
MOLECULAR MEDICINE REPORTS  16:  6443-6458,  2017

Abstract. Prostate cancer (PCa) poses a high risk to older 
men and it is the second most common type of male malignant 
tumor in western developed countries. Additionally, there 
is a lack of effective therapies for PCa at advanced stages. 
Novel treatment strategies such as adenovirus-mediated gene 
therapy and virotherapy involve the expression of a specific 
therapeutic gene to induce death in cancer cells, however, 
wild-type adenoviruses are also able to infect normal 
human cells, which leads to undesirable toxicity. Various 
PCa-targeting strategies in adenovirus-mediated therapy have 
been developed to improve tumor-targeting effects and human 
safety. The present review summarizes the relevant knowledge 
regarding available adenoviruses and PCa-targeting strategies. 
In addition, future directions in this area are also discussed. In 
conclusion, although they remain in the early stages of basic 
research, adenovirus-mediated gene therapy and virotherapy 
are expected to become important therapies for tumors in the 
future due to their potential targeting strategies.
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1. Introduction

Adenoviruses. Adenoviruses are linear and non-enveloped 
double-stranded DNA viruses. The length of genomic DNA 
is ~36 Kb, and the gene is divided into coding and non-coding 
regions. The coding region contains five early transcription 
units (E1A, E1B, E2, E3 and E4), two delayed transcription 
units (IX and Iva2) and one late transcription unit (L1-L5). A 
close association exists between E1 (E1A and E1B) and viral 
replication. E3 is associated with virus immune evasion and is 
not important for viral replication. Adenoviruses are divided 
into seven subgroups, A-G, and human adenoviruses encom-
pass 52 types, of which Ad2 and Ad5 are widely employed in 
adenovirus studies (1,2).

Adenovirus‑mediated gene therapy and virotherapy. Gene 
therapy and virotherapy involve the introduction of therapeutic 
genes into tumor cells in order to treat tumors. Adenoviruses 
that mediate anti-tumor therapy include two types of recombi-
nant adenoviruses, which are replication‑deficient adenoviruses 
(RDAds) and conditional replication adenoviruses (CRAds).

The E1 region consists of the E1A gene, E1B-19 kDa (K) 
gene and E1B-55K gene. These genes regulate viral replication 
and the gene expression of other early genes. An adenovirus 
with deletion of E1 is termed a RDAd due to its lack of 
self-replication (3-9). In adenovirus-mediated gene therapy, 
the adenovirus is used as a gene vector to induce the expres-
sion of therapeutic genes to inhibit tumor growth. However, 
the lack of a tumor-targeting effect is problematic; RDAds 
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may be transduced into normal cells and cause unpredictable 
cytotoxicity (10). CRAds, also referred to as oncolytic adeno-
viruses, is one method used in virotherapy and these viruses 
are capable of self-replication and the delivery of therapeutic 
genes (11,12). CRAds contain the E1A region that has a key 
role in viral self-replication. After CRAds infect tumor cells, 
the virus is able to replicate itself to generate progeny viruses 
and induce the expression of therapeutic genes. The tumor 
cells subsequently die and release CRAds and their progeny 
viruses, which further infect adjacent tumor cells. However, 
CRAd-infected normal cells survive as CRAd cannot replicate 
itself inside these cells (13). The following three major strate-
gies are employed to construct these two types of recombinant 
adenovirus to enhance tumor-targeting: Development of a 
tumor/tissue‑specific promoter/enhancer to induce expression 
of therapeutic genes and viral replication that is limited to 
specific tissue or tumor cells (14); modification of adenovirus 
capsid proteins to construct an adenovirus combined with 
specific cell surface receptors that efficiently infects specific 
tissues or tumor cells, with the deletion of partial genes that are 
essential to adenoviral replication in normal cells but unneces-
sary for replication in tumor cells (15); and deletion of partial 
genes that are essential to adenoviral replication in normal 
cells but unnecessary for replication in tumor cells (16).

2. Development of a prostate‑specific promoter/enhancer 
to induce expression of therapeutic genes and viral 
replication that is limited to specific tissues or tumor cells

RDAds or CRAds with a prostate-specific promoter or 
enhancer may exert anti-tumor effects in prostate cancer 
(PCa) cells only via expression of the therapeutic gene or 
by oncolysis. Evidence of recombinant adenoviruses with a 
prostate‑specific promoter or enhancer is presented in Table I.

