
MOLECULAR MEDICINE REPORTS  16:  7191-7198,  2017

Abstract. Calbindin‑D28k (CB), calretinin (CR) and 
parvalbumin (PV), which regulate cytosolic free Ca2+ 

concentrations in neurons, are chemically expressed in 
γ‑aminobutyric acid (GABA)ergic neurons that regulate the 
degree of glutamatergic excitation and output of projection 
neurons. The present study investigated age‑associated 
differences in CB, CR and PV immunoreactivities in the 
somatosensory cortex in three species (mice, rats and gerbils) 
of young (1 month), adult (6 months) and aged (24 months) 
rodents, using immunohistochemistry and western blotting. 
Abundant CB‑immunoreactive neurons were distributed in 
layers II and III, and age‑associated alterations in their number 
were different according to the species. CR‑immunoreactive 

neurons were not abundant in all layers; however, the number 
of CR‑immunoreactive neurons was the highest in all adult 
species. Many PV‑immunoreactive neurons were identified in 
all layers, particularly in layers II and III, and they increased 
in all layers with age in all species. The present study 
demonstrated that the distribution pattern of CB‑, CR‑ and 
PV‑containing neurons in the somatosensory cortex were 
apparently altered in number with normal aging, and that 
CB and CR exhibited a tendency to decrease in aged rodents, 
whereas PV tended to increase with age. These results indicate 
that CB, CR and PV are markedly altered in the somatosensory 
cortex, and this change may be associated with normal aging. 
These findings may aid the elucidation of the mechanisms of 
aging and geriatric disease.

Introduction

The somatosensory cortex, which is a part of the neocortex, 
receives the majority of general sensory signals for interpreta-
tion. The mammalian somatosensory cortex is divided into six 
layers containing many types of neurons, which have different 
functions. The superficial layers (layers I, II/III and IV), 
considered to be the most integrative layers, collect sensory 
information and distribute outputs to other cortical areas (1). 
The deeper layers (layers V and VI), which are output layers 
of the neocortex, innervate their associated cortical areas and 
subcortical nuclei (1).

The neocortex contains glutamatergic pyramidal cells and 
γ‑aminobutyric acid (GABA)ergic non‑pyramidal cells (2,3), 
and GABAergic neurons constitute 20 to 30% of neurons (4). 
GABAergic neurons suppress and modulate pyramidal cell 
activities, and maintain the balance between excitation and 
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inhibition, which is crucial for normal brain function  (5). 
GABAergic neurons are divided into subtypes depending on 
their morphological, electrophysiological and chemical char-
acteristics (3). Calbindin‑D28k (CB)‑, calretinin (CR)‑ and 
parvalbumin (PV)‑containing neurons are chemically distinct 
subgroups of GABAergic interneurons, and the proteins are 
known as high‑affinity cytosolic calcium (Ca2+) binding 
proteins (CBPs) that regulate cytosolic free Ca2+ concentra-
tions within neurons (6,7). Ca2+ signaling is crucial in neuronal 
functions, such as neurotransmitter release and neuronal 
membrane excitability  (8); therefore, altered regulation of 
intracellular Ca2+ concentration may be a major cause of brain 
aging or neuronal damage/death in ischemic insults and neuro-
degenerative diseases, including Parkinson's and Alzheimer's 
disease (9‑11).

Previous studies have revealed the age‑associated 
alterations in CBPs in various brain regions, including the 
hippocampus, striatum and cerebellum (12,13). In addition, 
certain studies have reported the distribution and morpholog-
ical characteristics of CBP‑containing neurons in the cerebral 
cortex of mice (14), rats (3,15) and humans (16). However, 
there are few studies regarding the age‑associated alterations 
in CBP‑containing neurons in the somatosensory cortex of 
mice, rats and gerbils. Therefore, the aim of the present study 
was to compare age‑associated alterations in the expression 
levels of three CBPs (CB, CR and PV) in the somatosensory 
cortex between mice, rats and gerbils, which are useful animal 
models for evaluating aging (17‑20).

