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Abstract. The present study aimed to establish a prediction 
model for hepatocellular carcinoma (HCC) based on the cross 
talk genes from important biological pathways involved in 
HCC. Differentially expressed genes (DEGs) for HCC were 
identified from mRNA profiles of GSE36376, which were 
mapped to protein-protein interaction (PPI) networks from 
BioGrid and the human protein reference database. Then crit-
ical genes based on the deviation score and the degree of node 
were selected from the novel PPI network. Cross talk genes 
were screened from the network established based on the asso-
ciations of gene-gene, gene-pathway and pathway-pathway. A 
classifier based on specific cross talk genes was constructed 
for prediction of HCC using the random forest algorithm. 
Finally, the diagnostic performance of this prediction model 
was verified by predicting survival time of patients with HCC 
from the genome cancer atlas (TCGA) and other independent 
gene expression omnibus (GEO) databases. From the novel 
PPI network, a total of 200 critical genes were screened out 
and they were significantly enriched in 23 pathways, which 
have been reported to be significantly associated with the 
development of HCC. Based on these identified pathways, 
cross talk genes were identified including AKT1, SOS1, EGF, 
MYC, IGF1, ERBB2, CDKN1B, SHC2, VEGFA and INS. The 
prediction model has a relative average classification accuracy 
of 0.94 for HCC, which has a stable predicting efficacy for 
survival time of HCC patients validated in the TCGA database 
and two other independent GEO datasets. In conclusion, a total 
of 39 cross talk genes in HCC were identified and a classifier 
based on the cross talk genes was constructed, which indicates 

a high prognosis prediction efficacy in several independent 
datasets. The results provide a novel perspective to develop a 
multiple gene diagnostic tool for HCC prognosis, which also 
provided potential biomarkers or therapeutic targets for HCC.

Introduction

Hepatocellular carcinoma (HCC) is one of the most common 
malignancies, worldwide it is the fifth most common cancer in 
men and the seventh in women (1). The occurrence and develop-
ment of HCC is predominantly associated with chronic hepatitis 
B virus (HBV) and/or hepatitis C virus (HCV) infections (2). 
Surgical resection remains the main therapy for the majority of 
HCC cases and only 30-40% of patients with HCC can be cured 
by surgical resection following diagnosis (3). Exploration of an 
effective and reliable prediction diagnosis tool for HCC would 
markedly improve the prognosis of patients with HCC.

The pathogenesis of HCC has been widely studied. Multiple 
mechanisms have been reported to be involved in the pathogen-
esis of HCC including tumor suppressor genes, oncogenes, viral 
effects and angiogenesis (4). Developing molecular indicators 
with improved sensitivity and specificity serves an important 
role in the diagnosis of HCC (5). With the development of 
high-throughput sequencing technologies, numerous genetic 
expression profiles associated with tumorigenesis have been 
established and used for classification and diagnostic prediction 
of cancer (6,7). However, despite the large quantity of public 
gene information available, effective diagnostic methods for the 
prediction of the prognosis of HCC are required.

Genetic mutations are the main factors contributing to 
tumorigenesis, accompanied by the change of certain critical 
biological processes including immune regulation, the cell 
cycle, angiogenesis, wound repair and autophagy (8-12). 
Differentially expressed genes (DEGs) during tumorigenesis 
lead to changes in pathways and biological processes. The 
pathways were not independent in function, however were 
correlated between the pathways. The cross talk genes shared 
by the correlated pathways are potential biomarkers and 
therapeutic targets for cancer. Identification of these cross talk 
genes may provide important information about HCC.

In the present study, gene expression profile data regarding 
HCC was downloaded from the public information database, 
in order to try to establish an effective classifier for HCC 
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prognosis prediction based on the cross talk genes involved in 
HCC. The diagnostic performance of the classifier addition-
ally has been verified in other independent datasets.