Prostate‑specific antigen (PSA). PSA is present in the cyto-
plasm of prostatic duct epithelial cells and prostate gland cells, 
and PSA expression has been observed in normal prostate 
tissues and PCa cells. PSA is the primary biomarker used to 
monitor PCa. PSA is also employed to screen patients with 
PCa and monitor the recurrence of PCa following treat-
ment (17-21). CV706 is the first oncolytic adenovirus with 
the PSA promoter. The PSA promoter drives the expression 
of E1A and causes the oncolytic adenovirus to replicate in 
PSA-positive PCa cells and induce oncolysis. However, the 
ability to self-replicate was low in PSA-negative PCa cells, 
and its progeny virus production was also low (22,23). In 
phase I clinical trials, treatment with CV706 was applied 
to patients with local PCa following radiotherapy, and the 
results demonstrated a marked decrease in PSA levels and a 
satisfactory antitumor effect (24). Wang et al (25) developed a 
recombinant adenovirus that expressed β-glucuronidase (βG) 
under the control of the PSA promoter (Ad/PSAP-GV16-βG). 
The prodrug DOX-GA3, N-[4-doxorubicin-N-carbonyl 
(oxymethyl) phenyl] O-β-glucuronyl carbamate, is converted 
into toxic DOX by βG. The results of an MTT assay indicated 
that the oncolytic virus induced significant oncolysis in LNCaP 
PCa cells, however, the same effect was not observed in 
PSA-negative DU145 PCa cells. In addition, intravenous injec-
tion of Ad/PSAP-GV16-βG and treatment with DOX-GA3 

efficiently inhibited the growth of LNCaP cell xenograft 
tumors in nude mice. These results demonstrated the efficacy 
of the PSA promoter in adenovirus-mediated gene therapy and 
virotherapy against PSA-producing PCa.

Probasin (PB). PB is a member of the lipocalin superfamily and 
is a type of ligand transporter. PB is isolated from the nucleus 
of the dorsal lateral lobe of the rat prostate and is located in the 
ducts and nucleus of prostate epithelial cells (26,27). As such, 
PB exhibits tissue specificity, and experiments have demon-
strated that a PB promoter may be regulated by androgens 
and drive the expression of foreign genes in PCa cells in vitro 
and prostate tissue in vivo (28). Trujillo et al (29) developed 
a CRAd with PB and Rous sarcoma virus (RSV) promoters 
that drove the expression of the E1 gene, and NIScDNA-bGH 
polyA that replaced the E3 region (CRAd Ad5PB_RSV-NIS). 
In vitro, infection of LNCaP PCa cells by the CRAd led to 
virus replication and cytolysis, and the release of infective 
viral particles. However, androgen receptor (AR)-negative 
PC-3 cells (PCa cell line) and Panc-1 cells (pancreatic cancer 
cell line) infected by the CRAd demonstrated no virus replica-
tion or cytolysis. In vivo, intratumoral injection with the CRAd 
and administration of therapeutic 131iodine in nude mice 
carrying LNCaP cell xenograft tumors markedly inhibited 
tumor growth and increased nude mice survival rates. As the 
RSV promoter induces the expression of therapeutic genes, it 
may be employed to target cancer cells and normal cells and 
tissues, and the RSV promoter has a low targeting effect (10). 
The above results demonstrate that the PB promoter is a 
prostate-specific promoter. The RDAd (Ad-ARR2PB-Bax) 
expressed the apoptotic Bcl2-associated X (Bax) gene 
driven by a PB promoter containing two androgen response 
elements (ARR). Following infection of LNCaP cells with 
Ad-ARR2PB-Bax, androgen dihydrotestosterone induced 
Bax-mediated apoptosis. This antitumor effect of RDAd was 
also observed in LNCaP xenograft tumors (30). These results 
indicate that adenoviruses with a PB promoter may employed 
to target AR-positive PCa.

Prostate‑specific membrane antigen (PSMA). PSMA is a 
type 2 intrinsic membrane protein on prostatic epithelial cells 
that is homologous with the serum transferrin receptor. PSMA 
is primarily expressed in PCa cells and is highly expressed in 
PCa and during metastasis (31-37). Gao et al (38) constructed 
a recombinant adenovirus that expressed human sodium 
iodide symporter (hNIS) driven by the PSMA promoter (Ad.
PSMApro-hNIS). Compared with the recombinant adeno-
virus containing a cytomegalovirus (CMV) promoter (Ad.
CMV-hNIS), expression of the hNIS gene induced by the 
PSMA promoter was highly prostate-specific in different 
LNCaP cell lines, particularly in the androgen-independent 
C81 LNCaP cell line. The antitumor effect of radioiodine 
therapy was improved in C81 cell xenografts in nude mice that 
received PSMA promoter-driven hNIS transfection compared 
with CMV promoter-driven hNIS transfection. A recombinant 
adenovirus, combined with the prodrug 5‑fluorocytosine, was 
developed to express the cytosine deaminase (CD) gene driven 
by a PSMA promoter and enhancer [Ad-PSMA (E-P)-CD]. 
This treatment caused PSMA-producing PCa cells (LNCaP 
and CL‑1) to regress and efficiently inhibited the growth of 
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CL-1 xenograft tumors. These results indicate that the PSMA 
promoter may be an important prostate-specific promoter 
for adenovirus-mediated treatment of PSMA-positive PCa 
cells (39).

