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Abstract. The present study analyzed gene expression arrays to 
identify differentially-expressed genes (DEGs) between myco-
phenolate mofetil (MMF)-treated and placebo-treated patients 
with symptomatic carotid artery stenosis (SCAS). In addition, 
the key genes involved in the pharmacology of MMF treatment 
in patients with SCAS were identified. The gene expression 
dataset was obtained from a Gene Expression Omnibus data-
base, which included 9 MMF-treated and 11 placebo-treated 
samples. The DEGs were identified between MMF and placebo 
groups using R software. Furthermore, a protein-protein inter-
action (PPI) network of the identified DEGS was constructed. 
The Database for Annotation, Visualization and Integrated 
Discovery was used to perform Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analyses of the 19 most significant DEGs. A total 
of 210 DEGs between the MMF and placebo groups were 
screened and their PPI was constructed. GO function analysis 
revealed that the 19 DEGs were predominantly involved in the 
tyrosine phosphorylation of signal transducer and activator of 
transcription-5 protein, which is closely associated with the 
activation of T cells. The KEGG pathway analysis suggested 
that the main metabolic pathways of the 19 DEGs were 
associated with the pharmacological functioning of MMF in 
activated T cells. In conclusion, the present study identified 
numerous key DEGs associated with SCAS, and the results 

suggested that v-kit Hardy-Zuckerman 4 feline sarcoma viral 
oncogene homolog and apelin may serve important roles in the 
MMF treatment of SCAS.

Introduction

Stroke is the fourth leading cause of mortality and disability 
in the United States (1), and 10-20% of strokes are caused by 
carotid artery disease (2,3). According to epidemiological 
data, ~7 million adults in the United States have suffered a 
stroke (4), of which ischemic strokes account for ~90% (5). 
In addition, ~10% of ischemic strokes are caused by carotid 
artery stenosis (CAS) (6). CAS refers to a narrowing or 
constriction of the lumen of the carotid artery, usually attrib-
uted to atherosclerosis (7). The dynamic and complex process 
of atherosclerosis remains to be fully understood; however, 
it is well known that atherosclerosis is characterized by the 
accumulation of lipid particles and fibrous elements, associ-
ated with migration and proliferation of smooth muscle cells, 
in the large arteries (8-10).

Over the past decade, inflammation and the immune 
response in atherosclerosis have garnered attention. Previous 
studies have indicated that low-density lipoprotein particles 
and their content inside the vessel wall are susceptible to oxida-
tion by free radicals, which may initiate the accumulation and 
invasion of macrophages, eventually lead to a narrowing of the 
major arteries (9,11).

During the progression of atherosclerosis, an imbalance 
between anti‑inflammatory and proinflammatory cytokines 
serves an important role. Previous studies have attempted to 
identify the immune-associated genes that are involved in 
atherosclerosis, and achievements have been made (12,13). 
Superoxide dismutase, which is expressed at higher levels in 
regions of laminar flow, may combat oxidative stress, and hence 
limit vascular cell adhesion molecule-1 (VCAM-1) expres-
sion and the expression of other inflammatory pathways (12). 
Nitric oxide arises from endothelial nitric oxide synthase, 
which is known to be a shear stress-regulated gene, and can 
inhibit VCAM gene expression through a novel pathway 
involving inhibition of the activation of nuclear factor-κB, 

Gene expression analysis: Regulation of key genes associated 
with mycophenolate mofetil treatment of 

symptomatic carotid artery stenosis
FENG JIN1*,  KAI WANG2*,  XIAOCHUAN SUN3,  ZHANPU ZHANG2  and  PING HAN1

1Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 
Wuhan, Hubei 430022; 2Department of Neurosurgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 

Inner Mongolia 010050; 3Department of Neurosurgery, The First Affiliated Hospital 
of Chongqing Medical University, Chongqing 630014, P.R. China

Received December 1, 2016;  Accepted June 30, 2017

DOI: 10.3892/mmr.2017.7532

Correspondence to: Dr Ping Han, Department of Radiology, Union 
Hospital, Tongji Medical College, Huazhong University of Science 
and Technology, 1277 Jiefang Avenue, Wuhan, Hubei 430022, 
P.R. China
E-mail: cjr.hanping@vip.163.com

