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Abstract. The aim of the present study was to assess systemati-
cally gender differences in susceptibility to frailty and cognitive 
performance decline, and the underlying mechanisms. A 
systematic assessment was performed of the identified reviews 
of cohort, mechanistic and epidemiological studies. The selec-
tion criteria of the present study included: i) Sexual dimorphism 
of frailty, ii) sexual dimorphism of subjective memory decline 
(impairment) and atrophy of hippocampus during early life, 
iii) sexual dimorphism of late‑onset Alzheimer's disease and 
iv) sexual dimorphism mechanisms underlying frailty and 
cognitive impairment. Males exhibit a susceptibility to poor 
memory performance and a severe atrophy of the hippocampus 
during early life and females demonstrate a higher prevalence 
for frailty and late‑life dementia. The different alterations 
within the hypothalamic‑pituitary‑gonadal/adrenal axis, 
particularly with regard to gonadal hormones, cortisol and dehy-
droepiandrosterone/sulfate‑bound dehydroepiandrosterone 

prior to and following andropause in males and menopause 
in females, serve important roles in sexual dimorphism of 
frailty and cognitive impairment. These endocrine changes 
may accelerate immunosenescence, weaken neuroprotective 
and neurotrophic effects, and promote muscle catabolism. The 
present study suggested that these age‑associated endocrine 
alterations interact with gender‑specific genetic and epigenetic 
factors, together with immunosenescence and iron accumula-
tion. Environment factors, including psychological factors, are 
additional potential causes of the sexual dimorphism of frailty 
and cognitive impairment.
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1. Introduction

Epidemiologic studies (1,2‑10) have revealed that frailty and 
cognitive impairment appear to be correlated with the sexual 
dimorphism in elderly people. In communities of elderly 
people, the weighted average prevalence rate was 9.9% [95% 
confidence interval (CI) 9.6‑10.2] for physical frailty and 
44.2% (CI 44.2‑44.7) for pre‑physical frailty (1). Physical 
frailty rose steadily with age: 65‑69 years, 4%; 70‑74 years, 
7%; 75‑79 years, 9%; 80‑84 years, 16%; and >85 years, 
26%. Physical frailty was statistically more prevalent in 
females (9.6%, CI 9.2‑10.0) than in males (5.2%; CI 4.9‑5.5). 
Sarcopenia is the most common cause of frailty (11). The 
average prevalence of low skeletal muscular mass over the 
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age of 60 was 5‑13%, over 50% in people over the age of 
80 (12,13) and almost 70% in nursing home residents (14). 
Low lean mass was present in 33% of community‑dwelling 
elderly females and 10% of males in an urban area of 
Barcelona  (15). However, two epidemiologic studies of 
community‑dwelling elderly people in Asia demonstrated 
that females had a reduced prevalence of sarcopenia (0.8 vs. 
1.3%) (16) and low muscle mass (2.5 vs. 5.4%) compared with 
males (17). This difference may have been partially caused 
by varying screening criteria.

Alzheimer's disease (AD), the most common type of 
dementia, slowly and progressively develops with a preclinical 
stage over decades (18,19). Age and gender are the potent risk 
factors in late‑onset AD, which affects ~10% of individuals 
over age 65 years (20). The prevalence of AD is ~1% between 
65 and 69 years and is >60% in individuals aged 80‑85 (21). 
A recent study (22) of 1,246 cognitively healthy individuals 
(age, 30‑95 years) revealed sexual dimorphisms in brain aging 
between males and females. Males exhibited a susceptibility 
to poor memory performance and a severe atrophy of the 
hippocampus during early life (age, 40‑60 years). However, 
there was no greater prevalence of late‑onset dementia among 
males. Previous studies of age‑associated medical temporal 
lobe volume decline (23‑25) demonstrated that the differences 
between genders varied considerably. Previous studies have 
revealed more significant atrophy of hippocampus in males 
compared with females in early healthy adulthood (26,27). 
The speculative causes, which affect the signal intensity of 
Magnetic Resonance Imaging images, include inflammatory 
processes and the differing alterations in the iron content 
of the hippocampus cells between males and females (26). 
Certain epidemiologic studies  (28‑31) have suggested that 
there was no sexual difference in the incidence rates of AD. 
A previous study reported no gender differences in the inci-
dence of dementia up to a high age (32). After 90 years of 
age the incidence of AD is greater in females compared with 
males. In addition, there are different results for the risk of 
vascular dementia (2,3,32). However, the majority of studies, 
particularly one large meta‑analysis, confirmed that females 
were at greater risk of developing AD and deterioration of 
cognition (2‑10). These data appear to be significant even after 
adjusting for well‑known differences in survival rates and 
reciprocally for education level.