Materials and methods

Data source and preprocessing. The mRNA expression profiles 
of GSE36376 of HCC were extracted from Gene Expression 
Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) 
using Illumina Human HT-12 v4.0 expression beadchip 
(GPL10558-11219; Illumina, Inc., HCC, including 240 tumor 
samples and 193 para-cancerous normal liver tissues. The raw 
data and probe annotation files were downloaded for analysis.

The probe‑level data were obtained from the CEL files 
and converted into expression value. The data were normal-
ized using the z-score normalization to increase the extent of 
differential expression. For each sample, the expression values 
of all probes for a given gene were reduced to a single value by 
taking the average expression value.

Screening of DEGs. Limma, a microarray analysis program 
available in the Bioconductor R package, was used to identify 
the DEGs in tumor samples compared to the para-cancerous 
normal liver tissues (13). In order to reduce the information 
loss caused by multiple-testing adjustment, P-values without 
adjustment by the false discovery rate were used to identify 
DEGs. P<0.05 and |log fold chance (FC)|>1.5 were set as 
thresholds to screen out DEGs.

Construction of protein‑protein interaction (PPI) network. The 
human PPIs were downloaded from the Biological General 
Repository for Interaction Datasets (BioGrid; http://www.thebi-
ogrid.org) and Human Protein Reference Database (HPRD; 
http://www.hprd.org/). Subsequent to merging two sets of data, 
a total of 14,553 genes and 662,360 interactions were identified. 
The DEGs identified above were mapped to the PPI network, 
in which the non-DEGs that interacted with at least 3 other 
DEGs were also included. Subsequent to removing the isolated 
nodes, the PPI network of DEGs associated with HCC was 
constructed. Subsequently, the network topological properties 
were analyzed using the network analysis package in Cytoscape 
software version 3.5.0 (http://www.cytoscape.org/). A total of 
five key topological indicators were defined to describe the 
behaviors or characteristics of the nodes in the PPI network, 
including degrees, average shortest path length (ASPL), 
closeness centrality (CC), eccentricity (EC) and topological 
coefficient (TC). Additionally, the hub node was selected based 
on the degree of the nodes, which was calculated by counting 
the edges launching from a protein in the PPI network.

Identification of critical genes. Critical genes were selected 
based on the deviation score of DEGs and the degree of node in 
the PPI network. The deviation score of DEGs was determined 
by the expression interval of each gene in para-cancerous 
normal liver tissue, which was defined as ʻI .̓

I = [min, max], where min indicated the subtraction 
of mean value and standard deviation value of gene ʻiʼ in 
para-cancerous normal liver tissue; max indicated the sum 
of mean value and standard deviation value of gene ʻiʼ in 
para-cancerous normal liver tissue.

Deviation score was calculated using Euclidean distance 
based on the value of gene ʻiʼ expressing in each sample 
beyond the range of I.

Where di indicated the expression value of gene ʻi̓ . When 
di<min in the range of I, d=min; when di>max in the range of I, 
d=max. A higher deviation score indicated a bigger deviation 
of gene ʻi̓  in tumor samples compared with that in non‑tumor 
samples.

Critical genes were selected based on the score of W, which 
was calculated as follows:

The degree was normalized using the logarithm at the 
base of 2. A bigger value of degree indicated more interac-
tions of gene ʻiʼ interacting with other DEGs and a greater 
importance. Finally, the W value of each gene was ranked, 
and the top 100 genes and the bottom 100 genes were selected 
as critical genes.

Hierarchical cluster analysis based on changes of pathways. 
In order to identify the pathways of these critical genes 
involved, analysis of the top 50 critical genes was conducted 
using Kyoto encyclopedia of genes and genomes (KEGG) (14) 
pathways enrichment analysis using the Database for 
Annotation, Visualization and Integrated Discovery data-
base (15). Enrichment analysis performed on upregulated and 
downregulated DEGs was determined using a hypergeometric 
test with P<0.1. The union of pathways from enrichment 
analysis was defined as the important biological pathways in 
HCC.