Prostate cancer gene 3 (PCA3). PCA3 is a type of long 
non‑coding RNA that is one of the PCa‑specific markers 
discovered in recent years. Overexpression of PCA3 occurs 
in >95% of primary PCa and metastatic cancer speci-
mens, and is not observed in other normal tissues (40-42). 
Fan et al (43) developed two plasmids containing the 
differential display code (DD)3 of PCA3 promoter and the 
PSA promoter (pGL3-DD3 and pGL3-PSA, respectively). 
Luciferase activity demonstrated that the DD3 promoter and 
the PSA promoter exhibited similar activity in the LNCaP 
PCa cells. However, the DD3 promoter exhibited ~2-fold 
higher activity compared with the PSA promoter in DU145 
PCa cells. In non-PCa cell lines, the DD3 promoter exhibited 
a lower activity compared with the PSA promoter. Therefore, 
the results indicated that the DD3 promoter is more 
PCa‑specific. Furthermore, two oncolytic adenoviruses were 
developed to express interleukin (IL)-24 driven by the DD3 
promoter and the PSA promoter (Ad.DD3-E1A-IL-24 and 
Ad.PSA-E1A-IL-24, respectively). In vitro and in vivo, the 
antitumor effect of Ad.DD3-E1A-IL-24 was higher compared 
with Ad.PSA-E1A-IL-24. Further experiments demonstrated 
that the PCa specificity of the DD3 promoter was higher. 
Mao et al (44) reported that the expression of the E1A gene 
driven by the DD3 promoter of Ad-DD3-E1A occurred in 
LNCaP PCa cells and not in non-PCa cell lines (BT549 and 
RWPE2). These results indicate that the DD3 promoter may 
be useful as a PCa‑specific promoter with applications for 
PCa-targeting by adenovirus-mediated therapy.

Human telomerase reverse transcriptase (hTERT). Telomeres 
maintain cell chromosome stability and cell activity. Telomere 
activity is inhibited in normal cells, however, telomerase is 
reactivated in the majority of human tumor tissues (45-48). 
High activity of TERT occurs in PCa. However, the activity of 
TERT is low or absent in normal or benign prostatic hyperplasia 
tissue (49-52). OBP-301 is an oncolytic virus that contains the 
hTERT promoter (53-55). OBP-401 is an oncolytic virus that 
expresses green fluorescent protein (GFP) under control of 
the hTERT promoter (55-58). When OBP-401 was employed 
to infect different PCa cell lines (PrEC, PrSC, LNCaP, PC3 
and DU145), the expression of GFP occurred in LNCaP, PC3 
and DU145 PCa cell lines, but not in PrEC and PrSC normal 
prostate cell lines. Intratumoral injection with OBP-301 signif-
icantly inhibited LNCaP cell xenograft tumors in nude mice. 
In addition, histological and immunohistochemical analyses 
demonstrated diffuse oncolysis of tumor cells and the expres-
sion of the E1A protein in the tumors (59). Zhang et al (60) 
developed a recombinant adenovirus that expressed the herpes 
simplex virus-thymidine kinase (HSV-TK) gene driven by the 
hTERT promoter (Ad-hTERT-HSV-TK). Ad-hTERT-HSV-TK, 
combined with ganciclovir (GCV), effectively suppressed the 
growth of LNCaP cell xenograft tumors in nude mice. These 
results demonstrate that the hTERT promoter is a PCa‑specific 
promoter that may be useful in improving the PCa-targeting 
effect.
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Progression elevated gene‑3 (PEG‑3). PEG-3 was identi-
fied through subtraction hybridization of E11 or E11‑NMT 
cell xenograft tumors during the search for genes involved 
in malignant transformation and tumor progression. 
Various trans-acting factors activate PEG-3 in a number 
of human cancers, including PCa, breast and skin cancer, 
with limited activity observed in normal tissues. Therefore, 
PEG‑3 exhibits tumor specificity (61-65). Sarkar et al (66) 
constructed an oncolytic adenovirus expressing the melanoma 
differentiation-associated protein 7 (MDA-7)/IL-24 driven 
by the PEG-3 promoter (Ad.PEG-E1A-mda-7). Prostatic 
epithelial cells infected by Ad.PEG-E1A-mda-7 exhibited 
no expression of E1A and MDA-7, however, expression was 
observed in LNCaP, DU145 and PC-3 PCa cell lines infected 
by Ad.PEG-E1A-MDA-7. Ad.PEG-E1A-MDA-7 also mark-
edly inhibited the growth of DU145 cell xenograft tumors 
in vitro and in vivo (66). Greco et al (62) combined 
Ad.PEG-E1A-MDA-7 with ultrasound contrast agents (micro-
bubbles) to improve the PCa-targeting effect of the oncolytic 
adenovirus via ultrasonic guidance. The results demonstrated 
that microbubble/Ad.MDA-7 complexes markedly reduced the 
tumor burden in DU145 cell xenograft tumors in nude mice. 
These results indicate that use of the PEG-3 promoter in the 
recombinant adenovirus selectively induces the expression of 
therapeutic genes in PCa.