Multiple transgenic mouse models of AD have demon-
strated that females are inherently more susceptible to AD 
pathogenesis compared with males, with earlier and greater 
pathology and behavioral impairment [see reviews by Li and 
Singh (6) and Vest and Pike (33)]. This raises the question as 
to the cause of early age gender differences in memory perfor-
mance and brain atrophy and the subsequent risks for frailty 
and dementia in later life. The aging of the endocrine system 
is closely associated with sarcopenia, frailty and cognitive 
impairment (34‑37). During healthy aging, endocrine pathways 
under hypothalamic‑pituitary control show age‑associated 
alterations. There are declines in output from the gonadal axis, 
the growth hormone insulin‑like growth factor‑1 (IGF‑1) axis 
and decreased dehydroepiandrosterone/sulfate‑bound dehy-
droepiandrosterone [DHEA(S)] output from the adrenal axis; 
however, there is an increased output of cortisol (6,7). One 
potential cause may be endocrinologically different alterations 

within the hypothalamic‑pituitary‑gonadal (HPG)/adrenal 
axis, particularly with regard to gonadal hormones, cortisol 
and DHEA(S) prior to and following andropause in males and 
menopause in females. In addition, the complex interactions 
between endocrine and neurophysiological, immune, genetic 
and epigenetic factors in aging may serve important roles.

The present study conducted literature searches on the 
PubMed database (https://www.ncbi.nlm.nih.gov/pubmed) 
to identify relevant papers published between January 1990 
and June 2015. The database was searched with the following 
key words: Frailty, sarcopenia, prevalence, gender difference, 
memory performance, subjective memory decline (impair-
ment), late‑onset AD, endocrine system, aging, gonadal 
hormones, androgens, estrogens, immunosenescence, brain 
aging, genetics, cortisol, DHEA(S), iron overload and hippo-
campal atrophy. The searches were limited to English language 
articles. In addition, the pertinent references mentioned in the 
previously identified papers were analyzed.

2. Alterations in gonadal hormones and sexual dimorphism 
of frailty and cognitive impairment

Decline in sex hormones from the gonadal axis. Sex hormones 
have been considered as the cause of sexual dimorphisms in 
various pathophysiological alterations. In humans, aging leads 
to a decline in estrogen and testosterone, with an increase in 
luteinizing hormone, follicle‑stimulating hormone and sex 
hormone‑binding globulin in humans (38,39). Estrogen is 
produced primarily by developing follicles in the ovaries, 
and by the corpus luteum and placenta. The secondary 
sources of estrogen, including the liver and adrenal glands, 
produce smaller quantities; however, these are important 
sources of endogenous estrogen that alter little in postmeno-
pausal females. The most significant difference between 
males and females >55 years is the menopause, which 
results in a rapid decrease in circulating baseline levels of 
estrogens and androgens (40‑43). On average, 80% of estro-
gens is lost in females during the first year of menopause 
with little alterations following the menopause (40). Serum 
testosterone concentrations in postmenopausal females 
are ~15% of premenopausal levels (44). In addition, brain 
levels of estrogens and androgens exhibit a similar pattern 
in postmenopausal females (45). The circulating levels of 
estrogens and androgens in healthy aging males decrease 
gradually, beginning in the fourth decade (46). Due to the 
increase in age‑associated sex hormone‑binding globulin, 
the decrease of free testosterone is greater compared with 
total testosterone (46,47). The circulating bioavailable testos-
terone concentrations decrease ~20% in males >60 years and 
50% in those >80 years, compared with young males (46,47). 
Almost 5% of males aged 70‑79 years demonstrated andro-
pause (48). Testosterone may be converted to estradiol, an 
active metabolite of estrone, by the aromatase enzyme, 
which is located peripherally and throughout the male brain. 
Although the conversion rate of testosterone to estrogen is 
low, at ~0.2%, it is the primary source of plasma estradiol 
in males. In contrast to circulating testosterone, the levels of 
testosterone in male brains exhibit a strong decline and are at 
their lowest at ~80 years old (45). Healthy aged males possess 
a 10‑25‑fold greater circulating concentration of androgens 
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and a 2‑4‑fold greater quantity of estrogens compared with 
females (41‑43).

Frailty and decline in gonadal hormones. Of the gonadal 
hormones of the HPG axis, the age‑associated decline in testos-
terone may serve a primary role in decreased muscle mass 
and strength (49). Mohr et al (50) identified that total and free 
testosterone levels were not associated with frailty in males. 
In the Women's Health and Aging Studies, Coppola et al (51) 
identified that relative deficiency in a number of anabolic 
hormones, including IGF‑1, DHEA(S) and free testosterone, 
was an independent predictor of frailty, although deficiency 
of a single hormone was not significantly associated with 
frailty. However, other studies (49,52‑54) have demonstrated 
that low testosterone levels are associated with sarcopenia 
and frailty in elderly males. Furthermore, IGF‑1, DHEA(S) 
and free testosterone were each associated with age‑related 
cognitive and physical events (52). In a cohort study (55) of 
community‑dwelling males ≥70 years (n=1645), individuals 
in the lowest testosterone quintile had 2.2‑fold greater odds 
of demonstrating physical frailty compared with the highest 
testosterone quintile. Furthermore, a decline in testosterone, 
calculated free testosterone or luteinizing hormone was asso-
ciated with 1.2 to 1.3‑fold increase in the severity of frailty 
at a 2‑year follow‑up. The relevance of serum free testos-
terone and frailty is gender‑specific. In one cross‑sectional 
study (n=2,488), a U‑shaped association between serum free 
testosterone and frailty, which appeared to be modulated by 
body mass index, was reported in elderly females (56). The 
gender‑specific association between testosterone and frailty 
may involve different underlying biological mechanisms.

