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Abstract. The present study aimed to identify potential 
dysregulated pathways to further reveal the molecular mecha-
nisms of postmenopausal osteoporosis (PMOP) based on 
pathway‑interaction network (PIN) analysis, which considers 
crosstalk between pathways. Protein‑protein interaction (PPI) 
data and pathway information were derived from STRING 
and Reactome Pathway databases, respectively. According to 
the gene expression profiles, pathway data and PPI informa-
tion, a PIN was constructed with each node representing a 
biological pathway. Principal component analysis was used to 
compute the pathway activity for each pathway, and the seed 
pathway was selected. Subsequently, dysregulated pathways 
were extracted from the PIN based on the seed pathway and 
the increased classification accuracy, which was measured 
using the area under the curve (AUC) index according to 5‑fold 
cross validation. A PIN comprising 2,725 interactions was 
constructed, which was used to detect dysregulated pathways. 
Notably, the ‘mitotic prometaphase’ pathway was selected and 
defined as a seed pathway. Starting with the seed pathway, 
network‑based analysis successfully identified one pathway 
set for PMOP comprising eight dysregulated pathways (such 
as mitotic prometaphase, resolution of sister chromatid cohe-
sion, mRNA splicing and mRNA splicing‑major) with an AUC 
score of 0.85, which may provide potential biomarkers for 
targeted therapy for PMOP.

Introduction

Osteoporosis (OP) is a common metabolic skeletal disease that 
is characterized by microarchitectural deterioration of bone 
tissues and reduced bone mineral density (1). An imbalance 
in the regulation of bone remodeling results in increased 

bone fragility and enhanced fracture risk (2). Postmenopausal 
bone loss is a major determining factor of OP and is a 
worldwide health problem. In addition, advanced age, sex 
and immobilization are also main risk factors for developing 
OP (3). Postmenopausal OP (PMOP) is one of the two types of 
OP, and may develop as a direct result from the reduced endog-
enous estrogen levels in menopausal women (4,5). Worldwide, 
PMOP affects thousands of women >50 years old and costs 
healthcare systems large sums of money, which may lead to 
an increase in economic and social burdens (6,7). Therefore, 
studies on PMOP‑related mechanisms are urgently needed and 
relevant.

Numerous factors serve important roles in the etiology of 
PMOP. In addition to calcium, estrogen and environmental 
factors, previous studies have reported that there are strong 
genetic effects on the pathogenesis of OP in postmenopausal 
women (8‑10). For example, certain polymorphisms in a set of 
genes have been revealed to be associated with Chinese women 
with PMOP, such as estrogen receptor 2 (11), osteoprotegerin 
(OPG) (12). In addition, several pathways have been identified 
to be related with PMOP development. Wnt/β‑catenin pathway 
serves an important role in PMOP by changing the ratio of 
receptor activator of nuclear factor‑κB (NF‑κB) ligand/OPG 
and altering bone turnover  (13). One study demonstrated 
the therapeutic potential of resveratrol treatment against 
PMOP through osteoblast differentiation via sirtuin 1/NF‑κB 
signaling (14). However, the molecular mechanisms underlying 
PMOP remain unclear.

Gene expression profiles in DNA microarrays have 
provided key biosignatures of PMOP. Therefore, an increasing 
number of investigators use bioinformatics approaches to 
study the microarray profiles of PMOP to explore molecular 
mechanism underlying PMOP. A microarray profile of PMOP 
(E‑MEXP‑1618) was deposited by Reppe  et  al  (15), who 
detected a set of genes that were highly associated with bone 
mineral density in relation to PMOP. A 2015 study that used 
this same data identified 482 differentially expressed genes 
(DEGs) that exhibited a close relationship with PMOP, such 
as SMAD family member 4, calcium channel voltage‑depen-
dent γ1 and tripartite motif containing 63 (16). Many of the 
previous studies related to the genetics of PMOP have focused 
on a single gene or a single pathway; however, different path-
ways have crosstalk with each other, and the deregulation of 
one pathway may affect the activity of another. Understanding 
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the interactions among and between pathways may provide 
information for the further exploration of the pathogenesis of 
PMOP.