*Contributed equally

Key words: carotid artery stenosis, atherosclerosis, genes, pathway 
analysis, protein-protein interaction network



JIN et al:  KIT AND APLN SERVE A CRITICAL ROLE IN THE MMF TREATMENT OF SCAS 7451

the central transcription factor in vascular inflammation (13). 
In addition, previous studies have reported that interleukin 
(IL)‑35 may upregulate the expression of anti‑inflammatory 
cytokines (14-16). Huang et al (17) investigated the effects of 
IL-35 on atherosclerosis and hypothesized that IL-35 could be 
considered a novel target for the treatment of atherosclerosis. 
However, the majority of genes relevant to atherosclerosis 
remain unknown.

Mycophenolate mofetil (MMF) is an inhibitor of the 
enzyme inosine monophosphate dehydroxygenase (IMPDH), 
and exerts a powerful cytostatic effect on activated T cells by 
interfering with their DNA synthesis (18). In the present study, 
gene expression data were obtained from a Gene Expression 
Omnibus (GEO) dataset uploaded by van Leuven et al (19), 
which included 20 carotid endarterectomy samples from 
patients with CAS (>70% diameter stenosis on angiography) 
that were randomly assigned to the following treatment 
groups: Treatment with 1,000 mg MMF (n=9) or placebo 
(n=11). Patients were treated with MMF or placebo for 
≥2 weeks prior to undergoing carotid endarterectomy (CEA). 
van Leuven et al (19) reported that the inflammatory process 
in human atherosclerotic plaques could be modified by 
short-term treatment with MMF, as determined using mRNA 
expression profiling. However, this previous study did not 
analyze the expression data in detail, nor did it determine 
how MMF functioned in the treatment of symptomatic CAS 
(SCAS) or the molecular mechanisms of SCAS.

In the present study, the gene expression data were used 
to identify differentially-expressed genes (DEGs) between 
MMF-treated and placebo-treated groups, with the aim of 
identifying potential genes associated with atherosclerosis, 
which may be considered targets for novel gene therapy. A 
total of 210 DEGs between the MMF and placebo groups 
were identified with a threshold of P<0.05. After analyzing 
the regulatory effects, a regulatory network was constructed 
based on the DEGs. Subsequently, the data were processed by 
bioinformatic analyses, including hierarchical clustering, Gene 
Ontology (GO) terms (molecular function, biological processes 
and cellular components) analysis and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway analysis. Finally, the 19 
most significant DEGs were screened; the results of these anal-
yses indicated that apelin (APLN) and v-kit Hardy-Zuckerman 
4 feline sarcoma viral oncogene homolog (KIT) may be 
valuable for characterizing the mechanism underlying immu-
nomodulatory therapy in atherosclerosis.

Materials and methods

Datasets. The GSE13922 original mRNA expression profile 
used in the present study was downloaded from the National 
Center of Biotechnology Information GEO (www.ncbi.nlm.
nih.gov/geo/). The platform used to analyze these data was 
the GPL6255 Illumina humanRef-8 v2.0 expression beadchip 
(Illumina, San Diego, CA, USA).

Identification of DEGs. Background correction and quartile 
data normalization of the downloaded data were performed 
using the robust multi-array average (RMA) algorithm (20). 
Probes without a corresponding gene symbol were filtered 
and the average value of gene symbols with numerous probes 

was calculated. The expression profile dataset, including 
13,985 genes for the 20 samples, was subsequently obtained. 
Student's t-test was used to identify DEGs between the MMF 
and placebo groups using the R software LIMMA package 
(version 3.3.1; www.r‑project.org) (21). Genes with P<0.05 were 
considered DEGs and genes with P<0.01 were considered the 
most significant DEGs between the two treatment groups. The 
most significant DEGs were screened between the MMF and 
placebo groups using principal components analysis (PCA). 
Cluster analysis of the most significant DEGs was applied to 
generate a heat map, which allowed for visualization of the 
differential gene expression between the two groups.