Cognitive impairment and decline in gonadal hormones. 
During critical periods of neural development, sex steroid 
signaling may contribute to the increased vulnerability of 
females to AD pathology [see review by Vest and Pike (33)]. 
The levels of circulating gonadal hormones influence cogni-
tive functions. Healthy people also exhibit aging‑associated 
gender differences in cognition. Older males performed worse 
in mental rotations tasks compared with younger males and 
older females (57). During brain developmental maturation in 
puberty, hippocampal volume negatively correlates with the 
circulating testosterone levels, which cause gender‑specific 
differences in hippocampal volume (58). Thus, male suscepti-
bility to poor memory performance and severe atrophy of the 
hippocampus during adulthood may be a normal aging process. 
Estrogens and progesterone possess numerous brain‑protec-
tive effects against various aspects of AD pathogenesis [see 
review by Li and Singh (6)]. Females with AD exhibit reduced 
circulating (59) and brain levels of estrogens compared with 
age‑matched controls (45,60). The circulating and brain estro-
gens were of gonadal and extra‑gonadal sources, which may 
explain why ovariectomy in wild‑type rodents and certain AD 
mouse models resulted in increased amyloid (A)β accumula-
tion, but not in other AD models (33,60). The cognitive function 
of aged ovariectomized rhesus monkeys may be significantly 
improved by estrogen replacement  (61). The deficiency of 
estrogens may cause a decrease in hippocampal volume. The 
partial or complete loss of an Χ‑chromosome in young females 
results in disproportionately reduced hippocampal volumes 

compared with age‑matched individuals  (62). Exogenous 
estrogen only demonstrated neuroprotective effects in cogni-
tively intact females prior to menopause and accelerated the 
progression of neurodegeneration once that neurodegen-
eration process was present at menopause (63). Therefore, the 
abrupt decline of gonadal hormones at menopause may be a 
potential reason for the greater prevalence of late‑onset AD 
in females compared with males. The influences of testos-
terone levels on cognitive functions are controversial. Certain 
studies (45,64‑66) have identified that decreased circulating 
and brain levels of testosterone in old age were associated 
with cognitive decline and increased risk of AD in males. 
In male 3xTg‑AD mice, depletion of endogenous androgens 
by orchiectomy significantly accelerates AD‑like pathology, 
including Ab accumulation and cognitive impairment (67). 
However, another study (68) demonstrated that greater levels 
of testosterone failed to improve cognitive function. Therefore, 
certain studies (33,69) have speculated that an optimal level 
of testosterone is beneficial to cognition. The gender‑specific 
differences of risks for frailty and late‑onset AD involve the 
underlying mechanisms described below.

Regulation of immunosenescence by gonadal hormones. 
Estrogens enhance immunity, particularly humoral immunity, 
and menopause transition with decreased estradiol promotes 
female immunosenescence. Androgens and progesterone 
function as an immunosuppressors (70). In chronic inflam-
matory diseases where monocytes, macrophages, dendritic 
cells, T cells, fibroblasts and neutrophils serve a dominant 
role, estrogens demonstrate anti‑inflammatory effects by 
inhibiting numerous pro‑inflammatory pathways involved 
in innate immunity, adaptive immunity and inflammatory 
tissue responses (71). However, when B cells are dominant 
in an inflammatory disease, as in the case of systemic lupus 
erythematosus, estrogens may stimulate the disease process. 
In addition, estrogens reduce low‑density lipoprotein (LDL) 
and increase high‑density lipoprotein (HDL) cholesterol; HDL 
is a powerful anti‑inflammatory agent. Furthermore, estrogens 
exhibit antioxidant properties by upregulating the expression 
of genes that encode antioxidant enzymes, which results in 
a decrease in mitochondrial free‑radical production. Thus, 
compared with males, females are more susceptible to autoim-
mune diseases and associated infections, and exhibit greater 
efficacy from vaccinations  (72). Females also demonstrate 
reduced susceptibility to age‑associated disorders, including 
cardiovascular disease and AD, and numerous infectious 
diseases when compared with males of the same age (70). Due 
to the age‑associated alterations in the levels of sex hormones 
and corresponding atherogenic lipid serum concentrations, 
including increases in LDL and total cholesterol and decreases 
in HDL in menopausal females, the risk of age‑associated 
disorders increases and is similar to males of equivalent age. 
The improved response to vaccination and the reduced predis-
position to infections in females are eliminated following the 
menopause, when their inflammatory status is characterized 
by the increased expression of pro‑inflammatory cytokines 
including tumor necrosis factor (TNF)‑α, interleukin (IL)‑1β, 
IL‑6, IL‑8, IL‑13, interferon‑γ and monocyte chemoattractant 
protein 1 (71). Inflammatory and stress responses may activate 
nuclear factor (NF)‑κB in the hypothalamus and induce a 
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signaling pathway that results in a reduction in the neuronal 
production of gonadotropin‑releasing hormone (GnRH) (73). 
This decline in GnRH may contribute to an age‑associated 
reduction in neurogenesis. Therefore, there is a bi‑directional 
connection between the HPG axis and the immune system, 
which leads to age‑associated disorders. The pro‑inflamma-
tory status that results from innate immunity senescence is 
toxic to neurons and affects the metabolism of the amyloid 
precursor protein. An imbalance between the production of 
Aβ by neuronal cells and astrocytes, and its degradation, may 
trigger chronic inflammatory processes in microglial cells and 
astrocytes and initiate a vicious cycle that ultimately results in 
AD (74).