Bone sialoprotein (BSP). BSP, an acid glycoprotein that is a 
member of the small integrin-binding, N-linked glycoproteins 
family, is abundant in the extracellular matrix and is secreted 
by osteoblasts and osteoclasts (67,68). BSP is associated with 
the occurrence and development of tumors, and high expres-
sion of BSP has been reported in breast cancer, PCa, lung 
cancer, melanoma and other types of bone metastases (69-71). 
Canales et al (72) developed an oncolytic virus containing 
the BSP promoter (Ad-BSP-E1a). The oncolytic adenovirus, 
combined with small molecule antisense oligonucleotide-based 
inhibitors (GRN163) and Taxotere® (Sanofi S.A., Paris, France), 
markedly inhibited the growth of the C42B PCa cell line. In 
addition, Li et al (73) reported that the oncolytic adenovirus 
(Ad-BSP-E1a) inhibited C42B growth and also decreased PSA 
levels in vitro. In vivo, the oncolytic adenovirus suppressed the 
growth of subcutaneous and intraosseous xenograft tumors of 
the C42B PCa cell line in nude mice (73). These results indi-
cate that the recombinant adenovirus with the BSP promoter 
has PCa specificity and that CRAds with the BSP promoter 
have potential for the oncolysis of advanced PCa.

Human kallikrein 2 (hK2). hK2 is a serine protease that is 
member of the hK family that consists of a highly conserved 
sequence. hK2 is primarily produced by prostate epithelial 
cells (74,75) and is also expressed in breast, ovary, testis and 
other tissues, however, its expression is higher in prostate 
tissue (75-77). A previous study demonstrated that the hK2 
protein was expressed in PSA-negative prostate tumors and in 
each tumor cell (78). As a result, in addition to PSA, hK2 is 
considered to be an important marker of PCa. An oncolytic 
adenovirus mutant that expressed E1A under control of the 
hK2 promoter/enhancer was referred to as CV763. A study 
demonstrated that replication of CV763 was notably high 
in PSA-positive prostate tumor cells, but was attenuated in 

PSA-negative and non-prostate tumor cells. CV763 containing 
the PSA enhancer was referred to as CV764, and exhibited 
a higher therapeutic index for PSA-positive LNCaP PCa 
cells (79). The above results indicate that the adenovirus with 
the hK2 promoter may improve PCa specificity.

Osteocalcin (OC). OC, which is secreted by osteoblasts, is a 
marker of bone metabolism, and bone is the most common 
metastatic tissue of advanced PCa. The activity of osteo-
blasts is closely associated with bone metastasis of tumors. 
Therefore, OC produced by osteoblasts is also associated with 
the progression of PCa bone metastasis. Compared with PSA, 
OC has a high sensitivity and specificity for diagnosing PCa 
bone metastasis (80-84). Koeneman et al (85) constructed an 
RDAd that expressed HSV-TK driven by the OC promoter 
(Ad-OC-TK). Ad-OC-TK combined with GCV effectively 
destroyed PCa cell lines in vitro and PCa xenografts in vivo, in 
subcutaneous and bone sites. In phase I clinical trials, patients 
with local metastasis of PCa were treated with Ad-OC-TK. 
The results demonstrated that all patients reported an absence 
of severe side effects, and PCa cell death was observed during 
treatment (86). Matsubara et al (87) reported that an onco-
lytic adenovirus with the OC promoter effectively inhibited 
the growth of PCa cell lines (LNCaP, C4-2 and ARCaP). In 
addition, in vivo, this oncolytic adenovirus also markedly 
suppressed intraosseous xenograft tumors, and PSA levels 
decreased without a subsequent rebound. Furthermore, combi-
nation with vitamin D3 significantly enhanced the antitumor 
effect of Ad-OC-E1A (88). These results indicate that the 
recombinant adenovirus containing the OC promoter may be a 
promising treatment strategy for advanced PCa.