Protein‑protein interaction (PPI) network construction and 
analysis. The PPI network was constructed from 210 DEGs 
using the STRING online database (www.string-db.org/). 
PPI pairs with an interaction score >0.4 were used to construct 
the PPI network. Subsequently, the regulatory relationships 
between genes were analyzed according to the topological 
properties of the network. With a threshold of P<0.05 and 
|logFC|≥0.5, the key genes in the network were further 
screened.

Functional analysis of various DEGs. In order to identify 
biological functions associated with the pathogenesis of 
atherosclerosis, bioinformatics analyses, including hier-
archical clustering, GO (22) terms (molecular function, 
biological processes, cellular components) analysis and 
KEGG (23) pathway analysis, were conducted for the most 
significant DEGs, using the online Database for Annotation, 
Visualization and Integrated Discovery tool (24), based on the 
method of Expression Analysis Systemic Explorer (EASE) 
test (25). The enrichment threshold was an EASE score of 0.1.

Results

Data processing. A total of 13,985 genes in 20 samples were 
obtained after preprocessing of the expression profile. The 
original expression datasets were processed into expression 
estimates using the RMA method. As presented in the box 
plot in Fig. 1, the median of different samples was almost the 
same following normalization, which indicated a great degree 
of standardization.

Identification of DEGs. The DEGs between the MMF and 
placebo groups were identified using LIMMA package (21) 
in R software. A total of 210 DEGs were identified with the 
threshold of P<0.05, including 19 most significant DEGs 
with the threshold of P<0.01 (Table I). Analysis of the most 
significant DEGs revealed that there were 14 up- and 5 
downregulated genes (Fig. 2). As presented in Fig. 3, all of 
the selected DEGs were screened using PCA to distinguish 
between the MMF and placebo groups. In the first principal 
components, 50.82% of variances were explained, whereas 
in the second principal component, 9.73% of variances were 
explained. In total, the resolution degree of variances was 
60.55%.

PPI network construction and analysis. A total of 189 PPI pairs 
were obtained from the STRING database. After wiping out 
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Figure 1. Box plot of the mRNA microarray datasets after nor malization. The horizontal axis represents the name of the samples, whereas the vertical axis 
represents the expression value. Short black lines are used to identify the degree of standardization. MMF, mycophenolate mofetil.

Table I. List of the 19 most significant DEGs (P<0.01).

Gene symbol Gene name P-value logFC

AK4 Adenylate kinase 4 0.0042 0.4736
APLN   Apelin 0.0092 0.5261
CKB Creatine kinase, brain 0.0011 0.9570
CSF2 Colony stimulating factor 2 (granulocyte-macrophage) 0.0097 0.2979
EBI3 Epstein-Barr virus induced 3 0.0048 -0.7416
ECE1 Endothelin converting enzyme 1 0.0088 0.1873
FAM102A Family with sequence similarity 102, member A 0.0057 -0.2496
GFRA2 GDNF family receptor α2 0.0068 0.7860
GPM6B Glycoprotein M6B 0.0064 0.7289
HDC Histidine decarboxylase 0.0045 0.9700
KIT V-Kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog 0.0018 0.6283
LMO4 LIM domain only 4 0.0037 0.3623
MGST2 Microsomal glutathione S-transferase 2 0.0049 -0.3100
MRPL30 Mitochondrial ribosomal protein L30 0.0031 0.1626
NSDHL NAD(P) dependent steroid dehydrogenase-like 0.0082 0.3269
POLR2I Polymerase (RNA) II (DNA directed) polypeptide I, 14.5kDa 0.0053 0.2292
RRM1 Ribonucleotide reductase catalytic subunit M1 0.0094 0.2653
SCIN Scinderin 0.0022 -0.9358
WDR41 WD repeat domain 41 0.0042 0.4693 

FC, fold change.
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the pairs isolated from the major network, the PPI network 
composed of 172 edges and 105 nodes (Fig. 4). In the network, 
nodes represent genes and edges represent the interaction 
between genes. The PPI network of DEGs was in a state of 
high aggregation, which is an essential property of biological 
networks. With a threshold degree ≥3, a total of 43 genes were 
selected (Table II). As shown in Fig. 4, tumor protein p53 
(degree, 33) and E1A binding protein P300 (degree, 18) had 
more degrees than the other DEGs.