In addition, chronic low grade systemic inflammation is a 
primary contributor to sarcopenia, frailty and age‑associated 
diseases (75‑77). Inflammatory cytokines, including IL‑6 and 
TNF‑α, activate catabolism of skeletal muscle and cause an 
imbalance between new muscle cell formation, hypertrophy 
and protein loss, resulting in the loss of muscle mass and 
strength  (75). Compared with elderly males, menopausal 
females are more susceptible to certain age‑associated 
diseases, including atherosclerosis, obesity and diabetes, 
depression, and osteoporosis  (6,78). These comorbidities 
increase the risk of sarcopenia and frailty  (76,79,80). The 
advantages that mitochondria from young females exhibit, 
including protection against Aβ toxicity, reduced generation 
of reactive oxygen species and reduced release of apoptogenic 
signals compared with males, are lost in mitochondria from 
older females (81). Thus, the critical mechanisms include low 
grade inflammation, oxidative stress and decline of anabolic 
hormones due to vascular perfusion decrease, hypoxaemia and 
increased insulin resistance. A population‑based cohort study 
of a total of 2,719 participants with a median follow‑up of 
4 years (82), identified cardiac disease as an independent risk 
factor for nonamnestic mild cognitive impairment (MCI) in 
females, which would progress to vascular and other non‑AD 
dementias. Another population‑based cohort study  (83) 
demonstrated that type 2 diabetes was associated with a higher 
risk of amnestic MCI in males and a strong association with 
single‑domain nonamnestic MCI in females. Baseline depres-
sion of elderly community‑dwelling individuals promotes the 
conversion of MCI to dementia (84). Apart from comorbidi-
ties, sarcopenia in older females is associated with cognitive 
impairment (85). Physical frailty may predict future cognitive 
decline (86). Lean mass loss is associated with brain atrophy 
and cognitive performance and AD patients exhibit an acceler-
ated lean mass loss (87). The connection between frailty and 
cognitive impairment suggests they share a common patho-
genesis (34‑36,76,88,89).

Neuroprotective and neurotrophic effects of gonadal 
hormones. Androgens and estrogens are neuroprotective in 
males and females, respectively. Estrogens demonstrate neuro-
protective (memory preserving) and neurotrophic (memory 
enhancing) actions in rodents and rhesus monkeys, through 
nuclear and extranuclear hippocampal estrogen receptors 
that function to increase spine density and synapse forma-
tion (90,91), improve brain structural and functional plasticity 
by neurotrophin expression and neurogenesis  (92‑94), 
regulate brain metabolism (95), effect connectivity within 

prefrontal‑hippocampal circuitry  (96), affect the synaptic 
distribution of estrogen receptor (97), neuronal excitability (94), 
brain Aβ levels  (95,98,99) and hyperphosphorylated t 
levels (100), and decrease the toxic effects of amyloid (101). 
In addition, progesterone demonstrates neuroprotective 
effects against AD by modulating γ secretase and Aβ produc-
tion (102), and increasing Aβ clearance (103). A GnRH agonist 
that suppresses ovarian function in young adult females causes 
deficits in verbal memory and task‑associated neural activity 
patterns that may be corrected by the administration of exog-
enous ovarian hormones (104). The rapid decline of ovarian 
estrogens and progestogens at menopause has been consid-
ered as a reason for increased female susceptibility to AD. 
Furthermore, animal and human studies have suggested that 
brain estrogen, rather than circulating estradiol, deficiency is 
more significantly associated with the risk of AD and induced 
AD‑associated neuropathological changes (60).

