
MOLECULAR MEDICINE REPORTS  16:  7890-7900,  20177890

Abstract. Connexin (Cx)43 is a multifunction protein which 
forms gap junction channels and hemi‑channels. It also 
contains abundant binding domains which possess the ability 
to interact with certain Cx43‑associated proteins and there-
fore serve a fundamental role in various physiological and 
pathological functions. However, the understanding of the 
association between cancer and Cx43 along with Cx43‑gap 
junctions (GJ) remains unclear. All available data illustrate 
that Cx43 and its associated GJ serve important functions 
in cancers. The expression levels of Cx43 demonstrate a 
downward trend and an increase in the levels of malignancy, 
particularly in astrocytomas. The GJ intercellular commu-
nication activity in glioma cells can be adjusted via Cx43 
phosphorylation and through the combination of Cx43 and 
its associated protein. Available evidence reveals Cx43 as a 
tumor‑inhibiting factor that suppresses glioma growth and 
proliferation. However, its mechanism is also regarded as 
complicated and ambiguous. Furthermore, it is apparent that 
Cx43‑GJ and the carboxyl tail may contribute to glioma 
growth and proliferation too. However, this valuable role could 
be weakened by its effects on migration and invasiveness. The 
detailed mechanism remains unclear and full of controversies. 
Cx43 can enhance the motor ability and invasiveness of astro-
cytic glioma cells. It is also able to influence glioma cells to 
detach from the tumor core to the peritumoral neocortex. This 
peritumoral region has recently been regarded as the basic 
focus of glioma‑associated seizure. Thus, Cx43 may take part 
in the onset and development of glioma‑associated epileptic 
discharge. In addition, change and increase of Cx43 expression 
in GJs has been observed in seizure perilesional tissue, which 
is associated with brain tumors. Cx43 or GJ/hemi‑channels 
exert enduring effects in the promotion of glioma‑associated 
epileptic release through direct mass effects and change of the 

tumor microenvironment. However, there are still a number of 
issues concerning this aspect that require further exploration. 
Cx43, as a potential treatment target against this incurable 
disease and its common symptom of epilepsy, requires further 
investigation.
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1. Introduction

Glioma accounts for the majority of central nervous system 
(CNS) malignancies. They are difficult to cure and always 
present a poor prognosis. Histologically, glioma can be divided 
into four classes: Astrocytomas, oligodendrogliomas, epen-
dymomas and mixed gliomas; diffuse gliomas are the most 
common. According to the 2007 World Health Organisation 
CNS tumor classification  (1), CNS gliomas are diagnosed 
as grade  II (diffuse astrocytoma, oligodendroglioma and 
oligoastrocytic tumors), grade  III (anaplastic astrocytoma, 
oligodendroglioma and oligoastrocytic tumors) and grade IV 
(glioblastoma multiforme; GBM). The evidence is that high 
grade gliomas (III and IV) are the most common, and GBM 
occupies ~30% of CNS gliomas (2). Although the therapeutic 
strategies of glioma involve continuous improvement and 
adjustment, the prognosis remains unsatisfactory. The Chinese 
Glioma Cooperative Group statistics (3) give a median general 
survival time (OS) of GBM at only 14.4 months, along with 
5‑year OS rates at 9%. Therefore, identification of the patho-
genic mechanism of glioma is important, and novel therapeutic 
strategies to reduce the high mortality rates of CNS malignan-
cies are required.

In the past, researchers have concentrated on exploring the 
molecular mechanism of glioma, which led to the discovery 
of isocitrate dehydrogenase 1, telomerase reverse transcriptase 
and various other molecules. A CNS glioma molecular clas-
sification has been suggested (3‑5). The present review aimed 
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to focus on a widely‑studied molecule, connexin (Cx)43, which 
is largely expressed in astrocytes and which participates in the 
construction of gap junctions (GJs) of astrocytes or astrocytes 
and neurons (6). Cx43 is a multifunctional protein which not 
only constructs gap junction channels and hemi‑channels (7), 
but also contains numerous binding domains which can 
interrelate with various Cx43 linked proteins, thus serving 
an elemental role in several physiological and pathological 
functions (8). Cx43 has been reported to be involved in the 
inception of certain neurodegenerative diseases, including 
Alzheimer's and Parkinson's disease (9), epilepsy secondary 
to focal cortical dysplasia (FCD) (10) and amyotrophic lateral 
sclerosis (11), among others. The role of Cx43 in glioma has 
also been widely and consistently explored.