Materials and methods

Experimental animals. Male ICR mice (n=36) and Sprague 
Dawley rats (n=21) were purchased from Orient Bio Inc. 
(Seongnam, South Korea), and male Mongolian gerbils 
(Meriones  unguiculatus, n=21) were obtained from the 
Experimental Animal Center, Kangwon National University 
(Chuncheon, South Korea). The animals were used at post-
natal month (PM) 1 (mice 13‑15 g, rats 100‑130 g and gerbils 
25‑30 g), PM 6 (mice 25‑27 g, rats 400‑450 g and gerbils 
65‑75 g) and PM 24 (mice 27‑30 g, rats 600‑700 g and gerbils 
85‑95 g), and defined as young, adult and aged, respectively, 
as the average lifespan of the three species is similar (21‑23). 
The animals were housed in a conventional condition under 
an adequate temperature (23±3˚C) and relative humidity 
(55±5%) with a 12 h light:dark cycle and were allowed free 
access to food and water. The animals were used according 
to the guidelines that are in compliance with the current 
international laws and policies (Guide for the Care and Use 
of Laboratory Animals, The National Academies Press, 8th 
Edition, 2011) (24) and experiments were approved by the 
Institutional Animal Care and Use Committee at Kangwon 
National University (approval no. KW‑130424‑3).

Immunohistochemistry. To investigate the age‑associated 
alterations in CB, CR and PV immunoreactivity in the 
somatosensory cortex of the three types of rodents, immu-
nohistochemical staining and quantitative analysis of 
immunohistochemical data were performed according to 
our previously study (25). Briefly, animals (n=7 at each age 
in each group) were anesthetized with pentobarbital sodium 

(40 mg/kg; JW Pharmaceutical Co., Ltd., Seoul, South Korea) 
and perfused transcardially with 4% paraformaldehyde. 
Subsequently, the brain tissue samples were serially sliced into 
30 µm coronal sections. Rabbit anti‑CB (MAB1778; 1:1,000; 
Chemicon International, Inc., Temecula, CA, USA), mouse 
anti‑CR (MAB1568; 1:1,000; Chemicon International, Inc.) 
or rabbit anti‑PV (AB9312; 1:1,000; Chemicon International, 
Inc.) primary antibodies were used to incubate the sections 
overnight at 4˚C. A negative control test was performed using 
preimmune serum instead of a primary antibody in order to 
establish the specificity of the immunostaining. The negative 
control resulted in the absence of immunoreactivity in any 
neurons.

According to anatomical landmarks corresponding to ante-
rioposterior from +1.34 to ‑0.94 mm (mouse brain atlas) (26), 
from +1.70 to ‑1.40 mm (rat brain atlas) (27) and from +0.70 
to ‑0.90 mm (gerbil brain atlas)  (28), seven sections with 
120‑µm intervals per animal were selected to quantitatively 
analyze CB, CR and PV immunoreactivity. As previously 
described (29), digital images of the somatosensory cortex 
were captured using an AxioM1 light microscope (Carl Zeiss 
AG, Oberkochen, Germany) equipped with a digital camera 
(Axiocam; Carl Zeiss AG) connected to a PC monitor. CB‑, 
CR‑ and PV‑immunoreactive neurons were counted in a desig-
nated column (all layers) of the somatosensory cortex (300‑µm 
width), which was sequentially moved from the cortical surface 
to the white matter using an image analyzing system (Optimas 
software version 6.5; Media Cybernetics, Inc., Rockville, MD, 
USA). Cell counts were obtained by averaging the counts from 
each animal. The mean number was calibrated as a percentage, 
with the young group defined as 100%.

