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Abstract. Sepsis is a leading killer of children worldwide 
with numerous differentially expressed genes reported to 
be associated with sepsis. Identifying core pathways in an 
individual is important for understanding septic mechanisms 
and for the future application of custom therapeutic deci-
sions. Samples used in the study were from a control group 
(n=18) and pediatric sepsis group (n=52). Based on Kauffman's 
attractor theory, differentially expressed pathways associ-
ated with pediatric sepsis were detected as attractors. When 
the distribution results of attractors are consistent with 
the distribution of total data assessed using support vector 
machine, the individualized pathway aberrance score (iPAS) 
was calculated to distinguish differences. Through attractor 
and Kyoto Encyclopedia of Genes and Genomes functional 
analysis, 277 enriched pathways were identified as attractors. 
There were 81 pathways with P<0.05 and 59 pathways with 
P<0.01. Distribution outcomes of screened attractors were 
mostly consistent with the total data demonstrated by the 
six classifying parameters, which suggested the efficiency of 
attractors. Cluster analysis of pediatric sepsis using the iPAS 
method identified seven pathway clusters and four sample 
clusters. Thus, in the majority pediatric sepsis samples, core 
pathways can be detected as different from accumulated 
normal samples. In conclusion, a novel procedure that identi-
fied the dysregulated attractors in individuals with pediatric 

sepsis was constructed. Attractors can be markers to identify 
pathways involved in pediatric sepsis. iPAS may provide a 
correlation score for each of the signaling pathways present in 
an individual patient. This process may improve the personal-
ized interpretation of disease mechanisms and may be useful 
in the forthcoming era of personalized medicine.

Introduction

Sepsis is a leading cause of mortality in children worldwide, 
with the mortality rate in developing countries reported to be 
as high as 50% (1). Sepsis is caused by a wide variety of infec-
tious pathogens that can lead to organ dysfunction, shock and 
mortality (2‑4).

Gene expression profiling of diseased human tissues 
may provide insights into the molecular mechanisms that 
mediate sepsis and eventually lead to the identification of 
novel therapeutic targets  (5). High‑throughput microarray 
experiments were developed to analyze genetic expression 
patterns of differentially expressed genes (DEGs). They were 
sufficient to identify potential target genes, however, they 
lacked integrality. There are various pathways associated 
with pediatric sepsis in the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways database. Among them, few 
reports focused on the core pathways involved. The attractor 
theory proposed by Kauffman (6) was famous for identifying 
one or more well‑defined model network ensembles with 
statistical features that matched those of real cells and organ-
isms. Mar et al (7) reported that attract was a novel approach 
that could leverage both existing pathway databases and the 
DEGs between cell phenotypes. It expanded these inferences 
by identifying new coordinately‑regulated gene sets that were 
relevant to the mechanisms underlying differences that may 
be associated with the molecular mechanism of diseases. This 
method was employed in the current study to screen attractor 
pathways from the vast data of KEGG pathways, in order to 
narrow down the number of correlated pathways in the indi-
vidual pathway analysis.

The majority of current pathway analyses have been 
developed to investigate deregulated pathways between two 
phenotype groups. The individualized pathway aberrance 
score (iPAS) method is straightforward to compare the expres-
sion profiles of an individual disease and normal cells to 
identify molecular changes that are specific to the disease (8). 
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The present study used iPAS to compare one sepsis sample 
with multiple accumulated normal samples (ANS). This is 
a biologically intuitive guideline to analyze a single sample 
that lacks cohort data, which is different from the traditional 
gene expression analysis. The method involves four steps: Data 
processing, gene‑level statistics, iPAS and a significance test. 
It captures biological and clinical information in a sensible, 
valid and useful way, and has been previously used for the 
analysis of colorectal and lung cancer (8). iPAS was used in 
the present study to investigate attractors in pediatric septic 
samples in order to distinguish differences from the control 
group. A pipeline that identified the dysregulated attractors in 
individuals of pediatric sepsis was created. Pathways from the 
KEGG database were set as attractors in order to screen differ-
entially expressed pathways. Following narrowing down the 
number of correlated pathways using support vector machines 
(SVM), iPAS was used to distinguish differences in individual 
pathways.