The present review aimed at introducing the role of Cx43 
in glioma from the following aspects: i) Expression of Cx43 
and glioma grade; ii) inhibition of glioma proliferation, but 
improvement in invasion and migration; iii) consideration of 
Cx43 and the possibility of its promoting glioma‑associated 
epileptic discharge; and iv) disease diagnosis and therapy.

2. Structure and function

Cx43 is encoded by the GJA1 gene and is strongly expressed 
in astrocytes. Cx43 is an elemental membrane protein, which 
contains three intracellular regions, two extracellular loops 
together with multiple trans‑membrane domains. The intracel-
lular region is composed of N‑ and C‑terminal (CT) domains 
along with a loop that links the trans‑membrane domains. 
Cx43CT comprises of amino acids 232‑381, a plurality of 
binding‑domains and phosphorylation sites (12). The present 
aimed to review the functions of Cx43 and specifically to its 
functions in constructing GJs. Astrocyte Cx43 gathers adja-
cent to the central pore and forms connexons. Subsequently, 
it is coupled with neighbouring astrocytes or neurons through 
apposing connexons to form GJ channels, which may directly 
exchange the cytoplasm between coupled astrocytes and 
permit swapping of ions together with certain small molecules. 
Astrocyte Cx43 may also form membrane hemi‑channels, 
which are directly involved in material exchange between the 
extracellular milieu and astrocytes or neurons (13‑15).

From its special structure and character (forming GJ chan-
nels and hemi‑channels), Cx43 can therefore serve important 
physiological and pathological functions in CNS through these 
two routes.

GJ channels and hemi‑channels. Cx43 is highly expressed in 
astrocytes, lasting until adulthood. In relation to neurons, the 
typical feature of astrocyte GJs is to support the astrocytes in 
couple formation. This involves ions, amino acids, metabolites 
and certain small molecules to exchange through the cytomem-
brane between astrocytes in addition to extracellular milieu (16). 
The principal roles of astrocyte GJs are described below.

Potassium spatial buffering. When neurons are in an 
energized state, a large number of K+ ions efflux into the 
intercellular space. Aggregation of extracellular milieu K+ 
activates the inwardly rectifying K+ channel, and there is an 
excessive intake of K+, rapidly dispersed to adjacent astrocytes 
or neurons through GJs. Ultimately, the K+ homeostasis of this 

coupling is maintained and is considered to be beneficial in 
maintaining the normal microenvironment, in addition to the 
electrical activity of neurons (17).

Signal transduction. Mediated by Cx43, astrocytes form 
functional group coupling astrocytes networks which may 
contribute to long‑range signal transduction. External stimu-
lation can spread through astrocytes via calcium waves to 
participate in neuromodulation  (18,19). Astrocytes also 
contain an adenylate cycle and phosphoinositide courier 
delivery system, which can transmit signals through second 
messengers, including cyclic adenosine monophosphate (20).

Nutritional support. Astrocytes take in glucose which can be 
delivered to neurons through the GJ to contribute to metabolic 
regulation of neurons  (21). Additionally, through the GJs 
formed by Cx43 between astrocytes and neurons, these two 
cell types may directly achieve material exchange along with 
signal transduction (22).

Specific binding domains and phosphorylation sites. Cx43 is a 
structurally complex protein in the C‑terminal domains. There 
are certain binding domains which can interrelate with paired 
molecules to contribute to the building and regulation of cell 
architecture, polarity, mobility, invasion and growth (8,12,23,24). 
According to the reviews put forward by Giepmans (8) and 
Tabernero et al (12), the interactions of Cx43 when closely asso-
ciated with proteins are summarized in Table I.