Western blot analysis. To compare CB, CR and PV levels in 
the somatosensory cortex according to age, mice (n=5 per age, 
mice used only to minimize the size of experimental groups) 
were used. Western blot analysis was performed according 
to our previous study (25). Briefly, the tissue samples were 
homogenized in 50 mM phosphate‑buffered saline (pH 7.4) 
containing 0.1  mM ethylene glycol bis(2‑aminoethyl 
ether)‑N,N,N',N'tetraacetic acid (pH  8.0), 0.2% Nonidet 
P‑40, 10  mM ethylendiamine tetraacetic acid (pH  8.0), 
15 mM sodium pyrophosphate, 100 mM β‑glycerophosphate, 
50 mM NaF, 150 mM NaCl, 2 mM sodium orthovanadate, 
1 mM phenylmethylsulfonyl fluoride and 1 mM dithioth-
reitol (DTT). Following centrifugation (at 16,000 x g for 
20 min at 4˚C), the protein level in the supernatants was 
determined using a Pierce Bicinchoninic Protein Assay kit 
(Thermo Fisher Scientific, Inc., Waltham, MA, USA) with 
bovine serum albumin serving as a standard according to 
the manufacturer's protocols. Aliquots containing 20 µg total 
protein were boiled in loading buffer containing 150 mM 
Tris (pH  6.8), 3  mM DTT, 6% SDS, 0.3% bromophenol 
blue and 30% glycerol. The aliquots containing 20 µg total 
protein were then loaded onto a 12% polyacrylamide gel. 
Following electrophoresis, the proteins were transferred to 
nitrocellulose transfer membranes (Pall Corporation, Port 
Washington, NY, USA). The membranes were incubated with 
rabbit anti‑CB (MAB1778; 1:1,000; Chemicon International, 
Inc.), rabbit mouse anti‑CR (MAB1568; 1:1,000; Chemicon 
International, Inc.), rabbit anti‑PV (AB9312; 1:1,000; 
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Chemicon International, Inc.) or mouse anti‑β‑actin (A5316; 
1:5,000; Sigma‑Aldrich; Merck KGaA, Darmstadt, Germany) 
primary antibodies overnight at 4˚C. Following washing 
with PBST three times, the membranes were incubated with 
peroxidase‑conjugated mouse anti‑goat (sc‑2354; dilution, 
1:5,000) or mouse anti‑rabbit (sc‑2357; dilution, 1:5,000; both 
from Santa Cruz Biotechnology) for 1 h at room temperature. 
Western blot analysis was performed with three repetitions. 
The results of the western blot analysis were scanned, and 
densitometric analysis for the quantification of the bands 
was performed using ImageJ software version 1.49 (National 
Institutes of Health, Bethesda, MD, USA), which was used 
to count relative optical density (ROD). CB, CR and PV 
levels were normalized to that of β‑actin, which served as an 
internal control protein. A ratio of the ROD was calibrated as 
a percentage, with the young group defined as 100%.

Statistical analysis. The data are presented as the 
mean ± standard error of the mean. Differences among the 
groups were statistically analyzed by one‑way analysis of vari-
ance with a post hoc Bonferroni's multiple comparison test in 
order to elucidate age‑associated differences among groups 
using SPSS software version 12.0 (SPSS, Inc., Chicago, IL, 
USA). P<0.05 was considered to indicate a statistically signifi-
cant difference.

Results

CB immunoreactivity
Mice. Numerous CB‑immunoreactive neurons were identified 
in the young mice in all of the layers (Fig. 1); however, the 
density of the CB‑immunoreactive neurons was markedly 
higher in layers II and III when compared with the other 
layers (Fig.  1A and J). In the adult mice, the distribution 
pattern of CB‑immunoreactive neurons was similar to that 
of the young mice; however, the percentage mean number of 
CB‑immunoreactive neurons in all layers was significantly 
increased by 20% when compared with the young mice 
(Fig. 1B and J). In the aged mice, the percentage mean number 
of CB‑immunoreactive neurons in all layers was significantly 
decreased by 30 and 50% when compared with the young and 
adult mice, respectively (Fig. 1C and J).

Rats. In rats, the distribution pattern of CB immunoreactivity 
was similar to that of the mice (Fig. 1D‑F); however, the 
percentage mean number of CB‑immunoreactive neurons 
in all layers was different to that of mice (Fig.  1J). The 
percentage mean number of CB‑immunoreactive neurons in 
all layers of the adult rats was significantly decreased by 23% 
when compared with the young rats (Fig. 1E and J). In the 
aged rats, the percentage mean number of CB‑immunoreactive 
neurons in all layers was significantly decreased by 42 and 
29% when compared with the young and adult rats, respec-
tively (Fig. 1F and J).