CCN1/CYR61 gene. Elevated expression of the CCN1/CYR61 
gene occurs in various cancers, such as advanced PCa, due 
to oncogenic transformation, and this expression increases 
with the aggressiveness of the transformed cells (89-91). 
Sarkar et al (92) developed a recombinant adenovirus that 
expressed MDA-7/IL-24 driven by a truncated (t)CCN1 
promoter (Ad. CCN1-CTV-m7). The MDA-7/IL-24 gene under 
the control of the tCCN1 promoter of Ad.tCCN1-CTV-m7 
exhibited high expression in PCa cells. In vitro, the 
Ad.tCCN1-CTV-m7 exerted a dose-dependent killing effect 
on PCa cells without injury to normal prostatic epithelial 
cells. In vivo, Ad.tCCN1‑CTV‑m7 significantly suppressed 
PCa cell xenograft tumors in transgenic Hi-Myc mice when 
combined with ultrasound-targeted microbubble-destruction. 
Furthermore, Ad.tCCN1-CTV-m7 combined with small 
molecule inhibitors of Mcl-1, and BI-97D6, improved apop-
tosis and tumor growth suppression in Hi-myc mice. These 
results indicate that the adenovirus with the tCCN1 promoter 
improved the PCa-targeting effect of the adenovirus and the 
ability of other treatments to destroy PCa cells.

Combination of promoter and/or enhancer. The combina-
tion of a promoter and/or enhancer is a common targeting 
strategy used to improve PCa specificity of recombinant 
adenoviruses (Table II). Lee et al (93) developed an RDAd 
with a prostate‑specific enhancing sequence (PSES) promoter 
that consisted of a PSA enhancer and PSMA enhancer 
(Ad-PSES-luc). Luciferase analysis demonstrated that high 
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expression of the luciferase gene occurred in PSA- and 
PSMA-expressing PCa cell lines in vitro following infection 
with Ad-PSES-luc. In vivo, when Ad-PSES-luc was injected 
into the prostate, high luciferase activity occurred in the pros-
tate, but not in other tissues. The expression of T-cell receptor 
γ‑chain alternate reading frame protein (TARP) is specific 
to prostate epithelial cells and PCa cells. The PPT promoter 
containing the PSA enhancer, the PSMA enhancer and the 
TARP promoter demonstrates a high specificity for the prostate. 
The H19 insulator is introduced upstream of the PPT sequence 
to protect the PPT promoter from transcriptional interference 
from adenoviral backbone sequences (94-97). Cheng et al (98) 
constructed an adenovirus vector that expressed the luciferase 
gene under control of the PPT promoter with the H19 insulator 
[Ad(I/PPT-Luc)]. The I/PPT promoter generated high activi-
ties in testosterone-deprived PCa cells and PC-346C PCa cell 
orthotopic xenograft tumors in nude mice. Cheng et al (95) 
also reported that an oncolytic adenovirus [Ad(I/PPT-E1A)] 
that infected hormone-dependent and hormone-independent 
PCa cell lines induced expression of the E1A protein, virus 
replication and cytolysis in vitro, and the growth of LNCaP 
cell xenograft tumors in nude mice was markedly inhibited 
in vivo. Furthermore, the recombinant adenovirus with 
the PPT promoter, a two‑step transcriptional amplification 
(TSTA) system, amplified [Ad(PPT/TSTA-Luc)]-enhanced 
prostate-specific transcriptional activity (97), and the Ad 
(I/PPT-E1A) with a reintroduced full-length E3 region [Ad 
(i/PPT-E1A, E3)] improved the cytopathic effect and suppres-
sion of PCa growth (96). Kraaij et al (99) reported that replication 
of an adenovirus with the PSA enhancer and the PB promoter 
(Ad5-PSA74-Pb4-EC) was observed in PCa cells. In addition, 
an oncolytic adenovirus with the PSA enhancer and the PB 
promoter (Ad5 PSE/PBN E1-AR), combined with low/high 
dose-rate radiation, exerted marked adenovirus-mediated 
PCa cell death (100). Furthermore, Yu et al (79) developed 
an oncolytic adenovirus with the PSA enhancer and the hK2 
promoter (CV764). Compared with CV763, CV764 enhanced 
the inhibitory effects on PCa in vitro and in vivo. These results 
demonstrate that a recombinant adenovirus combined with an 
enhancer and/or promoter produces a higher targeting effect 
and enhancement of the antitumor effects, which may indi-
cate that adenoviruses combined with other treatments may 
improve PCa specificity and the suppression of growth.