Materials and methods

Gene expression and data preprocessing. The transcrip-
tion profile was obtained from EMBI‑EBI ArrayExpress 
(EMBL‑EBI, Hinxton, UK) (9). Gene expression profiling of 
70 tissues were collected from the E‑GEOD‑13904 dataset 
[included five sample types: Sepsis, controls, septic shock, 
systemic inflammatory response syndrome (SIRS) and SIRS 
resolved]  (10). The samples of the dataset were obtained 
from 18 control individuals and 52 pediatric patients with 
sepsis. The array platform used to obtain the profile was 
A‑AFFY‑44‑Affymetrix GeneChip Human Genome U133 
Plus 2.0 (HG‑U133_Plus_2; Affymetrix, Inc., Santa Clara, 
CA, USA).

Data of the gene array chip was read in the R package 
‘affy’ bioconductor (11). The Linear Models for Microarray 
Data package  (12) was then used to preprocess the data. 
Background adjustment and quantile data normalization 
were performed by robust multi‑array average (13). To protect 
against outlier probes, a robust procedure, median polish (14), 
was used to estimate model parameters. The average  
value of a gene symbol with multiple probes was calculated. 
P≤0.01 and |log fold change (FC) |≥2 were set as the threshold 
levels.

Information from gene sets representing human biological 
pathways human was obtained from the KEGG pathways 
database (15). Pathways with large number of genes have more 
complex metabolism. Therefore, pathways with gene set size 
>100 were filtered. On account of certain differences among 
data from different platforms, pathways with the number of 
genes >5 were selected.

Kauffman' attractor analysis. Based on Kauffman's attractor 
theory (6), attract was used to screen differentially expressed 
pathways associated with pediatric sepsis. To test pathway‑level 
data, gene set enrichment analysis (GSEA)‑analysis of variance 
(ANOVA) was employed as a variance‑based implementation 
of a gene set enrichment algorithm, which was different from 
other methods in multiple classes (7). Under GSEA‑ANOVA, 
an ANOVA model was fit to each gene where the expression of 
a gene is modeled by a single factor representing the cell types 

as distinct levels of this class. From the ANOVA model, the 
F‑statistic for gene ‘i’ was calculated as follows:

Where MSSi  represents the mean treatment sum of squares, 
and captures the amount of variation due to the cell type 
group‑specific effects:

and RSSi  represents the residual sum of squares:

where N is the total number of samples, and the overall mean 
is given by:

The F‑statistic captures the strength of association observed in 
the expression of a gene in pediatric sepsis. Large F‑statistic 
values indicate a strong association with sepsis‑specific 
expression changes.

For pathway P consisting of gp genes, the T‑statistic takes 
the following form:

Where G represents the total number of genes with a pathway 
annotation and the sample variances 2s p  and 2sG  are defined as:

and the degrees of freedom are specified by the 
Welch‑Satterwhaite equation:

KEGG had great value in using the data to extend putative 
functional annotation. Obtained differentially expressed path-
ways were identified as attractors. They were ranked according 
to the significance of the differential expression.
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Distribution outcomes in SVM. SVM is a supervised 
learning method used for classification and regression 
tasks that originated from statistical learning theory (16). 
Traditionally, accuracy has been used to evaluate classifier 
performance. This measure is defined as the total number 
of good classifications over the total number of available 
examples. Typically, the majority of the classification prob-
lems have two classes, positive and negative cases (17). Thus, 
the classified test points can be divided into four categories 
that usually are represented in the well‑known confusion 
matrix as follows: True positives (TPs), true negatives (TNs), 
false positives (FPs) and false negatives (FNs). Sensitivity is 
equal to the TP rate, i.e., the ratio of TPs that were identified 
in all positive class samples. Analogously, specificity is the 
rate of TNs. Sensitivity and specificity describe how well the 
classifier discriminates the positive and the negative classes, 
respectively.

SVM was used to test the consistency of distribution results 
between screened attractors and vast pathways from KEGG. 
Subsequent analyses using attractors were performed when 
the distribution outcome of P<0.05 and P<0.01 were consistent 
with that of the total data.

Individualized analysis. ANS obtained from the Gene 
Expression Omnibus database of NCBI (www.ncbi.nlm.nih.
gov/geo/) (18) referred to the ANS. A total of 18 ANS were 
collected for identifying individual attractors.

Data preprocessing and gene‑level statistics. Expression 
level was defined using the robust multichip average (13). For 
individual cases,

as quantile normalization was performed following combining 
the single sepsis data (19). In cases of genes with multiple 
probes, the gene expression level was summarized by aver-
aging probe‑level expression. Individual septic sample gene 
expression was standardized using the mean and standard 
deviation.