GO functional analysis. Using a threshold of P<0.05, a 
total of 401 significant GO terms were enriched and the top 
10 enriched terms for each category are presented in Fig. 5; 
only 8 terms were enriched in cellular components. The most 
enriched GO terms of the DEGs were mainly associated with 
tyrosine phosphorylation of signal transducer and activator 
of transcription-5 (Stat5) protein, which is closely associated 
with the activation of T cells.

KEGG pathway enrichment analysis. Using a threshold 
of P<0.05, a total of 6 significant KEGG pathways were 
enriched (Fig. 6). The most enriched KEGG pathways of 
the DEGs were mainly associated with the pharmacological 
functioning of MMF in activated T cells, including purine 
metabolism, glutathione metabolism and pyrimidine metabo-
lism.

Discussion

The treatment of CAS includes three modalities: Medical 
management, carotid artery angioplasty and stenting, and 
CEA (26). However, there are doubts regarding the efficacy of 
carotid artery angioplasty and stenting, and CEA, in specific 
patients (27-29). Previous studies have aimed to identify novel 
treatments and medications for atherosclerosis. Following 
construction of the hypercholesterolaemic apolipoprotein 
E‑deficient murine model, Chen et al (30) demonstrated that 
preimplantation factor could prevent atherosclerosis via its 
immunomodulatory effects without affecting serum lipids. In 
addition, Sun et al (31) developed trifunctional Simian virus 40 
(SV40)-based nanoparticles for in vivo targeting and imaging 
of atherosclerotic plaques, and targeted SV40 virus-like 
nanoparticles were revealed to deliver a greater concentration 
of the anticoagulant drug Hirulog to atherosclerotic plaques.

It is well known that MMF is a T cell suppressor, which 
is able to reduce synthesis of guanine via IMPDH inhibi-
tion, resulting in the suppression of T cell proliferation (32). 
van Leuven et al (19) demonstrated that treatment with 

Figure 2. Hierarchical clustering dendrogram of gene expression. A total of 19 DEGs were screened in carotid endarterectomy samples from 11 MMF-treated 
and 9 placebo-treated patients with symptomatic coronary artery stenosis. A change in color from red to blue indicated high to low expression. DEGs, 
differentially-expressed genes; MMF, mycophenolate mofetil.

Figure 3. PCA of the 19 differentially-expressed genes from 20 samples. 
The horizontal axis represents the scores of first principal components 
and the vertical axis represents the scores of second principal components 
of samples. In the first principal components, 50.82% of variances were 
explained, whereas in the second principal component, 9.73% of variances 
were explained. Totally, the resolution degree of variances was 60.55%. PCA, 
principal components analysis.
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MMF was able to reduce inflammatory cell infiltration, with 
a concomitant decrease in proinflammatory gene expres-
sion in patients with SCAS. The present study downloaded 

and analyzed a GEO mRNA expression profile uploaded 
by van Leuven et al (19). A total of 210 DEGs were identi-
fied between MMF-treated and placebo-treated groups. 

Table II. DEGs with degree ≥3.