Subsequently, cluster analysis of the samples was performed 
based on the enriched pathways. The changes of each enriched 
pathway in each sample were determined by the expression 
value of DEGs involved in the enriched pathway. The score of 
indicated pathway was determined by the following formula:

Where pathscore of indicated the score of pathway P; m 
indicated the number of upregulated DEGs in the enriched 
pathway of P; n indicated the number of downregulated DEGs 
in the enriched pathway of P; di or dj indicated the average 
expression value of upregulated gene ʻi̓  or the downregulated 
gene ʻjʼ in para‑cancerous normal liver tissue. Pathscore >0 
indicated the enriched pathway of P was upregulated in HCC 
tissue compared with non-cancer tissue, while a pathscore <0 
indicated that the pathway of P was downregulated.

In the end, cluster analysis was performed on all samples 
and acquired pathways using hierarchical cluster approach (16). 
Data were pre-processed by logarithmic transformation. All 
samples and pathways were normalized through median center 
and similarity matrix was calculated by correlation center. The 
results were visualized using R package.

Identification of cross talk genes. Based on the hierarchical 
cluster results, significant correlations between several impor-
tant biological pathways were identified. Subsequently, the 
correlation between the significant pathways was evaluated 



MOLECULAR MEDICINE REPORTS  16:  3253-3261,  2017 3255

using Pearson correlation coefficient in the SciPy.stats library 
within Python (https://docs.scipy.org/doc/scipy/reference/stats.
html) and identified to be significantly positively or signifi-
cantly negatively correlated pathways sets. Based on the DEG 
distribution in each pathway, cross talk genes between corre-
lated pathways were screened out.

Construction of the classifier. A classifier was constructed 
based on selected cross talk genes from several significantly 
correlated functional pathways using the random forest algo-
rithm (17). Firstly, all samples were rearranged stochastically 
and divided into 5 parts: 4 of 5 parts were used as training sets 
to acquire the threshold parameter for training model, while 
the other part was used as test set. Following this, the trained 
classifier was used to predict the accuracy within the test set 
by calculating the false positive rate and false negative rate. 
The process was repeated 10 times until all samples regarded 
as test set were predicted. Receiver operating characteristic 
(ROC) curve analysis was performed to evaluate the classifica-
tion performance and robustness of the prediction model.

Validation the prognosis prediction efficacy in other indepen‑
dent datasets. The expression profile information and clinical 
data of HCC samples was downloaded from The Cancer 
Genome Atlas (TCGA) and GEO database. Two independent 
expression profile datasets were downloaded from GEO, which 
were E-GEOD-54236 and E-GEOD-27150. There were 373 
HCC samples obtained from TCGA database, 81 samples in 
E-GEOD-54236 and 81 samples in E-GEOD-27150. For each 
sample, abnormal expression of at least one cross talk gene 
was defined as high risk for HCC, while the patients without 
cross talk genes changing were considered as low-risk. Next, 
survival analysis was performed to compare the survival time 
between high-risk and low-risk patients to validate the prog-
nosis prediction efficacy of identified cross talk genes.

Results

Identification of DEGs. For the database GSE36376 at P=0.05 
and |log FC| of 1.5, a total of 249 DEGs were screened between 
tumor samples and para-cancerous normal liver tissue. Among 

Figure 1. Protein-protein interaction network based on DEGs and non-DEGs interacted with at least 3 DEGs. The red nodes represent the upregulated genes, 
the green nodes represent the downregulated genes and the blue nodes represent expanded normal genes. DEG, differentially expressed gene.
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these DEGs, 219 upregulated genes and 30 downregulated 
genes were included.