Pathway‑level statistics. The average Z method is a biologi-
cally valid modification of current pathway analysis techniques 
for iPAS, enabling analysis of an individual pediatric sepsis 
sample pathway aberrance by using ANS (8).

A vector Z= (z1, z2, . . . , zn) denotes the expression status 
of a pathway where zi symbolizes the standardized expression 
value of i‑th gene, where the number of genes belonging to 
the pathway is n. Gene level statistics of each gene from each 
sample were calculated as follows:

Pathway statistics of every attractor were calculated as  
follows:

zi represents the standardized gene level statistics of 1‑i gene 
and the number of genes belonging to the pathway is n. As the 
test may induce false positive results, a method (20) was used 
to adjust the raw P‑values into false discovery rate (FDR) to 
circumvent the problem. FDR<0.05 and |log FC|>1 were used 
as the cut‑off criteria.

Results

Attractor screening analyses. Through attract and KEGG 
functional analysis, 277 enriched pathways were selected as 
attractors (Fig. 1). They were ranked according to the signifi-
cance of difference. There were 81 pathways with P<0.05 and 
59 pathways with P<0.01 (Fig. 2). Pathways of P<0.01 were 
broadly classified into two functional themes, signaling path-
ways (T cell receptor, B cell receptor and nuclear factor‑κB 
signaling pathway) and diseases (tuberculosis, legionellosis 
and inflammatory bowel disease). The first group of pathways 
involved in signal transduction is consistent with the hypoth-
esis that the ability to recognize and respond to internal signals 
drives cell differentiation capacity. The second theme involves 
growth and metabolism and highlights the fact that pediatric 

Figure 1. Heat map of individual pathway scores for 277 attractors in pedi-
atric sepsis and control samples. Pathways were clustered with the abscissa 
and gene chips were clustered with the ordinate. Blue indicates upregulated 
pathways and red indicates downregulated ones. The expression level is 
proportional to the brightness of the color.
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patients with sepsis across the differentiation spectrum are 
expected to have different iPAS scores.

Distribution outcomes in SVM. SVM was used to test the 
distribution results of screened attractors (Table  I). The 
classifier was used to evaluate the classification efficiency. 
Distribution outcomes of screened attractors were predomi-
nantly consistent with that of total data demonstrated by the 
six classifying efficiency parameters, which suggested the 
efficiency of attractors. This demonstrated that screened 
attractors may replace the vast pathways from KEGG to iden-
tify differences in pediatric patients with sepsis using iPAS.

Differentially expressed pathways in individual. Cluster 
analysis of pediatric sepsis using the iPAS method on Wong's 
data (10) identified seven pathway clusters (denoted by 1‑7 
in Fig. 3) and four sample clusters (S1‑S4). Sample clusters 
represent histopathological differentiation status. Cluster S1 
represented the differentiation status of pediatric sepsis well 
and cluster S4 is close to ANS. This assures that unbiased 
clustering‑based iPAS has the required sensitivity to capture 
clinically relevant associations. Of the pathway clusters 

presented in Fig. 3, P5, P6 and P7 are markedly different from 
the control group in pediatric sepsis samples, and may be core 
pathways involved in the disease. The pathways were antigen 
processing and presentation, Ras signaling pathway, Fc εRI 
signaling pathway and others. Pathway cluster P1 and P4 
exhibited relatively weak differences when comparing pedi-
atric septic samples and ANS. In conclusion, in the majority 
of pediatric sepsis sample differences in core pathways are 
detected, when compared with ANS. Therefore, iPAS analyses 
may aid the development of personalized pharmacogenetic 
treatment in pediatric sepsis.

Discussion

Attractor screening analyses. Kauffman' attractor analysis 
was suggested as an experimental approach to study implica-
tions of ensembles of regulatory networks (6). Mar et al (7) 
reported attract identified the ribosomal pathway as signifi-
cant in embryonic stem cells, and it was driven by elevated 
expression in these cells. The implementation of attract was 
demonstrated to identify the pathways that best describe four 
example cell types (7).

Figure 2. Heat map of significantly different pathways in pediatric sepsis using Kauffman' attractor theory. (A) 59 pathways of P<0.01. (B) 81 pathways of 
P<0.05. Pathways were clustered with the abscissa and gene chips were clustered with the ordinate. Blue indicates upregulated pathways and red indicates down 
regulated pathways; the expression level is proportional to the brightness of the color.