Therefore, the present study aimed to explore the patho-
genesis of PMOP using the microarray data of PMOP to detect 
significant pathways, with consideration of the functional 
dependency among pathways. These results may offer theo-
retical guidance for future experiments and may aid in our 
understanding of the pathogenesis of PMOP.

Materials and methods

Brief outline of the proposed method. Based on gene expres-
sion data, cellular pathways and protein‑protein interactions 
(PPIs) information, the identification of dysregulated pathways 
using the pathway‑interaction network (PIN) included three 
steps. In the first step, the microarray genes were mapped to 
the pathways and the principal component analysis (PCA) 
method (17) was used to compute the pathway activity for each 
pathway according to the sum of the expression values of all 
genes of this given pathway, and seed pathway was selected 
based on the pathway activities (the pathway of activity 
score with the maximum change between PMOP and normal 
groups was regarded as the seed pathway). In the second step, 
a PIN was constructed that relied on gene expression data, 
PPIs and cellular pathways, in which each node represented 
a cellular pathway. In the third step, dysregulated pathways 
were extracted from the PIN based on the seed pathway and 
increased classification accuracy, which was measured using 
area under the curve (AUC) indexing based on five‑fold cross 
validation.

Data availability. Raw gene expression data were down-
loaded from the ArrayExpress database offered by European 
Bioinformatics Institute (http://www.ebi.ac.uk/arrayexpress; 
accession no. E‑MEXP‑1618) (15), which was based on the 
A‑AFFY‑44 Affymetrix GeneChip Human Genome U133 
Plus 2.0 (HG‑U133_Plus_2) platform. This data set included 
84 iliac bone biopsy samples, comprising 45 patients with OP 
and 39 healthy patients, which were obtained from postmeno-
pausal women. The inclusion criteria were an average spine 
T‑score >‑1 for the normal group, and an average spine T‑score 
<‑1 for the PMOP group.

Affymetrix CEL files and probe annotation files were 
downloaded, and the gene expression profile of E‑MEXP‑1618 
was pre‑treated using the Affy package of Bioconductor (18). 
Briefly, primary data in the CEL format was converted into 
expression measures, followed by background correction using 
robust multiarray average (19). Next, quartile data normaliza-
tion was conducted through quantiles (20), and median polish 
was used to summarize the expression measures. Finally, 
a gene expression matrix that included 20,545 genes was 
obtained following the probes were mapped to gene symbols. 
Subsequently, expression scores of all genes were standardized.

Biological pathways and PPI data. A total of 1,675 predefined 
biological pathways were obtained from the REACTOME data-
base (http://www.reactome.org), which is a manually curated 
open‑source database of cellular pathways  (21). Pathways 
comprising too few genes may not have sufficient biological 

information, whereas pathways having too many genes may be 
too generic (22). Therefore, the present study extracted a set 
of pathways by excluding the pathways with <5 genes or >100 
genes. Following removal of these pathways, 1,189 background 
pathways were identified for further analysis. PPIs were down-
loaded from the STRING database (version 9.1; http://string‑db.
org) (23). The original PPI data set included 787,896 interac-
tions among 16,730 genes. The STRING database uses 
confidence scores to measure how likely an association will 
appear. As a result, with the goal of minimizing the ambiguity, 
only the interactions with confidence score >0.2 were selected 
to construct the original PPI network. Taking the intersection of 
the original PPI network and the microarray data, a background 
PPI data set containing 14,917 proteins and 449,833 PPIs was 
identified and used for further analysis.