Gene symbol Gene name P-value logFC Degree

CKB Creatine kinase B 0.0011 0.957 3
KIT KIT proto-oncogene receptor tyrosine kinase 0.0018 0.6283 10
AK4 Adenylate kinase 4 0.0042 0.4736 7
POLR2I RNA polymerase II subunit I 0.0053 0.2292 4
APLN Apelin 0.0092 0.5261 3
RRM1 Ribonucleotide reductase catalytic subunit M1 0.0094 0.2653 7
CSF2 Colony stimulating factor 2 0.0097 0.2979 7
ENO2 Enolase 2 0.0143 0.5576 4
NUP98 Nucleoporin 98 0.0174 0.1405 5
TLR4 Toll like receptor 4 0.0179 -0.422 8
NES Nestin 0.0189 0.481 3
CD2BP2 CD2 cytoplasmic tail binding protein 2 0.019 0.1659 3
PPP3CA Protein phosphatase 3 catalytic subunit α 0.019 0.2495 5
COPS6 COP9 signalosome subunit 6 0.0196 0.2328 4
FST Follistatin 0.0199 0.7444 3
EP300 E1A binding protein p300 0.0202 0.2351 18
BBS10 Bardet-Biedl syndrome 10 0.0211 0.2222 5
MAP1B Microtubule associated protein 1B 0.0215 0.1588 3
HNRNPA3 Heterogeneous nuclear ribonucleoprotein A3 0.022 0.2015 5
PDE4D Phosphodiesterase 4D 0.023 0.2095 4
SOD2 Superoxide dismutase 2, mitochondrial 0.0236 0.3115 5
PRKDC Protein kinase, DNA-activated, catalytic polypeptide 0.0252 0.3726 6
TFDP2 Transcription factor Dp-2 0.026 0.232 5
GPX1 Glutathione peroxidase 1 0.0261 -0.7343 4
PTGES Prostaglandin E synthase 0.0275 0.2743 3
ACO1 Aconitase 1 0.0303 0.3555 7
RAN RAN, member RAS oncogene family 0.0306 0.3282 3
COL5A3 Collagen type V α3 chain 0.0316 0.1173 3
USF1 Upstream transcription factor 1 0.0332 -0.4322 3
SOX9 SRY-box 9 0.0345 0.2414 7
PDE2A Phosphodiesterase 2A 0.0356 0.1566 3
CHMP2A Charged multivesicular body protein 2A 0.0361 0.1974 3
AK8 Adenylate kinase 8 0.0362 0.2411 8
DHX9 DEAH-box helicase 9 0.0367 0.1559 5
LEP Leptin 0.0373 0.7399 7
TP53 Tumor protein p53 0.038 0.1518 33
YWHAE Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase  0.0383 0.1716 5
 Activation protein epsilon
MCM4 Minichromosome maintenance complex component 4 0.0393 0.2495 5
PFKP Phosphofructokinase, platelet 0.0395 0.3782 4
LMNA Lamin A/C 0.0446 0.4168 5
CCT3 Chaperonin containing TCP1 subunit 3 0.0446 0.2518 5
BMP2 Bone morphogenetic protein 2 0.0458 0.1583 11
DYRK1A Dual specificity tyrosine phosphorylation  0.0495 ‑0.2047 5
 Regulated kinase 1A 

FC, fold change. Gene symbols shown in bold represent genes with P<0.01 and underlined genes represent the gene with |log fold change|≥0.5.
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Subsequently, the 19 most significant DEGs were selected to 
undergo GO functional analysis and KEGG pathway enrich-
ment analysis. The results revealed that the most enriched 

KEGG pathway was purine metabolism, indicating that 
suppression of inflammatory activity served an important role 
in the MMF treatment of patients with SCAS. Furthermore, 

Table III. Most significantly enriched GO terms (P<0.001).

GO ID GO term Associated genes

GO:0048513 Organ development  AK4, APLN, CKB, CSF2, ECE1, GPM6B, KIT, 
LMO4, NSDHL, SCIN

GO:0048731 System development  AK4, APLN, CKB, CSF2, ECE1, GFRA2, 
GPM6B, KIT, LMO4, NSDHL, SCIN

GO:0042523 Positive regulation of tyrosine CSF2, KIT
 phosphorylation of Stat5 protein
GO:0042522 Regulation of tyrosine phosphorylation CSF2, KIT
 of Stat5 protein
GO:0042506 Tyrosine phosphorylation of Stat5 protein CSF2, KIT
GO:0030219 Megakaryocyte differentiation KIT, SCIN
GO:0048856 Anatomical structure development  AK4, APLN, CKB, CSF2, ECE1, GFRA2, 

GPM6B, KIT, LMO4, NSDHL, SCIN
GO:0007275 Multicellular organismal development  AK4, APLN, CKB, CSF2, ECE1, GFRA2, 

GPM6B, KIT, LMO4, NSDHL, SCIN
GO:0044087 Regulation of cellular component biogenesis CSF2, GPM6B, LMO4, SCIN
GO:0034311 Diol metabolic process AK4, HDC

Figure 4. Protein-protein interaction network of DEGs. Red nodes represent upregulated DEGs, and green nodes represent downregulated DEGs; the 
connecting lines represent the interactions between DEGs. The size of the node is proportional to the degree of the DEG. DEGs, differentially-expressed genes.
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with a threshold of degree ≥3 and |logFC|≥0.5, three genes, 
APLN, creatine kinase B (CKB) and KIT, were selected as the 
key genes.