3. Modification of adenovirus capsid proteins to construct 
an adenovirus combined with specific cell surface 
receptors for infection of specific tissue or tumor cells 
efficiently deletes partial genes that are essential to 
adenoviral replication in normal cells but are unnecessary 
for adenoviral replication in tumor cells

Recombinant adenoviruses with modification of adenovirus 
capsid proteins may enhance the ability to infect PCa cells 
by binding to the novel receptors on the surface of the cells. 
Evidence of recombinant adenoviruses with modification of 
the adenovirus capsid proteins is presented in Table III.

Species C adenoviruses, such as Ad2 and Ad5, infect 
cells via Coxsackie-adenovirus receptors (CARs) on the cell 
surface (101). Different levels of CAR expression have been 
observed in various tumor types and CAR expression is 

downregulated in a number of tumors, such as CAR-negative 
PCa, which results in inefficient Ad-mediated therapeu-
tics (101). Incorporation of an arginine-glycine-aspartic acid 
(RGD) peptide into the HI loop of the adenovirus fiber knob 
allows adenoviruses to infect CAR-negative PCa cells via 
cell-surface integrin αvβ3/5, which is expressed by all PCa cell 
lines (101). Suzuki et al (101) developed an adenovirus mutant 
with an RGD‑fiber modification (Ad5‑Δ24RGD). Compared 
with an adenovirus mutant without the RGD‑fiber modification 
(Ad5-Δ24), Ad5-Δ24RGD exhibited a higher infection ability 
and an anti-PCa effect. A number of studies involving recom-
binant adenoviruses with RGD-fiber modification further 
confirmed that the RGD‑modified adenovirus may enhance 
the PCa-targeting effects in vitro and in vivo (102-105).

The generation of chimeric adenoviruses, in which one 
adenovirus fiber knob is replaced with a different adenovirus 
fiber knob, may alter the orientation of the adenovirus and 
enhance transduction targeting to improve the tumor cell 
infection efficiency. Azab et al (106) constructed a recom-
binant adenovirus in which the fiber knob was replaced 
with an Ad.3 fiber knob, and this construct expressed 
the MDA‑7/IL‑24 gene (Ad.5/3‑CTV). Compared with 
Ad.5‑CTV, Ad.5/3‑CTV exhibited a higher efficiency in 
inhibiting the viability of low-CAR human PCa cells in vitro, 
and also potently suppressed low-CAR PCa cell xenograft 
tumors in vivo. It has been reported that the Ad.3 receptor 
is highly expressed in tumor cells (107). Ad.5/3 infected 
the tumor cells via the Ad.3 receptor instead of CAR, and, 
therefore, it was able to infect tumor cells with low or no 
expression of CAR (107-109). Systemic treatment with 
Ad.5 is associated with serious hepatotoxicity and systemic 
toxicity (110). Xu et al (110) developed a chimeric oncolytic 
adenovirus that expressed soluble transforming growth 
factor β receptor II-Fc fusion protein (sTβRFc), the chimeric 
oncolytic adenovirus in which seven hypervariable regions 
of Ad.5 were substituted with the corresponding sequence of 
Ad48 (mHAd.sTβRFc). In vivo, mHAd.sTβRFc retained an 
inhibitory effect on PC-3 PCa bone metastases in nude mice, 
and also reduced the hepatotoxicity and systemic toxicity to 
indirectly improve the tumor-targeting effect. Serotype 35 
adenoviruses infect cells through cell surface CD46 recep-
tors, which are widely expressed on normal and cancer 
cells (111). Kim et al (111) constructed a novel chimeric 
recombinant adenovirus expressing monomeric red fluores-
cence protein (mRFP)/modified HSV‑TK (ttk) (Ad5/35PSES.
mRFP/ttk), which was driven by PSES and featured the 
serotype 35 fiber knob on the serotype 5 backbone. This 
chimera improved the cell infection efficiency, and the PSES 
enhanced the PCa-targeting effect. In vitro, replication assays 
demonstrated that Ad5/35PSES.mRFP/ttk replicated in 
PSES-positive PCa cells (LNCaP and CWR22rv) but not in 
PSES-negative PCa cells (DU145 and PC3). Evaluation of the 
cytotoxic activity demonstrated that Ad5/35PSES.mRFP/ttk 
killed LNCaP and CWR22rv cells more effectively. In addi-
tion, the chimeric oncolytic adenovirus Ad5/35E1aPSESE4 
also effectively killed PSA/PSMA‑positive PCa cells in the 
peripheral circulation (112).