PIN construction. Using gene expression profiles, PPI infor-
mation and pathway data, a PIN was constructed, in which 
each node represented a pathway and an edge was laid between 
two pathways when they met one of two conditions; if not, 
then the edges were discarded. The first condition was that 
these two pathways had to share at least one gene, and at least 
one of the common genes between two pathways had to be a 
DEG between the PMOP and normal groups. In the present 
study, DEGs were identified using Student's t‑test with a cutoff 
of P<0.01. The second condition was that the two genes that 
coded interacting proteins used to lay an edge between the 
two pathways had to be highly co‑expressed, with an absolute 
value of Pearson's correlation coefficient (|PCC|) >0.8; if not, 
then the edge between two pathways would be rejected. Based 
on these requirements, a PIN was constructed. It is considered 
that if a network is too big that a considerable number of key 
genes and interactions are probably ignored (24). As a result, 
to reduce the complicated network, the scores of a pair of path-
ways in the PIN were calculated; defined as the summation of 
the absolute values of PCC for the PPIs in every two pathways. 
The top 5% pathway interactions were chosen to construct an 
informative PIN for the detection of dysregulated pathways.

PCA analysis and selection of seed pathway. PCA is a 
dimension reduction approach that has been widely used in 
gene expression analysis (17); it is able to efficiently depict 
the internal structure of high‑dimension data by preserving 
the variance within the data while converting the data into 
low‑dimension space (25). In the present study, PCA was used 
to calculate pathway activity according to gene expression data 
from each pathway. Notably, all the genes were mapped to 
background pathways, and only those genes that aligned to the 
background pathways were kept for PCA analysis. The activity 
of each pathway (that is, the summary of the expression values 
of all genes in the given pathway) was calculated using the 
PCA method. The activity score for the corresponding pathway 
was determined as the first principal component from PCA. 
The activity score for a pathway between the experimental 
and the control groups was different, and the difference may 
demonstrate its correlation to the disease; that is, the greater 
the difference was, the more relevant this pathway was to the 
disease. Therefore, in the present study, the pathway with the 
maximum change of activity score between PMOP and control 
groups was selected as the seed pathway.
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Detecting dysregulated pathways from the informative PIN. 
Support vector machines (SVMs) were used to extract the 
dysregulated pathways. Briefly, an individual pathway that best 
distinguished disease from normal state was identified as the 
first pathway biosignature (hereafter called the seed pathway), 
and the second pathway that was able to integrate with the seed 
pathway to obtain better classification accuracy was extracted 
from the pathways that interacted with the seed pathway in the 
PIN. The process was repeated, and new pathways were added 
to the obtained pathway set until no more pathways could be 
assembled into the pathway set to enhance classification results. 
Classification accuracy was measured using the AUC index, 
based on five‑fold cross validation. In an attempt to obtain 
robust biomarkers, five‑fold cross‑validation was repeated 
100 times. The mean value was collected as the final result.

Results

Informative PIN construction. Based on the cutoff criteria of 
P<0.01, a total of 544 DEGs between the PMOP group and the 
normal group were identified. The top 20 DEGs, in ascending 
order of P‑values, are provided in Table I. The identified DEGs 
were used to select the interactions for establishing the PIN, as 
only the interactions in the background PPI data were able to 
meet at least one of the two conditions and were kept to build 
the PIN.

Based on the pre‑defined threshold, a PIN that was involved 
in 54,517 pathway‑pathway interactions was constructed. 
As very large networks may easily neglect a few significant 
interactions (23) they should be reduced in size. In the present 
study, the interactions with low |PCC| scores were removed, 
and the top 5% of all interactions were adopted for further 
analysis. A network comprising the top 5% of interactions was 
defined as the informative PIN (Fig. 1). The informative PIN 
included 2,725 interactions between 1,189 pathways and was 
used to identify dysregulated pathways; specific information 
about the 1,189 pathways is not provided here. Based on the 
informative PIN, the strengths among the pathways were 
distinguishable. The weight of a pathway‑pathway interaction 
was defined as the summation of |PCC| scores of all genes, and 
interactions having greater weight scores may be more impor-
tant for PMOP compared with other interactions. The weight 
scores of the 2,725 interactions ranged between 95 and 323. 
Notably, in the informative PIN, there were only 11 pairs of 
pathway interactions with weight scores >300.