Construction of PPI network. Firstly, the human protein-protein 
interactions from the BioGrid and HPRD database were 
merged, followed by 249 identified DEGs mapped to the PPI 
network. Subsequent to removing the isolated nodes, the PPI 
network was constructed containing 504 nodes and 4,650 
edges (Fig. 1).

Analysis of network topological properties. The average 
values of key topological indicators degrees, ASPL, CC, 
EC and TC were from all genes in the PPI network were 
calculated and compared between all genes and DEGs. The 
results were presented in Table I. Compared with those of 
all genes, DEGs had significantly smaller value of degree 
and CC, and larger value of EC, ASPL and TC. The changes 
in these five topological indicators indicated that compared 
with the background network established based on all genes, 
the network efficiency of specific network established based 
on DEGs was reduced: Lower value of degrees indicated 
lower contribution of each gene to the PPI network; increased 
values of ASPL, EC and TC, and a decreased value of CC 
indicated the decreased compactness of the PPI network 
and decreased capacity for signal transduction between 
genes.

Identification of critical genes and pathway enrichment. A 
total of 200 critical genes including the top 100 genes and 
the bottom 100 genes were screened out. The expression 
value of these genes deviated significantly in HCC tissues. In 
addition, these genes are always hub nodes with high degrees 
in the PPI network (18). Genes that interact with multiple 
DEGs are possibly involved in regulation of several biological 
processes (19,20).

KEGG pathway enrichment analysis was performed on 
200 critical genes. Following the results, critical genes were 
identified to be significantly enriched in 23 pathways including 
pathways in cancer, pathways associated with cell cycle and 
cell apoptosis.

The abnormal expression of upregulated or downregulated 
genes leads to an imbalance of the pathway. The extent of 
this imbalance is determined by the extent of deviation of all 
upregulated or downregulated genes involved in the pathway. 
As presented in Fig. 2, the HCC tissue samples could be 

effectively distinguished from normal liver tissue based on 
the pathscore of the identified 23 pathways. The correlation 
between the pathways was evaluated based on the pathscore 
using Pearson correlation coefficient in SciPy.stats library 
within Python. When the correlation coefficient ‑0.5<r>0.5, 
two pathways were identified as significantly correlated with 
each other. Based on the value of r, a heat map was plotted 
indicating the correlation between pathways (Fig. 3).

Identification of cross talk genes. To identify cross talk 
genes, a network based on the gene-gene, gene-pathway and 
pathway-pathway associations was established (Fig. 4). The 
network included 61 nodes and 367 edges. Total of 22 nodes 
were pathways and the remaining 39 nodes were genes.

As presented in Fig. 4, there may be more than one cross 
talk gene between two pathways. For example, there are seven 
cross talk genes between hsa05200: Pathways in cancer and 
hsa05213: Endometrial cancer, including ERBB2, AXIN1, 
SOS1, AKT1, APC2, MYC and EGF. A cross talk gene could 
be shared with more than two pathways, which indicated the 
cross talk gene participated in multiple important biological 
pathways, suggesting the potential biomarker or therapeutic 
targets. The top 10 cross talk genes involved in regulating the 
maximum of pathways were listed in Table II.

Construction of classifier. The classification performance and 
robustness of the classfier were evaluated by ROC analysis. 
The results are presented in Fig. 5, which showed high clas-
sification performance with the lowest accuracy 0.91 and the 
average accuracy 0.94.

Three-dimension coordinate system was established and 
three genes with top contribution were set as coordinate axis 
(Fig. 6). Samples from HCC tissue or normal liver tissue were 
distinguished with different colors.

Validation of the prognosis prediction efficacy in other 
independent datasets. In the present study, the survival time 
of patients with HCC was verified using the TCGA dataset to 
evaluate the prediction effects of the classifier. Patients with at 
least one differentially expressed cross talk gene were consid-
ered high-risk cases, while patients without differentially 
expressed cross talk gene were low-risk cases. Subsequently, 
the survival time between high-risk and low-risk cases was 
compared. The results were presented in Fig. 7. There was a 
significant difference of survival time (P=0.011), indicating 
the high sensitivity and stability of the prediction model estab-
lished in the present study.