4. Deletion of partial genes that are essential to adenoviral 
replication in normal cells but are unnecessary for 
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adenoviral replication in tumor cells

Binding of E1B-55K protein to the p53 gene inhibits 
p53-mediated normal cell apoptosis, therefore, oncolytic 
adenoviruses with the E1B-55K gene are able to survive in 
normal cells (113-115). Oncolytic adenoviruses with deletion 
of the E1B-55K gene have the ability to survive in tumor cells 
in which no apoptosis occurs due to p53 gene mutations or defi-
ciency. However, oncolytic adenoviruses with deletion of the 
E1B-55K gene cannot survive in normal cells due to p53-medi-
ated apoptosis (113). Mao et al (114) developed an oncolytic 
adenovirus with deletion of the E1B-55K gene, the oncolytic 
adenovirus that expresses short hairpin RNA targeting SATB 
homeobox 1 (SATB1; ZD55-SATB1). ZD55-SATB1 markedly 
inhibited the viability and invasion of PCa cell lines DU145 
and LNCaP, and suppressed PCa growth and metastasis in 
xenograft nude mice. Ding et al (115) reported that an onco-
lytic adenovirus mutant with the DD3 promoter and deletion 
of the E1B-55K gene, termed Ad.DD3.Δ55-PTEN, expressed 
phosphatase and tensin homolog (PTEN) to induce PCa cell 
apoptosis and inhibit the growth of xenograft tumors, however, 
Ad.DD3.Δ55-PTEN had no death-inducing effects in non-PCa 
cell lines.

The E1A conserved region 2 (E1A-CR2) normally binds 
to host cell retinoblastoma (Rb) protein and releases tran-
scription factor E2F, enabling S-phase entry and viral DNA 
replication. Oncolytic adenovirus E1A-CR2 (Rb-family 
binding site) mutants do not bind to Rb protein to induce 
normal cells to enter S phase and, therefore, are unable to 
efficiently replicate in quiescent normal tissues. However, 
oncolytic adenovirus E1A-CR2 mutants are able to replicate in 
tumor cells with Rb gene mutations as tumor cell growth is not 
solely dependent on Rb protein (14). In addition, adenovirus 
E1A-CR2 mutants combined with cytotoxic drugs (116) or 
radiotherapy (108) significantly enhance the inhibitory effect 
on castration-resistant PCa. A novel oncolytic adenovirus 
mutant with deletion of E1A-CR2 and E1B-19K, referred to as 
AdΔCR2Δ19K, demonstrated high cytotoxic effects in PCa, 
pancreatic cancer and lung cancer, and the replication ability 
of AdΔCR2Δ19K in tumor cells was similar to that of the 
wild-type virus (117). Radhakrishnan et al (116) constructed 
an oncolytic adenovirus mutant with deletion of E1A-CR2 and 
E3B (dl922-947). Compared with dl312 (ΔE1A and ΔE3B), 
dl1520 (ΔE1B-55K and ΔE3B) and Ad5 (wild-type), dl922-947 
exhibited the highest antitumor effect in hormone-independent 
PCa in vitro and in vivo. The combination of dl922-947 with 
low doses of mitoxantrone or docetaxel enhanced the efficacy. 
Furthermore, Satoh et al (118) developed a double-mutated 
adenovirus with a mutation in E1A-CR2 and deletion of 
E1B-55K (AxdAdB-3). In vitro, AxdAdB-3 exhibited a potential 
cytopathic effect in different PCa cell lines and demonstrated 
no cytotoxicity in PrEC and PrSC normal prostate cell lines. 
In vivo, AxdAdB-3 markedly inhibited the growth of PCa cell 
xenograft tumors in nude mice and improved survival.

Adenovirus mutants have substantial effects on the inhibi-
tion of the growth of PCa and a number of mutations in the E1 
region of the adenovirus are associated with these effects. A 
list of adenovirus mutants is presented in Table IV.