3. Expression of Cx43 and glioma grade

In standard physiological states, Cx43 is prominently 
expressed in astrocytes. However, when the cell becomes 
malignant, the expression of Cx43 is downregulated. Thus, 
Sin et al (25) suggested that decreased Cx43 expression is 
accompanied by greater proliferation and malignancy of 
tumors. By studying the expression of Cx43 in human glioma 
and normal tissue microarray slides, mainly by western blot 
analysis and immunohistochemical staining, Sin et al (26) and 
Ye et al (27) noted a reduced expression of Cx43 in the tumor 
center as the glioma malignancy increased. Grade I and II 
primary astrocyte gliomas may express an enhanced immu-
noreactivity compared with normal brain tissue. However, it 
lacks the distinct disrupting staining of normal astrocytes. 
In high grade glioma, the expression of Cx43 is commonly 
reduced compared with normal tissues. It is also decreased in 
the majority of GBM, where the expression of Cx43 protein 
is insignificant (12,26,27). However, Crespin et al (28) did 
not share this point of view. First, in spite of the modest 
inverse association between tumor grade and Cx43 expres-
sion, over half of glioblastomas still express Cx43. Secondly, 
the expression of Cx43 between grade II and III astrocytes 
gliomas is not significantly different. Additionally, the various 
expression levels of Cx43 between grade III astrocytoma and 
oligodendroglioma suggest that Cx43 can act as a marker in 
discriminating against grade III oligodendroglioma in addition 
to astrocytoma. In reality, expression of Cx43 differs within 
the same tumor. For instance, Cx43 is rarely labelled at the 
membranes and in the cytoplasm of GBM cells. Nevertheless, 
it is abundant at the plasma membrane of reactive astrocytes 
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in the surrounding tumor mass (26,28). The notable features 
of these areas are tumor cell infiltration and reactive astro-
cytes (26,29). The peritumor cortex not infiltrated by glioma 
cells may increase Cx43 immunoreactivity and reactive astro-
cytes. However, this appearance is perhaps associated with the 
existence of epileptic seizures (30). Besides, this conclusion 
may not be valid; the origin of glioma associated seizure stem-
ming from the peritumor area and infiltration by glioma cells 
has been widely accepted (31). Therefore, the above conclusion 
may require further elucidation. In addition, due to the driving 
factor of glioma pathogenesis partly being ascribed to cancer 
stem cells (CSCs), Hitomi et al (32) explored the expression 
levels of Cx43 in GBM glioma stem cells (GSCs). The results 
indicated that Cx43 is predominantly expressed in non‑GSCs 
while Cx46 is expressed in CSCs. Yu et al (33) further identi-
fied lower expression of Cxs and the loss of GJ‑like structures 
together with dysfunction of GJ intracellular function in GSCs.

4. Cx43 and glioma proliferation, invasion and migration

Glial tumors, as the most common supratentorial neoplasms, 
are particularly difficult to cure. This is made more difficult with 
a poor prognosis, largely due to tumor cell migration, invasion 
and proliferation. This section briefly introduces the role of 
Cx43 in glioma migration, invasion and proliferation in addi-
tion to its possible mechanism. Previous studies (12,25,34,35) 
focused more on the association between Cx43 and cancer, 
including astrocytic glioma. However, more recent studies 
have proposed novel insights. The present review aimed to 
examine the association of Cx43 and astrocytic glioma in light 
of previous reviews and new findings.

Inhibition of glioma growth and proliferation. Thus far, 
the majority of studies have indicated that Cx43, as a tumor 
suppressor factor, inhibits astrocytoma growth and proliferation 

in a variety of ways. Treatments that regulate Cx43 expression, 
including tolbutamide (36,37), selective β2‑AR agonist (38), 
17‑β estradiol (E2) (39), ciliary neurotrophic factor (40) and 
low doses of γ‑radiation (41) have been verified. Cx43 may 
therefore inhibit glioma growth and proliferation (Table II).

The specific mechanism of how Cx43 influences glioma 
proliferation remains to be elucidated. However, the following 
mechanisms may contribute to the regulation of Cx43 in 
glioma proliferation (Table II).

