modules, which had 
similar biological processes and functions from the DPN. A 
total of 4 modules were identified with thresholds of size ≥20, 
density ≥0.3 and overlap threshold ≥0.5 (Fig. 3). There were 7, 
6, 5 and 1 hub pathways in Module 1, Module 2, Module 3 and 

Figure 1. Weight distribution of pathway interactions. (A) Complete data and 
(B) zoomed (0.7‑1.1 weight).

Table I. Hub pathways of rheumatic arthritis based on differential pathway network.

ID	 Pathway name	 Degree

336	 HS‑GAG degradation	 35
325	 HS‑GAG metabolism	 33
382	 Keratan sulfate degradation	 33
583	 DNA‑binding transcription factor RAP1 signaling	 28
367	 Interleukin‑3,5 and granulocyte‑macrophage colony‑stimulating factor signaling	 26
294	 Glucagon signaling in metabolic regulation	 24
67	 Aquaporin‑mediated transport	 23
836	 Vasopressin regulates renal water homeostasis via aquaporins	 23
732	 Sphingolipid de novo biosynthesis	 22
295	 Glucagon‑like peptide‑1 regulates insulin secretion	 21
71	 Assembly of the human immunodeficiency virus virion	 21
383	 Keratan sulfate/keratin metabolism	 20
376	 Iron uptake and transport	 18
128	 Clathrin derived vesicle budding	 17
309	 Golgi‑associated vesicle biogenesis	 17

HS‑GAG, heparan sulfate/heparin‑glycosaminoglycan. 
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Module 4, respectively. The weight values of pathway interac-
tions and edges in Module 3 were higher compared with the 
other modules. In addition, pathways 336 (HS‑GAG degrada-
tion), 383 (keratan sulfate/keratin metabolism), 325 (HS‑GAG 
metabolism) and 376 (iron uptake and transport) participated 
in more than one module. For Module 4, only one hub pathway 
(71, assembly of the HIV virion) was involved. Based on 
the ClusterONE analysis, hub pathways were important for 

modules, suggesting that they may have potential roles in the 
progression of RA.

Discussion

The present study proposed a novel method to identify hub 
pathways of RA using DPN, which was composed of differen-
tial pathway interactions based on a background PPI network, 

Figure 2. Differential pathway network of rheumatoid arthritis. Nodes represent pathways and edges show the interactions between pathways. The pink vertices 
denote hub pathways with degree distribution in the top 5%. The color bar represents the association between color and weight, where the darker the color was 
the greater the weight.
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the Reactome pathway database and gene expression profiles. 
It was determined that 15 hub pathways, including HS‑GAG 
degradation, HS‑GAG metabolism and keratan sulfate degra-
dation, were significant pathways involved in RA. Modules of 
DPN were mined depending on which ClusterONE and hub 
pathways they were involved into validate the feasibility of this 
novel approach for identifying hub pathways involved in RA.

Diagnostic or prognostic markers are usually obtained by 
identification of the most significant differentially expressed 
genes (DEGs) in high‑throughput case‑control studies of 
a disease. However, a previous study determined that the 
most significant DEGs obtained from different studies for a 
particular disease are frequently inconsistent (20). To over-
come this problem, significant genes and biological processes 
for disease‑association may be evaluated using a network 
strategy, such as PPI networks (21). A network may provide 
significant instructions for mining unknown connections in 
incomplete networks. Although the data of large‑scale protein 
interaction has accumulated with the development of high 
throughput testing technology, a certain number of significant 
interactions are not tested, such as key genes in significant 

pathways (22). This may be resolved to some extent by using 
pathway‑associated networks, such as DPN (23). Therefore, 
the present study proposed a novel method to construct DPN, 
which determined differential pathway interactions across RA 
patients and normal controls and identified hub pathways based 
on DPN. These findings were validated using ClusterONE 
modules and determined that the method was an efficient and 
feasible approach.

From the 15 hub pathways identified, HS‑GAG degrada-
tion, HS‑GAG metabolism and keratan sulfate degradation 
were significant. HS‑GAG is a member of the glycosamino-
glycan family and consists of a variably sulfated repeating 
disaccharide unit, the most common one (50% of the total) 
is glucuronic acid associated with N‑acetylglucosamine (24). 
In addition, GAG and HS have a similar molecular structure, 
and the polymer chains are composed of repeating disaccha-
ride units of glucosamine and hexuronic acids are sulfated 
at various positions (25). It has been previously reported that 
HS‑GAG may bind to a core protein and regulate various 
biological processes, including angiogenesis, blood coagula-
tion and tumor metastasis  (26). Li et al  (27) revealed that 

Figure 3. Modules extracted from differential pathway network. (A) Module 1. (B) Module 2. (C) Module 3. (D) Module 4. Nodes represent the pathways and 
the edges represent the interactions of pathways. The pink vertices denote hub pathways with degree distribution in the top 5%. The color bar represents the 
association between color and weight, where the darker the color was the greater the weight was.
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heparanase activity was elevated in the synovial fluid of 
patients with RA, indicating that heparanase may be a reli-
able prognostic factor for RA progression and a potential 
target for RA treatment. Taking into account that heparanase 
is responsible the degradation of heparin (28) and HS (29), 
it is possible that degradation of macromolecular heparin in 
cells may modulate the release of granule proteases that are 
involved in inflammation (30). Increased heparanase activity 
in activated inflammatory cells may accelerate the turnover of 
HS production and thereby induce alterations in HS structure, 
such as over‑sulfation, the increased sulfation of HS induced 
by upregulated heparanase may facilitate its significant role 
in disease (31). A previous study suggested that degradation 
of HS‑GAG was required to maintain a natural turnover of 
GAGs, which accumulate, rather than being broken down 
by degradative enzymes in RA (32). Degradation of the HS 
side chains represents an important mechanism underlying 
chronic inflammation of the arthrosis and associated tumori-
genesis  (33). Furthermore, heparanase is expressed by the 
vascular endothelium at the site of inflammation, which results 
in degradation of the subendothelial basement membrane and 
subsequent vascular leakage (34). Therefore, RA, as a common 
autoimmune disease, may be closely associated with HS‑GAG 
closely.

Belcher et al (35) demonstrated that GAG concentration 
in knee synovial fluid was reduced in RA, and that altered 
concentrations of chondroitin sulfate and keratan sulfate were 
be detected in RA. Keratan sulfate is one of several sulfated 
glycosaminoglycans (structural carbohydrates) that have been 
identified, in the cornea, cartilage and bone, and consists of 
large, highly hydrated molecules, which acts as a cushion to 
absorb mechanical shock in joints (36). The use of circulating 
keratan sulfate as a marker of metabolic changes of cartilage 
proteoglycan in juvenile idiopathic arthritis indicated that 
treatment which modified inflammation simultaneously did 
not contribute to total regeneration of articular matrix compo-
nents, and signalized the need for further treatment  (37). 
Additionally, keratan sulfate suppressed cartilage damage and 
ameliorated inflammation in an experimental arthritis mouse 
model (38). Previous studies have not identified a correlation 
between keratan sulfate degradation and RA, however, the 
present study indicated that keratan sulfate was important for 
RA progression.

In conclusion, the proposed method used in the current 
study was computationally efficient to identify hub pathways 
of RA and 15 hub pathways, including HS‑GAG degradation, 
HS‑GAG metabolism and keratan sulfate degradation were 
identified. These pathways may be potential biomarkers for RA 
and provide insights for the future study and treatment of RA.
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