Selection of the seed pathway. As there were differences 
between pathways in the informative PIN, how to assess 
the significance of each pathway and extract the significant 
pathway in the PIN was a challenge. The activity score for 
the 1,189 pathways was calculated using the PCA method to 
evaluate the significance. It was revealed that the pathways 
had different changes to their activity score between PMOP 
and normal groups (Fig. 2). The pathway with the maximum 
change in activity score between PMOP and normal groups 
was regarded as the seed pathway, which, in the present study, 
was identified as ‘mitotic prometaphase’.

Detection of dysregulated pathways for PMOP. Starting with 
the seed pathway, a pathway set was identified by adding 

pathways to increase the classification accuracy, and this 
procedure continued until the AUC index decreased. Using 
‘mitotic prometaphase’ as the seed, a pathway set was identified 
that was involved in 8 dysregulated pathways with and AUC 
score of 0.85. This pathway set included ‘mitotic prometa-
phase’, ‘resolution of sister chromatid cohesion’, ‘transport of 
mature mRNA derived from an intron‑containing transcript’, 
‘interactions of Vpr with host cellular proteins’, ‘metabolism 
of non‑coding RNA’, ‘regulation of HSF1‑mediated heat 
shock response’, ‘mRNA splicing’ and ‘mRNA splicing‑major 
pathway’. The effective classification ability of this method 
indicated that the detected dysregulated pathways may be 
utilized as robust signatures. A network of these eight dysregu-
lated pathways is provided in Fig. 3.

In addition, the genes enriched in the detected dysregulated 
pathways were compared with the identified DEGs (Table II). 
It was observed that only a small fraction, between 8.4 
and 21.2%, of the genes in the extracted dysregulated pathways 
overlapped with the DEGs. This phenomenon further demon-
strated that a pathway as an entity may be better than a single 
gene at diagnosing complicated diseases, even if the genes 
enriched in the pathway were not differentially expressed.

Discussion

A number of previous studies suggested that pathway‑based 
analyses may provide more reproducible results, relative to 
individual gene‑based methods  (26‑28). For example, one 
previous study used pathways to compare different brain 
regions of patients with Alzheimer's disease and observed 
dysregulated pathways that cooperated in the different brain 
regions (29). However, the statistical significance of the pathway 

Table I. List of the top 20 differentially expressed genes.

Gene	 P‑value

KTN1	 1.51x10‑05

DKK1	 1.62x10‑05

ARHGAP42	 1.93x10‑05

ACSL3	 2.23x10‑05

GOLGA4	 3.43x10‑05

IFITM2	 3.94x10‑05

NNT‑AS1	 6.45x10‑05

ABRA	 7.67x10‑05

PRKAA2	 9.22x10‑05

DLEU2	 1.10x10‑04

SOST	 1.15x10‑04

PDZRN3	 1.39x10‑04

KALRN	 1.56x10‑04

FSTL3	 1.68x10‑04

WWP1	 1.70x10‑04

MUC17	 2.17x10‑04

ZAK	 2.41x10‑04

ITM2A	 2.79x10‑04

IPO7	 2.87x10‑04

ZNF787	 2.99x10‑04
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was evaluated using hypergeometric distribution and pathways 
were analyzed individually; the crosstalk among pathways was 
not considered. Notably, the identification of pathway crosstalk 
in specific conditions may benefit studies on pathway functions 
and the molecular mechanisms of biological processes (30). 

Collectively, PPI data may provide valuable information 
regarding the interactions among functionalities that are vital 
to cell survival and growth. Network biology provides new 
opportunities to analyze the interaction data and gain insights 
into the mechanisms by which biological systems operate (31). 
For example, the characteristic sub‑pathway network method 
was used to identify disease‑specific pathway crosstalk by 

Figure 1. Pathway‑interaction network for postmenopausal osteoporosis. Numbered nodes (blue circles) represent pathways and edges represent an interaction 
between two pathways.