Affecting the GSC phenotype. GSCs are cells which possess 
the capability for self‑renewal and are considered among the 
driving factors in glioma pathogenesis. Notably, Cx43 is mostly 
expressed in non‑GSCs, and the expression of Cx43 in GSCs is 
low (32,33). When reconstituting Cx43 in GSCs, the tumorige-
nicity of GSCs is inhibited, while self‑renewal and proliferation 
are delayed. Yu et al (33) described the interaction of Cx43 with 
epithelial cadherin as having an influence on CSC phenotype 
through the Wnt/β‑Catenin signaling pathway; this may be a 
potential mechanism. Additionally, as a proto‑oncogene, Scr 
and its interaction with Cx43 are also considered to be involved 
in glioma proliferation regulation. Tabernero  et  al  (12) 
hypothesized c‑ proto‑oncogene tyrosine‑protein kinase (Src) 
inhibiting Src activity as the main initiator of Cx43. It has an 
effect on GSCs: Gangoso et al (42) transfected Cx43 to GSCs 
and identified that Ki‑67‑positive glioma cells decreased and 
expressed Cx43, while downregulating DNA‑binding protein 
inhibitor (a transcriptional regulator) expression via inhibition 
of Src activity. Consequently, there was reduced (sex deter-
mining region Y)‑box (Sox2) expression, downregulation of 
Sox2 and a reduction in GSC self‑renewal (Fig. 1).

Intervention in cell metabolism. Cancer cells detect rapid 
proliferation by adapting to metabolic environmental 
changes. For glioblastoma, uptake of enough glucose or the 

Table I. Cx43‑interacting proteins.

Protein and phosphorylation sites	 Amino acids	 Function	 Cx43 interaction

  ZO‑1	 379‑382	 Tight junctions, adherens	 Inversely regulates gap Junctional
		  junctions, cytoskeleton	 communication and Hemichannel
		  build, signal transduction	 activity, prevents cytoplasmic
			   localization and malignization
  Src	 247,265,	 Phosphorylates Cx43	 Inhibits Cx43‑based GJC, Tumor
	 274‑283	 oncogenic activity	 suppression, but excludes the
			   C‑terminal tail for ZO‑1 binding
  Tubulin	 234‑262	 Combines into dimers,	 Modulates cell polarity, Motility
		  assembles microtubules	 and directional cell migration
  Cadherins,		  Adherens junctions,	 Modulate cell motility
  catenin and actin		  β‑catenin modulates
		  Wnt‑mediated gene
		  transcription
  CK1, PKA		  Phosphorylates Cx43	 Upregulate Cx43 assembly
  MAPK, PKG, PKC			   Inhibit Cx43‑based GJC

Cx, connexin; ZO, zonula occludens; CK, creatine kinase; PK, protein kinase; MAPK, mitogen‑activated protein kinase; GJC, gap junction 
communication; Src, proto‑oncogene tyrosine‑protein kinase.
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transformation of metabolism strategies to enable the cells to 
survive in a hypoxic tumor microenvironment is a key precon-
dition for the growth and proliferation of GBM cells. Cx43 
increases GJ channel and hemi‑channel coupling, enabling the 
exchange of ions, amino acids, metabolites and certain small 
molecules through the cytomembrane and between astrocytes, 
together with the extracellular milieu. Notably, that inhibi-
tion of GJs or downregulation of Cx43 expression leads to an 
increase in glucose uptake (43). Accordingly, this is the main 
energy substance for glioma cells. Cx43 and its associated GJs 
are capable of influencing the peritumoral microenvironment 
of edema (44), ischemia (45) and angiogenesis (46,47), and 
of interfering with glioma cell metabolism. This may further 
influence glioma growth and proliferation. Equally, deletion of 
Cx43 in astrocytes has been observed to inhibit oligodendro-
cyte precursor cell proliferation by reducing matrix glucose 
levels (48).