The associations between sex steroid hormones and AD 
risk are gender‑specific. Although androgens may be converted 
to estradiol by aromatase enzyme, there is no association 
between brain estrogens levels and AD risk in males (33). 
Age‑associated reduced levels of available testosterone have 
been associated with an increased risk of AD. Males with 
AD demonstrate decreased circulating and brain levels of 
testosterone compared with age‑matched controls (6,45). An 
optimal level of testosterone exhibits neuroprotective effects 
by a high density of androgen receptors in the hippocampus 
and its associated cortical areas (105,106). Testosterone may 
promote synaptic plasticity (107,108), protect against apoptosis 
in hippocampal neurons (109) and attenuate Ab toxicity (110). 
The age‑associated decline in androgen levels appears earlier 
compared with the neuropathological diagnosis of AD and the 
decline in androgen levels may be a cause of AD.

Genetics may also be a cause of sexual dimorphism of 
frailty and cognitive impairment. Polymorphisms of the 
aromatase gene intron 1 (CYP19A1, rs1062033), which codes 
for a rate‑limiting enzyme in the synthesis of estrogens, 
result in epistatic interactions with IL10‑1082 polymorphisms 
(rs1800896) that are restricted to females >75 years old 
(adjusted synergy factor=2.29; 95% CI, 1.24‑4.21; P=0.008) 
compared with females <75 years old (1.00; 95% CI, 0.28‑3.51; 
P=1.00). Each genotype (CYP19A1 interaction 1 CC+CG and 
IL10‑1028 AA+ AG) is associated with an increased risk of AD 
in the presence of the other genotype, which could result from 
the reduction of IL‑10 production and estrogen synthesis (111). 
These age‑associated differences are consistent with the 
epidemiological evidence that demonstrate a greater suscepti-
bility to AD of females compared with males only in the very 
elderly, for example, >80 years old (7-10).

The effect of apolipoprotein Eε4 (APOEε4) on the hippo-
campus and memory performance appears to be more directly 
associated with co‑occurrences of β‑amyloidosis in later life 
(>70 years of age) on a background of pre‑existing structural 
and cognitive decline that is associated with aging (112). In 
cognitively healthy elderly individuals, an increased cerebral 
amyloid burden, which is highly associated with the APOEε4 
genotype (113), is associated with subtle declines in cognitive 
performance and an increased risk of future dementia (114,115). 
In addition, in elderly individuals with MCI, the APOEε4 geno-
type appears to exhibit a more deleterious effect in females 
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compared with males on gross hippocampal pathology and 
memory performance. The presence of one or more ApoEε4 
alleles confers a substantially greater risk of AD in females 
compared with males (116). Females with ApoEε4 demon-
strated greater rates of decline in cognitive function compared 
with male ApoEε4 carriers (112). Furthermore, compared with 
male ApoEε4 carriers, female ApoEε4 carriers with MCI 
possess a greater risk of cardiovascular mortality (117). In 
late‑onset familial AD, ApoEε4 heterozygous females demon-
strated a significant 2‑fold increased risk of developing AD 
compared with ApoEε4 heterozygous males (118). In cogni-
tively healthy, late‑middle‑aged individuals (49 to 67 years 
old), individuals with different copies of ApoEε4 allele exhibit 
similar hippocampal volume; therefore, the gender differences 
in ApoEε4‑associated cognitive impairment are not associated 
with volume alterations of the hippocampus (119). Estrogen 
has been revealed to improve synaptic sprouting through an 
APOE‑dependent mechanism (120). Therefore, the combined 
influence of estrogen loss and the presence of the APOEε4 
genotype may, in part, account for the reports of an increased 
risk of late‑onset AD in females (2‑10). The LDL receptor 
(LDLR) is a primary ApoE receptor. The rs688T/T genotype 
that modulates the splicing efficiency of LDLR exon 12 was 
associated with increased risk of AD in males but not in 
females (121).

The thrombospondin‑4 (THBS4) gene encodes a glycopro-
tein involved in inflammatory responses and synaptogenesis. 
In humans, THBS4 possesses two haplotypes and interacts 
with gender in influencing THBS4 expression. AD females 
with haplotype 1 homozygous demonstrate the lowest expres-
sion of THBS4 and reduced gray matter volumes  (122). 
Single‑nucleotide polymorphism variants of sortilin receptor 
1 exhibit gender‑specific effects on late‑onset AD. Those 
homozygous males with rs2070045 risk allele demonstrated 
improved cognitive performance prior to the age of 75, while 
females demonstrated overall detrimental effects on cogni-
tive performance (123). ATP‑binding cassette transporter 1 
(ABCA1) mediates cellular cholesterol efflux. Female carriers 
of ABCA1 polymorphism rs2230806 demonstrated a 1.75‑fold 
increased risk of late‑onset AD compared with non‑carrier 
females (124). In addition, gonadal hormone‑induced DNA 
methylation and histone modifications at specific gene regula-
tory regions may increase or decrease this susceptibility to 
AD (125).