Gerbils. The general distribution pattern of CB immu-
noreactivity in the gerbils was similar to that of the mice 
(Fig. 1G-J). In the adult gerbils, the percentage mean number 
of CB‑immunoreactive neurons in all layers was significantly 
increased by 37% when compared with that of the young 

gerbils (Fig. 1H and J). In the aged gerbils, the percentage 
mean number of CB‑immunoreactive neurons in all layers 
was markedly decreased by 17% when compared with the 
adult gerbils, and it was significantly increased by 20% when 
compared with the young gerbils (Fig. 1I and J).

CR immunoreactivity
Mice. In the young mice, a few CR‑immunoreactive neurons 
were identified throughout all layers (Fig. 2); the majority 
were observed in layers II and III, and were sparsely found in 
layers V and VI (Fig. 2A). In the adult mice, the percentage 
mean number of CR‑immunoreactive neurons in all layers 
was significantly increased by 98% when compared with the 
young mice (Fig. 2B and J). In the aged mice, the percentage 
mean number of CR‑immunoreactive neurons in all layers was 
significantly decreased by 29% when compared with the adult 
group; however, it was significantly increased by 69% when 
compared with the young mice (Fig. 2C and J).

Rats. In the rats, the distribution pattern of CR immunoreac-
tivity was similar to that of the mice (Fig. 2D‑F). In the adult 
rats, the percentage mean number of CR‑immunoreactive 
neurons increased significantly in all layers by 70% when 
compared with the young rats (Fig. 2E and J). In the aged rats, 
the percentage mean number of CR‑immunoreactive neurons 
was significantly decreased by 35% when compared with the 
adult rats; however, it was significantly increased by 35% when 
compared with the young rats (Fig. 2F and J).

Gerbils. In the gerbils, CR‑immunoreactive neurons were 
relatively few in number when compared with those in 
the mice and rats (data not shown). In the adult gerbils, the 
percentage mean number of CR‑immunoreactive neurons in 
all layers was significantly increased by 60% when compared 
with the young gerbils (Fig. 2H and J). In the aged gerbils, CR 
immunoreactivity was weak and the percentage mean number 
of CR‑immunoreactive neurons in all layers was significantly 
decreased by 70% when compared with the adult gerbils and 
was significantly decreased by 19% when compared with the 
young gerbils (Fig. 2I and J).

PV immunoreactivity
Mice. In the young mice, a number of PV‑immunoreactive 
neurons were observed throughout all layers (Fig. 3). In the 
adult mice, PV‑immunoreactive neurons were more preva-
lent in layers V and VI, and the percentage mean number 
of PV‑immunoreactive neurons in all layers was marginally 
increased by 9% when compared with the young mice (Fig. 3B 
and J). In the aged mice, the percentage mean number of 
PV‑immunoreactive neurons in all layers was significantly 
increased by 35 and 26% compared with that in the young and 
adult mice, respectively (Fig. 3C and J).

Rats. The distribution pattern of PV‑immunoreactive neurons 
in the rat group was similar to that of the mice (Fig. 3D-F). In the 
adult rats, the percentage mean number of PV‑immunoreactive 
neurons in all layers was significantly increased by 38% when 
compared with that of the young rats and PV immunoreac-
tivity was observed in the neuropil in layer III (Fig. 3E). In the 
aged rats, the percentage mean number of PV‑immunoreactive 
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neurons in all layers was significantly increased by 23 and 61% 
when compared with the young and adult rats, respectively; 
however, PV immunoreactivity in the neuropil in layer III was 
similar to that of the adult rats (Fig. 3F and J).

Gerbils. In the young gerbils, the distribution pattern of 
PV‑immunoreactive neurons was similar to that of the 
mice and rats (Fig.  3G‑I); however, there were signifi-
cantly fewer PV‑immunoreactive neurons when compared 
with the numbers observed in the mice and rats (data not 
shown). In the adult gerbils, the percentage mean number of 
PV‑immunoreactive neurons in all layers was significantly 
increased by 26% when compared with the young gerbils 
(Fig. 3G and J). In the aged gerbils, the percentage mean 

number of PV‑immunoreactive neurons in all layers was 
increased by 14% when compared with the adult gerbils and 
significantly increased by 40% when compared with the 
young gerbils (Fig. 3I and J).