Participation in cell cycle regulation. Cx43 may deter the 
cell cycle from G1 to S‑phase or M‑phase (49,50). It is also 
capable of rebuilding Cx43 in glioma cells which could delay 
the progression of cells from G0/G1 to S‑phase (37). Cx43 has 
been observed to increase the expression of p21 and p27, and 
then weaken retinoblastoma phosphorylation (pRb) (37,51). 
pRb phosphorylation promotes the release of E2 transcription 
factor, which is associated with the expression of cyclin E (52). 
Cx43 possibly regulates the glioma cell cycle by decreasing pRb 
phosphorylation, subsequently inhibiting cyclin E expression.

Regulation of growth factor and proliferation‑associated 
proteins. Several growth factors (GFs) may also affect the 
growth and proliferation of cells. Previous research indicates 
that Cx43 can regulate certain GF expression levels. For 

instance, Cx43‑transfected glioblastoma cells (U251) down-
regulate the expression of MCP‑1, a factor that can further 
promote angiogenesis, and then suppress glioma cell prolif-
eration (47). Restored Cx43 expression in C6 glioma cells was 
also determined as being able to upregulate secretory proteins 
cysteine‑rich angiogenic inducer (CCN)1 together with CCN3 
expression (53). Notably, over‑expression of CCN3 and its inter-
action with Cx43 are conducive to a decrease in glioma growth 
rate. Overexpression of CCN1 exhibits an opposite func-
tion (53,54). Similarly, Cx43 transfected to C6 rat glioma cells 
also regulates the expression of secreted proteins. For instance, 
it decreases insulin‑like growth factor protein, basic fibroblast 
growth factor, platelet‑derived growth factor, insulin‑like 
growth factor 1 and N‑methylpurine DNA glycosylase‑E8 
protein expression levels while increasing CCN3, insulin‑like 
growth factor‑binding protein 4 and osteopontin levels (55‑58); 
this is the common outcome of suppressed glioma cell prolif-
eration. Additionally, Cx43 adjusts certain kinase activities 
to affect the growth and proliferation of cells. For instance, 
Cx43 recruits phosphatase and tensin homolog and C‑terminal 
Src kinase to inhibit c‑Src activity (59). Additionally, c‑Src 
equally combines with the C‑terminal of Cx43 to reduce 
the oncogenic activity of c‑Src  (12,42,60). Cx43 can also 
modify the activity of other proliferation‑associated proteins, 
including p38, extracellular signal‑regulated kinases‑1/2 (44) 
and zonula occludens (ZO)‑1 (12), to affect the proliferation 
of glioma cells. Suzhi et al (61) noted that Cx43 could transfer 
microRNA (miR)‑124‑3p between coupling cells and improve 
the antiproliferative ability of miR‑124‑3p.

Regulation of gene expression. Cx43 regulates gene expression, 
perhaps as a potential mechanism that influences glioma cell 
proliferation. However, there are not enough relevant studies 

Figure 1. Cx43 interacts with c‑Src and inhibits Src activity, sequentially modulating cell polarity, motility and invasion through several signaling pathways. 
Cx, connexin; c‑Src, proto‑oncogene tyrosine‑protein kinase Src.



MOLECULAR MEDICINE REPORTS  16:  7890-7900,  20177896

to support this hypothesis. Dang et al (62) identified that the 
carboxyl‑tail of Cx43 localizes to the nucleus and inhibits cell 
growth. Mennecier et al (63) also noted that Cx43 may enter into 
the nucleus of glioma cell lines. Thus, it may be hypothesized 
that Cx43 regulates gene expression directly or indirectly to 
affect the proliferation and growth of glioma cells.

Controversy of the effect of Cx43 on glioma cell invasion and 
migration. From the above discussion, it can be deduced that 
Cx43 is a tumor‑suppression factor. However, this valuable role 
can be weakened by its effects on migration and invasiveness. 
The majority of the literature reports that Cx43 enhances 
glioma invasion (24,26,68,69), while certain studies report 
the inhibitory action of Cx43 in glioma invasion and migra-
tion (65,70,71). Although Cx43 is present in a lower expression 
state in a malignant glioma mass, a high expression of Cx43 
is detected at the plasma membrane of the reactive astrocytes 
around the peritumor area (26,28), and in tumor cell infiltra-
tion and reactive astrocytes. In this area, malignant glioma 
cells form functional GJ communication between themselves 
and astrocytes (28,72), establishing a tight cell network (71). 
This may be the structural basis of the effect of Cx43 effect 
the invasion and migration of malignant glioma cells by 
GJ‑dependent and independent mechanisms.