3. Alterations in the hypothalamic‑pituitary‑adrenocortical 
axis (HPA) axis and sexual dimorphism of frailty and 
cognitive impairment

Alterations in the HPA axis during aging. A remarkable sexual 
dimorphism in adrenal hormone regulation, including the HPA 
and adrenal androgen DHEA(S) axis, may be an important 
factor in the sexual dimorphism observed in frailty and cogni-
tive impairment. Cortisol, a lipophilic steroid hormone, is 
released from the cortex of the adrenal glands into circulation 
by the HPA axis in response to stress; 90% of cortisol binds to 
cortisol binding globulin and 8% to albumin. The cortisol level 
and rhythm demonstrate age‑associated alterations. The mean 
cortisol levels increase progressively with age (126,127) and 
the majority of studies indicate that the typical age‑associated 

decline in cortisol across the course of the day is attenu-
ated (128,129). A meta‑analysis of 45 studies (130) reported 
that pharmacological and psychosocial challenge resulted in a 
significantly greater cortisol stress response in older compared 
with younger subjects. DHEA(S) is the most abundant steroid 
hormone and the circulating level of DHEA, the majority of 
which is present in the sulfate‑bound form DHEA(S), peaks 
at ~20 years old and declines rapidly and markedly from 
25 years old (131). By 80 years old, individuals possess DHEA 
levels only 10‑20% of those of younger counterparts due to an 
aging‑associated reduction of the zona reticularis within the 
adrenal cortex (132,133).

Healthy older females have reduced levels of DHEA(S) and 
greater cortisol levels compared with older males and these 
disparities persist into advanced age (38,39). The differences 
in cortisol levels in males and females exhibit a progressive 
increase with aging. Compared with pre‑menopausal females 
and older males, the HPA responses to psychosocial stress in 
post‑menopausal females are increased. This effect of aging 
on the cortisol response is approximately three times greater 
in females compared with males (69). The sexual dimorphism 
in adrenal hormones may serve important roles in the suscep-
tibility to age‑associated alterations involved in cardiovascular 
disease and brain function (126).

Alterations in the HPA axis influence frailty. Regulating 
the response to stressors by negative feedback at the level of 
the hippocampus and associated structures is an important 
function of glucocorticoid. Cortisol serves an important 
role in the development of vulnerability to stressors in frail 
subjects. Greater circulating levels and blunted diurnal varia-
tion of cortisol are associated with frail community‑dwelling 
elderly females (134). In elderly residents of long‑stay institu-
tions, frailty was positively correlated with salivary cortisol 
level  (135). Sarcopenic individuals demonstrated elevated 
salivary cortisol levels compared with normal lean, sarco-
penic‑obese or obese subjects (136). Glucocorticoids inhibit 
protein synthesis and promote protein degradation, increase 
myostatin and decrease IGF‑1 expression (137). Persistently 
high levels of cortisol, as in Cushing's syndrome, are associ-
ated with increased catabolism, contributing to the loss of 
muscle mass, muscle atrophy, reduced energy expenditure 
and sarcopenia (138,139). In addition, DHEA(S) levels have 
been identified to be significantly decreased in frail compared 
with robust individuals in a small case‑control study (140). 
Furthermore, frail subjects possess decreased levels of serum 
IGF‑1 and increased levels of IL‑6 compared with robust, 
age‑matched individuals  (140). However, Puts  et  al  (141) 
reported that low IGF‑1 and high IL‑6 levels were not consis-
tently associated with frailty, in another longitudinal study.

Dysfunction of the HPA axis may contribute to aging‑asso-
ciated diseases including neuro‑cognitive dysfunction 
(depression, cognitive deficits and AD), and frailty possibly due 
to sarcopenia. Inflammaging, the coexistence of inflammation 
and immunodeficiency referred to as immunosenescence, is 
one of the pathophysiological mechanisms underlying frailty. 
The aging‑associated activation of the HPA axis by numerous 
non‑specific stressors results in an increase in cortisol levels due 
to decreased glucocorticoid negative feedback at the level of 
the paraventricular nucleus of the hypothalamus, hippocampus 
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and prefrontal cortex, and the levelling of the diurnal pattern 
of cortisol release (142). Persistent anti‑inflammaging, mainly 
exerted by cortisol, leads to a marked decline of immuno-
logical functions and its coexistence with the increased levels 
of pro‑inflammatory cytokines of inflammaging, ultimately 
exerts negative effects on metabolism, bone density, strength, 
exercise tolerance, the vascular system, cognitive function and 
mood. This in turn results in frailty (143). As an abundant 
circulating adrenal androgen, DHEA(S) is positively corre-
lated with successful aging and acts directly as a neurosteroid 
that may possess cardioprotective, antidiabetic, antiobesity 
and immunoenhancing properties (128). Low serum levels 
of DHEA(S) predict all‑cause and cardiovascular mortality 
in elderly males (144). Disabled older females with increased 
DHEA(S) levels are at greater risk of 5‑year cancer mortality, 
whereas these with decreased DHEA(S) are at greater risk 
of 5‑year cardiovascular mortality (145). In older males and 
females, frailty is associated with DHEA and gender does not 
affect the association between increased DHEA levels and 
reduced frailty status (146); however, obesity attenuated the 
association. In another cohort of the oldest subjects, investi-
gators reported (147) that female‑specific DHEA(S) decline, 
not baseline level, is associated with functional performance 
decline, including gait speed and cognition. Due to a defi-
cient feedback regulation of the HPA axis, serum cortisol 
suppression is less effective in frail individuals following adre-
nocorticotropic hormone stimulation and causes an increased 
cortisol DHEA(S) ratio (148).