CB, CR and PV protein levels. Age‑associated changes in the 
levels of CB, CR and PV in the somatosensory cortex were 
examined in mice (Fig. 4). The altered pattern of each protein 
level was similar to the immunohistochemical results. The 
level of CB was greatest in the adult mice and lowest in the 
aged mice. Furthermore, the level of CR was greatest in 
the adult mice and lowest in the young mice. However, the 
level of PV was not significantly altered by age, although a 
marginal increase was observed with increased age.

Figure 1. CB immunohistochemistry in the somatosensory cortex in the (A‑C) mice, (D‑F) rats and (G‑I) gerbils. In all species, CB‑immunoreactive neurons 
were primarily observed in layers II and III. The age‑associated alterations were different amongst the species. The neuronal number in the aged was gener-
ally lower than that of the adults. Scale bars: (Aa‑Ia), 200 µm and (Ab‑Ic), 25 µm. (J) The percentage mean number of CB‑immunoreactive neurons in whole 
layers in the somatosensory cortex. *P<0.05 vs. the young group; †P<0.05 vs. the adult group. Data are presented as the mean ± the standard error of the mean 
(n=7/group). CB, calbindin‑D28k.
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Discussion

In the present study, the age‑associated differences in the 
expression of CB, CR and PV in the somatosensory cortex were 
examined in mice, rats and gerbils aged 1, 6 and 24 months 
using immunohistochemistry and western blotting. The number 
of CB‑immunoreactive neurons was considerably higher in 
layers II and III when compared with the other layers, and the 
age‑associated alterations in the total neuronal number was 
different among the species. In mice, the highest neuronal 
numbers were observed in the adult group and the lowest 
in the aged group. In the rats, the highest neuronal numbers 
were observed in the young group and the lowest in the aged 

group, and in the gerbils, the adults were observed to exhibit 
the highest neuronal numbers and the young gerbils the lowest. 
Bu et al (16) reported that the number of CB‑immunoreactive 
neurons in whole layers (full cortical depth columns) of the 
primary visual cortex exhibited a consistent trend toward a 
decrease in the aged human brain. In addition, previous studies 
demonstrated a significant age‑associated decrease in CB 
mRNA and CB immunoreactivity in the striatum (13,25) and 
hippocampus (30,31) of rodents during aging. These studies and 
the results of the present study indicate that CB‑immunoreactive 
interneurons in the rodent somatosensory cortex may be affected 
by age, and their numbers in the aged somatosensory cortex are 
decreased when compared with those in the adult.

Figure 2. CR immunohistochemistry in the somatosensory cortex in the (A‑C) mice, (D‑F) rats and (G‑I) gerbils. In all species, CR‑immunoreactive 
neurons were primarily observed in layers II and III, and their number was the highest in the adults. In all species, the pattern of the differing numbers of 
CR‑immunoreactive neurons was similar. Scale bars: (Aa‑Ia), 200 µm and (Ab‑Ic), 25 µm. (J) The percentage mean number of CR‑immunoreactive neurons 
in whole layers in the somatosensory cortex. *P<0.05 vs. the young group; †P<0.05 vs. the adult group. Data are presented as the mean ± the standard error of 
the mean (n=7/group). CR, calretinin.



AHN et al:  AGING AND CALCIUM BINDING PROTEIN EXPRESSION IN THE SOMATOSENSORY CORTEX7196

In the present study, the density of CR‑immunoreactive 
neurons in the somatosensory cortex was markedly reduced 
when compared with CB‑ and PV‑immunoreactive neurons, 
and CR‑immunoreactive neurons were predominantly 
distributed in layers II and III. The pattern of age‑associated 
change was similar amongst the three species, with their total 
numbers being increased in the adult animals and decreased 
in the aged animals. This finding is similar to a previous 
study, which revealed that the number of CR‑immunoreactive 
neurons decreased significantly in temporal areas, including 
the auditory association cortex, middle temporal cortex and 
inferior temporal cortex in older human brains when compared 
with the young (16). In addition, it has been reported that 
the number of CR‑immunoreactive neurons and CR protein 

levels were markedly decreased in the striatum  (25) and 
hippocampus (12,32) of aged rodents. These results, as well 
as those of the present study, indicate that CR expression in 
the rodent somatosensory cortex tends to decrease in the aged 
brain. In addition, the present study revealed that the number 
of CR‑immunoreactive neurons in the young was significantly 
lower when compared with the adults.