GJ‑dependent mechanisms. Reduction of GJ activity has been 
reported to improve cell migration (71,73). However, more 
studies report that the overexpression of Cx43 encourages 
glioma cell migration and invasion in a GJ channel‑dependent 
manner (69,72,74). Aftab et al (71) demonstrated that down-
regulation of Cx43 expression in the U118 human glioma cell 
line is a way to increase migration by reducing cell‑extra-
cellular matrix adhesion, and change the migration pattern 
from collective to single cell. It was also demonstrated that 
Cx43‑GJ serves more prominent roles in mediating migra-
tion and invasion behaviors compared with the C‑terminal 
tail interaction. Functional GJ coupling also contributes to 
long‑range signal transduction, and adjusts the formation 
of calcium waves  (18,19,41,75). Additionally, it transmits 
signals through second messengers (20). Through these ways, 
Cx43‑GJ may promote the transformation of malignant astro-
cytes by regulating a glioma‑associated signaling pathway. 
Furthermore, Cx43 located in lipid raft microdomains can also 
regulate homocellular and heterocellular GJ communications 
between cancer and stroma cells, and can control the tumor 
phenotype (68,69). Consequently, such actions may influence 
glioma invasion behaviors. Additionally, a Cx43‑constructed 
glioma‑astrocyte GJ can modulate glioma invasive behavior 
by direct transfer of miRs (72). Cx43‑GJ is involved in tumor 
microtube‑mediated cell‑to‑cell communication and influ-
ences the motility of glioma cells (75).

GJ‑independent mechanisms. Cx43 promotes glioma cell 
invasion through GJ‑reliant mechanisms, which are not always 
recognized. Sin et al (26) suggested that astrocytic Cx43 may 
aid glioma cells to detach from the glioma core. However, 
Cx43 may mediate glioma invasion solely in a GJ‑independent 
manner since the expression of Cx43‑T154A has demonstrated 
no effect on glioma invasion (26). This conclusion contradicts 
the previously discussed findings in the present review. Certain 

Cx43‑associated proteins merge with Cx43 extracellular loops 
or C‑terminal regions to improve adhesive connections or to 
regulate cytoskeletal dynamics, which alter the structure of 
Cx43 to facilitate malignant glioma cell invasion and migra-
tion by independent mechanisms. A wound healing motility 
assay indicated that the C‑terminal of Cx43 is required for 
Cx43‑mediated C6 glioma cell motility (24). For instance, 
Cx43 interacts with ZO‑1 protein, which could prevent the cyto-
plasmic localization and lead to glioma cell invasion (12,76). 
Cx43 interacts with other cytoskeleton proteins and tight junc-
tions or adherens junctions associated with proteins, including 
tubulin, cadherins, catenin and actin, to modulate polarity, 
motility and directional migration of cells (12,24,77,78). In 
addition, Cx43 interacts with c‑Src and inhibits Src activity, 
sequentially modulating cell polarity, motility and invasion 
through several signaling pathways (Fig. 1) (12,79,80). In brief, 
there is no consensus on the effect of Cx43 on glioma invasion 
and migration, and the detailed mechanism remains unclear.