Table I. Distribution results of screened attractors with P‑values tested by Support Vector Machine.

			   Positive	 Negative	 Balanced
Parameter	 Sensitivity	 Specificity	 predictive value	 predictive value	 accuracy	 Accuracy

Total attractors	 1.00	 0.88	 0.95	 1.00	 0.94	 96.00
Attractors of P<0.05	 1.00	 0.88	 0.94	 0.70	 0.86	 86.00
Attractors of P<0.01	 0.90	 0.88	 0.95	 0.78	 0.89	 89.00
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Among 277 attractors, the most significantly different 
pathway in sepsis samples was osteoclast differentiation 
(KEGG ID: 04380; P=3.49E‑11), where 128 genes were 
enriched. Osteoclasts, multinucleated cells originating 
from the hematopoietic monocyte‑macrophage lineage, are 
responsible for bone resorption  (21). Osteoclastogenesis is 
predominantly regulated by signaling pathways activated by 
receptor activator of nuclear factor‑κB and immune receptors, 
whose ligands are expressed on the surface of osteoblasts.

Various differentially expressed pathways among the 
277 attractors regulate coagulation and vascular inflammation 
that develops in response to pathogens and cytokines. The 
renin‑angiotensin system (KEGG ID: 4614) is reported repair 
leaky blood vessels and prevent microvascular dysfunction 
in sepsis (22). The peroxisome proliferator activated receptor 
signaling pathway (KEGG ID: 3320) is involved in regulation 
of coagulation caused by sepsis (23). This indicates that these 
attractors are associated with sepsis, and may be important in 
the occurrence and development of sepsis.

Distribution outcomes in SVM. SVM is widely used in compu-
tational biology due to its high accuracy, powerful ability to 
deal with high dimensional and large databases, and flexibility 
in modeling diverse sources of data (24). These characteristics 
are useful for the analysis performed in the current study. 

Analysis of clinical data can be problematic, as the available 
data is usually multi‑dimensional and heterogeneous, with a 
large number of features and different types of data (25).

SVM was used in the current study to screen the efficiency 
of 277  attractors and detect their distribution outcomes, 
which were mainly consistent with the pathways from KEGG 
analysis, with high accuracy of 86.00‑96.00. This indicates the 
classification analysis is helpful to precise diagnosis and prog-
nosis of diseases. Therefore, screened attractors could take the 
place of vast pathways from KEGG to perform individualize 
therapy in pediatric sepsis. However, the distribution outcomes 
of 277 attractors have not been verified in abundance. We 
suggest that screened attractors ought to be checked in plenty 
of researches and receive further modification.

Differentially expressed pathways in individual. Pathway anal-
ysis has become the first choice for extracting and explaining 
the underlying biology using high‑throughput molecular 
measurements (26). Identification of differentially expressed 
pathways in individuals is important for understanding disease 
mechanisms and for the future application of custom thera-
peutic decisions. Current pathway analysis methods are not 
suitable for identifying the pathway aberrance that may occur 
in an individual sample (8). Therefore, iPAS was used in the 
present study for the personalized identification of attractors, 
making use of accumulated normal data.

iPAS using ANS in pediatric sepsis is an important innova-
tion. Ahn et al (8) demonstrated that the Average Z method 
efficiently identified pathway aberrance and further revealed 
clinical importance. It had the best statistical power when 
identifying a previously known survival‑associated pathway 
and the best averaged validation rate. As data repositories are 
developing rapidly, it is expected that ANS data will be avail-
able for more and more diseases in the future.

In the present study, the iPAS was used to calculate 
pathway statistics for every attractor and the Average Z method 
was selected as a modification of existing pathway analysis 
methods. There were 77  attractors with P<0.01 following 
adjustment of the FDR, which were identified as the most 
significant pathways. The majority of them were clustered in 
P6 and P7 (Fig. 3). Therefore, these screened attractors were 
efficient in distinguishing differences in individual pediatric 
sepsis samples. This may provide a broader insight for person-
alized medicine (27).

Based on the results of the present study, it is concluded 
that a novel analysis procedure identified dysregulated attrac-
tors in individual pediatric sepsis samples. Attractors can be 
markers for the identification of pediatric sepsis. We hope the 
constructed process can help in the personalized interpretation 
of data and can be efficient in the upcoming era of personalized 
medicine.
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