The present study demonstrated that PV‑immunoreactive 
neurons were primarily distributed in all layers except 
layer I. In addition, the number of PV‑immunoreactive 
neurons in the somatosensory cortex increased with age 
and the highest numbers were observed in the aged group 
of all three species. A previous study demonstrated that the 
number of PV‑immunoreactive neurons was not statistically 

Figure 3. PV immunohistochemistry in the somatosensory cortex in the (A‑C) mice, (D‑F) rats and (G‑I) gerbils. In all species, PV‑immunoreactive neurons 
were primarily observed in layers II, III, V and VI. The number of PV‑immunoreactive neurons increased with age. Scale bars: (Aa‑Ia), 200 µm and (Ab‑Ic), 
25 µm. (J) The percentage mean number of PV‑immunoreactive neurons in whole layers in the somatosensory cortex. *P<0.05 vs. the young group; †P<0.05 vs. 
the adult group. Data are presented as the mean ± the standard error of the mean (n=7/group). PV, parvalbumin.
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different in various cortical areas of the aged human brain 
when compared with that of the young; however, they 
were marginally increased in the primary auditory cortex, 
prefrontal association cortex, premotor association cortex, 
middle temporal cortex and inferior temporal cortex (16). 
In addition, it has been reported that the number of 
PV‑immunoreactive neurons in the prefrontal cortex was not 
significantly different between young and aged canines (33). 
These results, as well as those of the present study, suggest 
that PV‑immunoreactive GABAergic interneurons are 
relatively stable and resilient when compared with CB‑ and 
CR‑immunoreactive neurons in the somatosensory cortex 
during the aging process.

In the present study, the distribution of CBP‑containing 
neurons differed depending on the type of CBPs and the 
species. Previous studies have demonstrated that interneuron 
subtypes in the neocortex are involved in laminar or columnar 
inhibition (34) and that the axons of CBP‑containing neurons 
generate different local circuits with pyramidal cells or 
GABAergic cells depending on the layer (35). In addition, 
GABAergic interneurons have exhibited electrophysiological 
differences in firing patterns; CB‑positive neurons exhibited 
burst‑spiking, CR‑positive neurons displayed low‑threshold 
spiking and PV‑expressed neurons presented fast‑spiking 
firing properties  (3,4,6). Pugliese  et  al  (33) identified a 
specific vulnerability of CB‑positive GABAergic interneu-
rons in aged canines and the resistance of PV‑immunoreactive 
neurons in aged canines with cognitive deficits. Therefore, 
taking these results into account, it is possible that the 
layer‑specific, different patterns of age‑associated alterations 
in CBP‑containing neurons may be associated with each 
CBP‑specific laminar distribution (different cellular composi-
tion form layer to layer) and their physiological differences. 

For example, it has previously been demonstrated that visual 
cortical functions, including visual acuity, contrast sensitivity 
and orientation sensitivity deteriorate in the elderly (36‑38). 
In addition, the electrophoretic application of GABA or the 
GABA agonist may restore orientation turning in visual 
cortical neurons in monkeys (39). Therefore, age‑associated 
reductions of intra cortical inhibition in the somatosen-
sory cortex may contribute to a decline in somatosensory  
functions (5).

In conclusion, the results of the present study demonstrate 
that the number of CBP‑immunoreactive neurons in the rodent 
somatosensory cortex, which displayed different neuronal 
populations and laminar distribution, were markedly altered 
with normal aging. The CB and CR types exhibited a tendency 
to decrease, while PV displayed a stable pattern. These results 
indicate that CB‑ and CR‑immunoreactive neurons are altered 
in the rodent somatosensory cortex, and present one feature of 
general age‑associated processes.
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