APLN is a peptide, which was initially identified by 
Tatemoto et al in 1998 (33), that functions as an endog-
enous ligand for the orphaned G-protein-coupled receptor 
(APJ) (34). Previous studies have revealed that APJ deficiency 
can prevent oxidative stress-associated atherosclerosis and 
that the APLN-APJ system is a mediator of oxidative stress 
in vascular tissue (33,35-37). In the present study, expression 
of APLN was significantly different between MMF‑treated 
and placebo-treated groups, and APLN was a key gene in 
the PPI network, indicating that APLN may be a target of 
MMF for the treatment of SCAS. According to the results 
of the KEGG analysis, purine metabolism was the most 
enriched signaling pathway, indicating that MMF modified 
the atherosclerotic plaque by suppressing activated T cells. 

Recent studies have also reported that APLN is involved in 
the immune response (38,39). By analyzing the expression 
and function of the APLN-APJ system in tumor vascula-
ture, Kidoya et al (38) indicated that the APLN-APJ system 
could induce maturation of tumor vasculature and improve 
the efficiency of immune therapy. The results of the GO 
analysis suggested that terms associated with Stat5 were the 
most enriched, including tyrosine phosphorylation of Stat5 
protein, regulation of tyrosine phosphorylation of Stat5 
protein and positive regulation of tyrosine phosphorylation of 
Stat5 protein (Table III). Previous studies have indicated that 
Stat5 has a strong association with T cells. Lindahl et al (40) 
provided evidence to suggest that microRNA-21 is expressed 
in situ in cutaneous T cell lymphomas skin lesions, as induced 
by IL-2 and IL-15 cytokines, and is regulated by Stat5 in 
malignant T cells. The APLN-APJ system is also involved 
in the immune response and Stat3. Han et al (41) indicated 

Figure 5. GO term analysis, separated into biological process, cellular component and molecular function categories, for differentially-expressed genes. Top 
10 enriched terms of each category are shown; only 8 terms are presented for cellular components. Red bars represent biological process terms; yellow bars 
represent cell component terms; blue bars represent molecular function terms. The vertical axis represents the GO category and the horizontal axis represents 
the ‑log (p‑value). P<0.05 was used as the threshold for selecting significant GO categories. GO, Gene Ontology.
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that binding of phosphorylated-Stat3 to the APLN promoter 
is the final step underlying proinflammatory cytokine‑induced 
enteric APLN expression during intestinal inflammation. 
However, whether APLN is involved in the Stat5 signaling 
remains to be elucidated. It may be hypothesized that APLN 
affects T cells through the Stat5 signaling pathway; however, 
further studies are required.

Mast/stem cell growth factor receptor, also known as 
proto-oncogene c-Kit, tyrosine-protein kinase Kit, or cluster 
of differentiation 117 is a receptor tyrosine kinase protein that 
in humans is encoded by the KIT gene (42). The GO analysis 
results revealed that KIT was closely associated with tyrosine 
phosphorylation of Stat5 protein, thus indicating that dysregu-
lation of Stat5 may be important in the process of SCAS.

Brain-type creatine kinase is a creatine kinase encoded by 
the CKB gene in humans, which is associated with creatine 
kinase activity and cellular monovalent inorganic anion 
homeostasis (43). However, to the best of our knowledge, the 

involvement of CKB in the process of SCAS has not yet been 
reported.

In conclusion, APLN and KIT may serve important roles in 
the MMF treatment of SCAS. The results of the present study 
suggested that MMF may upregulate APLN to inhibit the 
proliferation of T cells through the Stat5 signaling pathway. 
Further investigation of the function of APLN and KIT in 
atherosclerosis is urgently required.
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