Alterations in the HPA axis influence the sexual dimorphism 
of cognitive impairment. Apart from frailty, the increased 
cortisol and persistent activation of the biological stress 
system has additional negative effects on age‑associated 
cognitive decline. Age‑associated elevations in endogenous 
cortisol levels contribute to hippocampal atrophy and cogni-
tive impairments, including a decline in memory performance 
and executive function in patients with Cushing syndrome, 
depression and AD (69,149,150). Dysfunction of HPA axis 
activity and psychosocial factors, include chronic feelings of 
loneliness, low social status and negative age stereotypes, as 
stressors increase the risk of progressive cognitive impair-
ments, dementia and depression in older people (69).

Cortisol has gender‑specific effects on cognitive impair-
ment. Although cortisol is associated with the decline 
in hippocampal volume for older males but not older 
females (26,27), older females and young males appear to be 
the most susceptible to the effect of cortisol on cognitive and 
socioemotional domains due to increasing levels of HPA axis 
activity (151‑153). The hippocampus and its associated cortical 
areas serve important roles in declarative memory, which 
includes the recall of personal experiences and the acquisition 
of semantic or factual knowledge (154). The hippocampus 
has a marked structural plasticity. The atrophy of the hippo-
campus resulting from atrophy of pyramidal cell dendrites 
and the loss of synapse, but not from death of neurons, is 
reversible (80). Increased stress responses in older females 
compared with older males may be associated with a sharp 
decline of estrogens in post‑menopausal females. Excessive 
levels of cortisol in post‑menopausal females may compromise 
the structural plasticity of the hippocampus by increasing the 

atrophy of pyramidal cell dendrites, the loss of synapses and 
inhibiting neurogenesis, and inhibiting the formation of new 
synapses (80).

4. Iron and the sexual dimorphism of frailty and cognitive 
impairment

Alterations in iron levels during aging. Circulating iron 
overload is also considered to be a factor in the sexual dimor-
phism of brain aging. Increased iron levels are observed in 
males during adolescence (age, 18‑30 years) (155). Of 30‑ to 
70‑year‑old males, 9.4% had ample iron stores, whereas 1.4% 
had exhausted iron stores and 0.24% had iron deficiency 
anaemia. In females, serum ferritin levels remained low 
from adolescence until the menopause. Of 30‑ to 50‑year‑old 
premenopausal females, 0.49% had ample iron stores, 
whereas 18% had depleted iron reserves and 2.6% had iron 
deficiency anaemia (156). The loss of iron in menstrual blood 
has been postulated to be a uterine function to contribute to 
a decrease in the risk of cardiovascular disease risk in young 
females (157,158). During menopausal transition, levels of 
serum ferritin increase 2‑ to 3‑fold  (159,160). The corre-
sponding body iron storage from 4.8 mg/kg bodyweight at 
the beginning of perimenopause at age 45 years increases to 
12 mg/kg bodyweight following menopause at age 60 years. 
Serum ferritin increased from baseline to 24‑month follow‑up 
during the menopause transition: 37 (CI 20‑79) to 67 
(CI 36‑97) ng/ml (P<0.01), but remained lower compared with 
males: 111 ng/ml (CI 45‑220; P<0.01) (161). Following meno-
pause, serum ferritin gradually increased and approached 
levels in males. Of 60‑ to 70‑year‑old postmenopausal 
females, 3.0% had ample iron stores, 2.3% had depleted 
stores and none had iron deficiency anaemia  (156). Brain 
iron levels increase with age and males exhibit greater levels 
of stored iron in brain compared with females across their 
lifespan (162).