5. Cx43 may promote glioma‑associated epileptic discharge

The association between Cx43/‑GJ and epilepsy has widely 
been studied in the last 20 years. Earlier studies failed to 
consider that Cx43 is associated with epilepsy, since expres-
sion of Cx43 had not identified significant differences between 
epileptogenic and nonepileptogenic tissues, in living tissue 
assays (81) and animal models (82). Nevertheless, the majority 
of studies have identified Cx43 as capable of participating 
in the genesis and development of certain types of epilepsy. 
For instance, Cx43 is increasingly expressed in the hippo-
campus tissue of patients with refractory temporal lobe 
epilepsy (83,84) and in FCD type IIB (10). Cx43/‑GJ were also 
altered in either lithium pilocarpine‑induced epilepsy (84) or 
in kainic‑acid‑induced status epilepticus models (85). Notably, 
the inhibition of the Cx43 GJ with carbenoxolone can shorten 
the duration of seizures and reduce the amplitude of the 
seizure discharges (86). In view of the above, Cx43 may be 
to be associated with the genesis and development of certain 
types of epilepsy, in addition to glioma‑associated epilepsy.

Glioma‑associated epilepsy may be defined as seizure 
which directly arises from the existence of supratentorial 
glioma. It is the presenting feature in ≤87% of low‑grade 
gliomas and ≤50% of gliomas overall (87). Epilepsy is usually 
the initial symptom of glioma patients and a significant factor 
affecting their post‑operative quality of life (88). However, the 
detailed mechanism of glioma‑associated epilepsy remains to 
be elucidated. It may be a combination of direct mass effects 
and the change of the tumor microenvironment.

Overall, Cx43 is highly expressed in peritumoral astro-
cytes (29) which facilitate glioma cells detachment from the 
tumor core (26). Glioma cells invade the neocortex structure, a 
special peritumoral region where single neurons are bounded 
by very few or a single tumor cell (89). This peritumoral region 
has recently been considered as the basic focus of glioma‑asso-
ciated seizure (31,90,91). GJ changes (89) and the increase 
of Cx43 expression (30) have been identified in the perile-
sional tissue of seizures associated with brain tumors. GJ or 
Cx43‑glial coupling may explain glioma‑induced epileptogen-
esis (92). Cx43 and its associated GJ are capable of influencing 
the peritumoral microenvironment, including edema  (44), 
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ischemia  (45) and angiogenesis  (46,47) which may induce 
epileptic discharge through direct effects of mass. Cx43‑GJ is 
involved in the generation of sharp wave‑ripple (34). It propa-
gates neuronal activity through long‑range signal transduction 
and Ca+ waves, then promotes a synchronized discharge of 
neurons (93). Cx43‑GJ can also influence seizure discharge by 
regulating K+ redistribution and neuronal energy supply (94). 
Peritumoral reactive astrocytes can highly express Cx43. Cx43, 
in this context, may serve a predominant role in the regulation 
of neurotransmitters, including glutamate. First, Cx43‑hem 
channels/GJ in astrocytes can control glutamate (95,96), release 
ATP (96) and sustain glutamatergic synaptic efficacy (97). 
Second, Cx43 knockdown may raise cortical glutamate trans-
porter (GLT)‑1 in addition to glutamate aspartate transporter 
(GLAST) protein expression levels, and control transcription 
and translation of glial glutamate transporters excitatory 
amino acid transporter (EAAT)‑1 and EAAT‑2 (98). Similarly, 
blocking the gap junction has been reported to suppress tran-
scriptional activity of GLT‑1 promoter, but increase GLAST 
gene transcription (99). The spinal astrocytic Cx43 has also 
been reported to be capable of activating N‑methyl D‑aspartate 
receptors (100) and elemental ionotropic glutamate receptors 
in the postsynaptic membrane (101). In essence, peritumoral 
Cx43 high immunoreactivity is mainly on the reactive astro-
cytes (29), and demonstrates Cx43 to be potentially associated 
with astrocyte reactivity. A recent study observed that reactive 
astrocytes not only limit glutamate uptake, but also inhibit 
the production of gamma‑aminobutyric acid. Furthermore, 
this leads to a loss of inhibition and an increase in neuronal 
excitability (102). Even so, it can be hypothesized that Cx43 
can possibly promote glioma‑associated epileptic discharge 
through these aforementioned ways. The relevant studies 
remain scarce, and further studies are required to identify the 
exact mechanism of Cx43 in glioma‑associated epilepsy.