A not he r  t wo  d a t a se t s;  E - GEOD -54236  a nd 
E-GEOD-27150; were also downloaded and used to compare 
the survival time of patients with HCC. The results were 
displayed in Figs. 8 and 9. There an additional significant 
difference in the total survival time (P<0.05) between high- 
and low‑risk cases. These results indicated that the identified 
cross talk genes indicated a relatively poor prognosis in 
HCC.

Discussion

Discovery of biomarkers associated with HCC contributes to 
diagnosis and treatment of HCC, which is beneficial for the 

Table I. Key topological indicators of specific genes and all 
genes in the protein-protein interaction network. 

Feature Specific genes All genes P‑value

Degree 5.23 7.01 1.46x10-2

EC 8.52 6.51 2.20x10-16

ASPL 4.17 2.97 3.87x10-15

CC 0.24 0.35 2.44x10-3

TC 0.24 0.17 8.40x10-9

EC, eccentricity; ASPL, average shortest path length; CC, closeness 
centrality; TC, topological coefficient.
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Figure 3. Heatmap indicating the correlation between 23 pathways. The yellow or orange boxes represent a close association between the pathways.

Figure 2. Heatmap for hierarchical cluster analysis. The horizontal axis represents samples of hepatocellular carcinoma and para-cancerous normal liver tissue. 
The vertical axis represents 23 identified pathways. The heat map indicates the deviation score of each pathways in any sample. The blue region represents the 
downregulated pathways and the red region represents the upregulated pathways.
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improvement of prognosis in patients with HCC (21). Multiple 
genetic alternations have been identified in HCC. These 
changes may be regulated by global regulatory mechanisms that 
control co-operation among various metabolic and signaling 
pathways (22). Thus the cross talk genes screened from these 
correlated pathways are important biomarkers for HCC.

In the present study, the mRNA expression profile of 
GSE36376 was downloaded and DEGs were screened. A total 
of 219 upregulated genes and 30 downregulated genes were 
obtained between tumor samples and para-cancerous normal 
liver tissue, which were mapped to the merged PPI network. 
Subsequently, the critical genes were selected based on the 
deviation score of DEGs and the degree of node in the PPI 
network (23). A total of 200 critical genes were screened out. 
KEGG pathway enrichment analysis indicated that these critical 
genes were significantly enriched in 23 pathways including 

pathways in cancer, pathways associated with cell cycle and 
cell apoptosis, which have been reported to be significantly 
associated with the development of HCC (10,24). Next, the inter-
actions between pathways were identified by hierarchical cluster 
analysis based on the deviation score. The results indicated that 
the deviation score of 23 identified pathways distinguished the 
HCC tissue samples from normal liver tissue effectively.

The cross talk genes are interpreted as genes co-existing 
in two or more pathways and connecting several biological 
pathways. The abnormal expression of cross talk genes lead to 
a similar trend of changes between pathways that are regulated 
by them. To identify these cross talk genes, a network based on 
the gene-gene, gene-pathway and pathway-pathway associations 
was constructed. A total of 39 genes were identified as cross talk 
genes, in which the top 10 cross talk genes were protein kinase 
Bα (AKT1), son of sevenless homolog 1 (SOS1), epidermal 

Figure 4. A network established based the associations between identified genes and genes, identified genes and identified pathways, and identified path-
ways and pathways. The blue boxes represent identified pathways and purple oval boxes represent identified genes. The edges represents the gene‑gene and 
gene-pathway interactions.
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growth factor (EGF), MYC, insulin like growth factor 1 (IGF1), 
Erb-B2 receptor tyrosine kinase 2 (ERBB2), cyclin dependent 
kinase inhibitor 1B (CDKN1B), SHC adaptor protein 2 (SHC2), 
vascular endothelial growth factor A (VEGFA) and insulin 
(INS). All these identified genes were significantly correlated 
with the occurrence and development of HCC.