5. Clinical research on adenovirus‑mediated gene therapy 

and virotherapy for prostate cancer

Currently, viral gene therapy is an area of increasing interest in 
the field of tumor therapy. Adenovirus‑mediated gene therapy 
and virotherapy are among the most common research areas 
in viral gene therapy. As these therapies have demonstrated 
satisfactory anti-PCa effects in basic experiments, clinical 
trials have been performed. DeWeese et al (119) performed 
a phase I clinical trial in which 20 patients with PCa who 
had relapsed following radiotherapy were treated with CRAd 
CV706. The clinical results demonstrated a satisfactory treat-
ment effect on PCa without the presence of severe side effects. 
In addition, Freytag et al (120) constructed an oncolytic virus 
(ZD55‑CD/TKrep) with deletion of E1B‑55K and expression 
of the suicide gene CD/TKrep, which was employed to salvage 
therapy for 16 patients with PCa who had relapsed following 
radiotherapy. The clinical results indicated good safety and 
efficacy. A total of 16 patients were followed for 5 years 
and the survival rate was 88% (14/16 patients). Furthermore, 
Freytag et al (121) used an oncolytic virus (ZD55‑CD/TKrep) 
combined with external radiotherapy to treat 15 patients with 
high-risk PCa. The results demonstrated that the effect of 
combined therapy was higher compared with radiotherapy 
alone, however, contradictory clinical effects have also been 
reported regarding PCa in clinical trials. Small et al (122) 
conducted a phase I trial of intravenous CG7870 to treat 
hormone-refractory metastatic PCa. The results indicated a 
poor treatment effect, and patients with decreased serum PSA 
levels accounted for only 5/23 patients with PCa. However, no 
obvious side effects were observed in the 23 patients. Although 
the majority of clinical trials concerning adenovirus-mediated 
gene therapy and virotherapy have demonstrated good 
antitumor effects, biosafety issues arise with adenovirus treat-
ments, particularly tumor-targeting treatments, which limits 
clinical applications. Consequently, clinical trials involving 
adenovirus treatments have been stalled in phase I clinical 
trials. Currently, only one type of oncolytic adenovirus, H101 
with deletion of E1B-55K, has been approved for use in patients 
with advanced tumors, and this approval is only in China.

6. Future directions

Although adenoviruses constructed by different targeting 
strategies have demonstrated satisfactory targeting effects 
in the treatment of PCa, each targeting strategy is associ-
ated with certain limitations. The combined use of multiple 
targeting strategies to enhance the adenovirus targeting 
effect is one promising direction. Currently, several 
experiments with adenoviruses constructed using multiple 
targeting strategies have demonstrated that the adenoviruses 
markedly improve targeting and antitumor effects, including 
AxdAdB3‑F/RGD (105) with RGD‑fiber modification and 
the E1A/E1B double mutation, Ad5/3‑∆24‑hNIS (108) with 
the hybrid Ad5/3 fiber and 24‑bp deletion in the E1A‑CR2, 
and DD3-ZD55-SATB1 (114) with the DD3 promoter and 
E1D-55 K deletion, among others. Therefore, the joint use 
of targeting strategies is an important direction towards 
enhanced tumor targeting. A list of the adenoviruses 
constructed using multiple targeting strategies is presented 
in Table V.
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Another promising direction for tumor-targeting strategies 
takes advantage of the host immune system. The immune system 
is a potent defensive capability that protects the body from disease, 
including tumor development and progression. However, certain 
tumors exhibit host immune tolerance. Adenoviruses armed 
with cytokines or inhibitors are able to weaken tumor-associated 
immune checkpoint inhibition, and the host immune tolerance 
of the tumor may also be reduced (123-125). Following lysis of 
tumor cells infected by the adenovirus, tumor antigen exposure 
activates host tumor immunity to induce lysis of metastatic 
lesions (123). Several adenoviruses have been developed to 
trigger these oncolytic immunotherapeutic effects, and the 
results have been satisfactory in certain tumors. Adenovirus 
mutant Ad5Δ24/3‑RGD‑GM‑CSF, with expression of granulo-
cyte macrophage-colony-stimulating factor (GM-CSF), exhibits 
potent antitumor effects in PCa. This construct induced tumor 
cell death and activated T-cells in response to antigen presenta-
tion by exposure of the tumor antigen. The mounted immune 
response of the injected tumor improved immune recognition 
to attenuate the growth of distant metastases in PCa (123). 
Pexa-Vec, which is an oncolytic poxvirus expressing GM-CSF, 
markedly inhibited tumor progression by inducing host tumor 
immunity (124). A HSV-1 mutant, termed T-VEC, also expressed 
GM-CSF to activate antitumor immunity and induced regres-
sion of non-injected distal lesions in advanced melanoma (125). 
Although Pexa-Vec and T-VEC have not yet been used to treat 
PCa, we hypothesize that treatment of PCa with adenoviruses 
constructed using an identical strategy may achieve beneficial 
responses. Adenoviruses armed with cytokines or inhibitors are 
the most promising strategy for the targeted treatment of early- 
and late-stage PCa.

7. Conclusion

In conclusion, the tumor-targeting effect is the key point 
regarding adenovirus-mediated gene therapy and virotherapy. 
Targeting strategies have been increasingly developed in basic 
research, however, various limitations remain. Therefore, 
further research concerning targeting strategies is required to 
improve the safety of these therapies in the human body and to 
maximize the net benefit of adenovirus‑mediated gene therapy 
and virotherapy.
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