Iron influences the sexual dimorphism of frailty. Iron defi-
ciency and excess cause deleterious clinical outcomes. Among 
older adults, anemia prevalence is increased as it is associated 
with iron deficiency. Anemia or mildly reduced hemoglobin 
may accelerate the development of frailty and increase the risk 
of dependence, physical decline, falls and fractures, frailty, 
cognitive decline and even mortality (163,164). Iron, recog-
nized as a potent pro‑oxidant and a catalyst for the formation 
of reactive oxygen species in biological systems, is essential 
for oxygen transport, DNA synthesis and energy produc-
tion (165). Aging‑associated iron accumulation may contribute 
to the decline in muscle function due to increasing oxidative 
damage. A study of a rat model of sarcopenia (166) demon-
strated that the non‑heme iron concentration in gastrocnemius 
muscle increased by ~2‑fold and the levels of oxidized RNA 
were significantly increased between 29 and 37 months of age. 
Although the role of iron in frailty has yet to be elucidated, 
the greater levels of stored iron in males and in postmeno-
pausal females is responsible for the pathogenesis of numerous 
diseases, including ischemic heart disease, cancer, diabetes, 
infections and neurodegenerative disorders  (159,165,167). 
Gender‑specific alterations in the endocrine system and iron 
level may contribute to the sexual dimorphism of frailty. 
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Oxidative and informatory damage serve critical roles in 
frailty resulting from iron accumulation.

Iron inf luences the sexual dimorphism of cognitive 
impairment. Iron deficiency, which affects the differentiation 
of oligodendrocytes and the continual process of myelin repair 
or replacement, has adverse consequences on cognition (168). 
Abnormally high levels of iron in the brain promote oxidative 
and inflammatory damage to vulnerable brain tissue, which 
is observed in age‑associated neurodegenerative diseases 
including preclinical AD, MCI, AD and dementia with Lewy 
bodies (169,170). In healthy older males, declarative memory 
function is adversely affected by increased hippocampal levels 
of ferritin iron (168). These results support the hypothesis of an 
early‑age‑onset of poor memory function in males. However, 
iron overload in males occurs during later life in conjunc-
tion with a slow decline of male sex hormones, which may 
provide protection against the harmful effects of the increased 
iron levels. The increase in iron levels in females occurs at 
the same time as the rapid decrease in female sex hormones 
levels, which may be the cause of increased susceptibility 
to late‑onset AD (40). Elevated brain iron levels may be a 
mechanism for the susceptibility of AD from ApoEε4 (171). 

Therefore, the combined effects of iron overload, deficiency of 
gonadal hormones and the ApoE genotype may exert signifi-
cant effects on the health of females and increase the risk of 
late‑onset dementia.

Estrogen and iron homeostasis. Serum iron accumulation is 
conversely associated with the estrogen level in females and 
ferritin is significantly increased in postmenopausal compared 
with in premenopausal females (40,172). Estrogen deficiency 
and a concurrent increased iron retention are risk factors 
affecting the health of postmenopausal females, including 
cardiovascular disease (172‑174), osteoporosis and late‑onset 
AD  (40). Estrogen regulates iron metabolism through 
hepcidin‑ferroportin signaling via an estrogen response 
element (175‑177). Iron homeostasis is closely regulated by 
the hepcidin‑ferroportin axis. Hepcidin is the master regulator 
of the hepcidin‑ferroportin axis and the promoter region 
of the hepcidin gene has an estrogen response element. In 
ovariectomized mice, the transcription of hepatic hepcidin 
was elevated compared with the control  (176). An in vitro 
study (177) demonstrated that the transcription of hepcidin 
was suppressed by 17β‑estradiol (E2) treatment in human liver 
HuH7 and HepG2 cells and this downregulation was blocked 
by E2 antagonist ICI 182780. Ferroportin, the only known 
iron exporter in the majority of mammalian cells, regulates 
the level of intracellular iron and maintains iron homeostasis. 
Estrogen regulates iron metabolism by inhibiting hepatic ferro-
portin expression via a functional estrogen response element 
within the ferroportin promoter. Estrogen receptor antagonist 
tamoxifen attenuates the inhibitory effect of estrogen (175). 
Thus, estrogen deficiency results in increases in hepcidin and 
ferroportin and the overload of iron.

5. Conclusions

The male prevalence of poor memory performance and 
severe atrophy of the hippocampus in early life may result 

from reduced circulating estrogens and greater circulating 
iron overload compared with females. The increased risk 
for late‑life frailty and dementia in postmenopausal females 
compared with males may involve brain iron elevation, in 
combination with multiple hormonal derangement, including 
a sharp decline of circulating estrogens and androgens, and 
persistent greater cortisol and reduced DHEA(S) levels. The 
aging endocrine system, particularly sexual dimorphism 
alterations within the HPG/adrenal axis, interacts with 
neurophysiological, psychological, immune, genetic and 
epigenetic factors, and iron aggregation may contribute 
to the sexual dimorphism of brain aging; however, their 
exact roles remain to be elucidated. A systematic assess-
ment of the above interdependent factors may further the 
understanding of the underlying mechanisms of the sexual 
dimorphisms of frailty and cognitive impairment, and 
provide gender‑specific interventions, including iron chela-
tors, anti‑oxidant, anti‑inflammatory and multiple anabolic 
hormone‑replacement therapy for frailty and cognitive 
impairment.
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