AKT1 is one of the most important members of the AKT 
family, in which phosphorylation has been indicated as a 
risk factor for early disease recurrence and poor prognosis in 
HCC (25). EGF is an important mitogen for hepatocytes and its 
overexpression has been demonstrated to promote HCC (26). 
In addition, targeting the EGF receptor has been observed to 
be an effective therapy for treating HCC (27). A previous study 
indicated that inactivation of the MYC oncogene is sufficient to 
induce sustained regression of invasive liver cancer including 

uncovering the pluripotent capacity of tumors to differentiate 
into normal cellular lineages and inducing tumors to a state of 
tumor dormancy (28). Previous studies have indicated IGF1 
is a promising biomarker for detection of early HCC (29) and 
blockage of IGF signaling has been used in HCC treatment in 
clinical trials (30). ERBB2, a member of the epidermal growth 
factor receptor family, has been indicated to be expressed 
in a significant number of hepatoma cancer types including 
HCC, acting as an independent prognostic factor and a major 
contributor to carcinogenesis (31). CDKN1B has been reported 
to a direct target of miR‑22, and downregulation of CDKN1B 
by miR-22 can promote growth of HCC cells and affect HCC 
prognosis (32). SHC2 has been reported to be an important 
molecule in cellular signaling pathways in the pathogenesis of 
HCC (33). VEGFA, a member of the VEGF family, is one of 
the most potent angiogenic factors expressed in various types 
of human cancer including HCC (34). The vascular invasion 

Figure 5. ROC curves for the evaluation of classification performance. ROC, 
receiver operating characteristic.

Figure 6. Three-dimensional coordinate system to directly indicate the 
sample distribution based on the top three cross talk genes.

Figure 7. Survival analysis using The Cancer Genome Atlas database to 
validate cross talk genes. The blue plot represents cases at low risk for HCC 
and the red plot represents cases at high risk for HCC. HCC, hepatocellular 
carcinoma.

Table II. Top 10 cross talk genes identified and number of 
involved pathways.

Cross talk gene Pathway number

AKT1 14
SOS1 11
EGF   7
MYC   7
IGF1   7
ERBB2   6
CDKN1B   5
SHC2   5
VEGFA   5
INS   5

AKT1, protein kinase Bα; SOS1, son of sevenless homolog 1; EGF, 
epidermal growth factor; IGF1, insulin like growth factor 1; ERBB2, 
Erb‑B2 receptor tyrosine kinase 2; CDKN1B, cyclin dependent 
kinase inhibitor 1B; SHC2, SHC adaptor protein 2; VEGFA, vascular 
endothelial growth factor A; INS, insulin.
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and metastasis of HCC is always associated with the expres-
sion of VEGFA (35). Additionally, INS polymorphisms have 
been observed to be associated with cancer risk including that 
of HCC (36). No direct evidence has indicated association of 
SOS1 with HCC, while enhanced expression of SOS1 has been 
observed in several other types of cancer (37,38).

The identified cross talk genes were used as a classifier 
to classify the HCC samples from normal tissue, which was 
observed to exhibit high accuracy with the lowest accuracy as 
0.91, and an average accuracy of 0.94. Finally, the prognosis 
prediction effects of the classifier were validated in TCGA and 
two other independent GEO datasets. The results indicate a 
high sensitivity and stability of the prognosis prediction effi-
cacy for patients with HCC.

In conclusion, the current study identified 39 cross talk 
genes of HCC and a classifier based on the cross talk genes 
was constructed, which exhibited high prognosis prediction 
efficacy in several independent datasets. The results provide 
a novel perspective to develop a multiple gene diagnostic tool 
for HCC prognosis, which also provide potential biomarkers 
or therapeutic targets for HCC.
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