In summary, the special microenvironment of glioma 
(tumor cell infiltration and high expression of Cx43 in reac-
tive astrocytes) may identify why glioma patients present with 
epilepsy and why they possess a favorable prognosis but are 
prone to relapses (101). Cx43 also presents in temozolomide 
resistance and resistance to radiotherapy in glioblastoma cells. 
The peritumoral region has been considered the basic focus 
of glioma‑associated seizure (31). It is hypothesized that early 
stage glioma cells highly express Cx43, and migrate and invade 
the host parenchyma with a low proliferation index (26).

6. Facilitating disease diagnosis and therapy

Investigating biomolecules is useful facilitate disease diag-
nosis and therapy. The value of Cx43 in glioma diagnosis 
and therapy is beginning to be recognized. Abakumova (103) 
demonstrated that the Cx43‑targeted T1 contrast agent may 
efficiently visualize glioma C6 and its borders in vitro and 
in vivo. MAbE2Cx43 s was covalently associated with the 
Phthalosens derivative photosensitizer delivery of fluorescent 
agents to the glioma tissue. This may be valuable in demon-
strating the optimal border and increase the extent of resection 
due to improved visualization of the glioma (104). Similarly, 
Cx43/‑GJ may help brain tumor cells to interconnect a func-
tional and resistant network (75), which confer temozolomide 
resistance  (105‑108) and radiotherapy resistance  (75) in 

glioblastoma cells. The Cx43‑antibody MAbE2Cx43 has been 
demonstrated to be potentially part of a combined therapy for 
poorly differentiated gliomas (108).

7. Conclusion

In regular physiological conditions, Cx43 is highly expressed 
in astrocytes. However, this expression is restrained when 
the malignant transformation of astrocytes and the levels of 
Cx43 are reduced, along with an increase in the degrees of 
malignancy in astrocytomas. The association between the 
expression of Cx43 and degrees of glioma implicates Cx43 
as a tumor suppressor, inhibiting glioma cell proliferation. 
However, the majority of data have indicated that Cx43 may 
enhance the motor ability and invasiveness of astrocytic 
glioma cells, and to facilitate glioma cell separation from 
the tumor core to the surroundings. This can be interpreted 
as Cx43 in the early stages of glioma progression, with a 
relatively low proliferative index of glioma cells, predis-
posing glioma cells to migrate and integrate with the host 
parenchyma (26). Simultaneously, reactive astrocytes and 
the tumor cell invade into peritumoral tissue comprising the 
significant surrounding microenvironment, making an ideal 
environment for epileptic discharge. It is undoubtable that 
Cx43 or GJ /hemi‑channels have a contribution in promoting 
glioma‑associated epileptic discharge through direct mass 
effects and the change of tumor microenvironment, particu-
larly the effect in excitatory neurotransmitter‑glutamate 
regulation. Notably, Cx43 expression is considerably 
upregulated in astrocytes reactive due to tissue damage 
during surgery. This could promote tumor proliferation, in 
addition to migration (109), and then facilitate glioma recur-
rence following resection (110). This can partially explain 
post‑operative epileptic seizures in glioma patients and those 
with no epilepsy prior to surgery.

Previously published reviews (12,25) have presented the 
roles of Cx43 in glioma proliferation in two mechanisms: 
GJ‑dependent and GJ‑independent. To the best of our 
knowledge, the present review was the first to introduce the 
exact mechanism of these functions and the roles of Cx43 in 
glioma‑associated epilepsy. Certainly, there are still a number 
of challenges that require further exploration. If Cx43 is asso-
ciated with the prognosis of glioma patients, then its potential 
as a treatment target requires further study. Peritoneal tissue 
which highly express Cx43 is involved in the incidence 
of glioma and is associated with epilepsy; thus, should be 
explored further.

In conclusion, the roles of Cx43 in glioma proliferation, in 
the present review, can be directed to the association between 
glioma and epilepsy. A number of identifiable challenges in 
this current review can be the subject of further studies. More 
importantly, future studies could also aid understanding of 
any other ways through which Cx43 and other expressions are 
associated with incidences of glioma and with epilepsy.
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