Figure 3. Dysregulated pathway interaction network in postmenopausal 
osteoporosis that is involved in eight dysregulated pathways, which were 
assembled into a pathway network based on these interactions. Each node 
represents a pathway; the yellow node represents the seed pathway (mitotic 
prometaphase), purple nodes represent the dysregulated pathways that inter-
acted with the seed; numbers indicate the pathway ID (see Table II). The 
pathway ID was defined by the present study in alphabetical order.

Figure 2. Distribution of the activity score changes of the 1,189 background 
pathways between postmenopausal osteoporosis and normal groups. Among 
these, the mitotic prometaphase pathway exhibited the most significant 
change of activity score between two groups was selected and called the seed 
pathway. CoA, coenzyme A; IFN, interferon; MDA‑5, melanoma differentia-
tion‑associated 5; RIG‑1, retinoic acid‑inducible gene 1.
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counting ‘active PPIs’ (32). From a systematic perspective, 
analysis of disease‑related interaction networks may improve 
our understanding of the complexity of biological pathways 
and may aid in the identification of the molecular processes of 
disease progression. Therefore, the present study used PINs to 
identify dysregulated pathways based on the crosstalk among 
pathways by integrating protein interaction data and cellular 
pathways. An advantage of this method is that, in cases in 
which pathways have only marginally enriched P‑values, there 
may still be a strong signal if the pathways collectively form a 
compact module in the PIN.

With the goal of extracting dysregulated pathways in PMOP, 
and to further exploring the molecular mechanisms of PMOP, 
the present study constructed a PIN comprising 2,725 inter-
actions between 1,189 pathways, based on gene expression 
profiles, pathway data and PPI information, and subsequently 
identified dysregulated pathways in the PIN according to 
classification accuracy using SVMs. The activity score for 
each pathway was calculated using the PCA approach, and 
the mitotic prometaphase pathway was identified and defined 
as the seed pathway. The selected pathway set included eight 
pathways, and among these eight dysregulated pathways, two 
pathways were related to mitotic activities and two pathways 
were associated with mRNA splicing.

As previously reported, the pre‑mRNA splicing factor, 
cell division cycle 5‑like, regulates mitotic progression (33). 
In addition, mitotic dysregulation may result in chromosomal 
pathology, which leads to further dysregulation of genes 
involved in the aging process, such as in OP and arthritis (34). 
Therefore, the present study hypothesized that dysregulated 
mRNA splicing and mitosis may serve important roles in the 
development of PMOP.

In eukaryotic cells, sister chromatid cohesion is required 
for the proper transmission of the replicated genome from 
generation to generation, and is dependent on cohesin 

proteins (35). The pre‑mRNA‑processing factor 19 (Prp19) 
complex serves important roles in pre‑mRNA splicing (36), 
and inhibition of Prp19 has been demonstrated to affect the 
splicing of pre‑mRNAs that encode proteins that are essential 
to sister chromatid cohesion, and thus indirectly cause defects 
in cohesion (37,38). Another study also reported that the Prp19 
splicing complex was necessary for sister chromatid cohesion 
during mitosis and maintenance of genome stability  (39); 
genomic instability is considered to be associated with the 
aging process (40). OP is a common age‑related disease; that 
the identified dysregulated pathways ‘mRNA splicing’ and 
‘resolution of sister chromatid cohesion’ exhibited a close 
interaction suggested that this type of correlation may serve 
important roles in the development and progression of PMOP.

In conclusion, the present study identified a dysregulated 
pathway set for PMOP, which may shed light on the molecular 
mechanism of PMOP, and may present candidate signatures 
for targeted therapy for PMOP. However, several limitations of 
the present study must be taken into consideration. First, the 
sample size was relatively small. Second, how these pathways 
synergistically regulate PMOP progression at the molecular 
level remains unclear, and further investigations are required. 
Finally, analysis was based on existing data and only used a 
bioinformatics approach, with no experimental verification. 
Therefore, additional experimental investigations using animal 
or patient tissues are warranted to discover the potential altera-
tions of these pathways and to further our understanding of the 
pathogenic mechanisms of PMOP.
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