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Abstract. Propofol (2,6-diisopropylphenol) is one of the most 
commonly used intravenous anesthetics. Anesthetics can 
regulate the inflammatory process; however, the mechanism 
remains to be fully elucidated. The present study aimed to 
investigate whether and how propofol affects the inflammatory 
reaction in human umbilical vein endothelial cells (HUVECs). 
The expression levels of Toll-like receptor 4 (TLR4) and 
cluster of differentiation 14 (CD14) were determined in 
HUVECs treated with propofol and lipopolysaccharide (LPS) 
using western blot and reverse transcription‑quantitative poly-
merase chain reaction analyses. In addition, whether propofol 
regulated the expression of TLR4 though microRNA (miR)-21 
was examined. The results showed that LPS promoted 
the expression levels of TLR4, CD14 and tumor necrosis 
factor α (TNFα), and suppressed the expression of miR-21 in 
HUVECs. Propofol suppressed the expression levels of TLR4, 
CD14 and TNFα, and upregulated the expression of miR-21 in 
a concentration‑dependent manner. miR‑21 downregulated the 
expression of TLR4 at the mRNA and protein levels, whereas 
the miR-21 mimic reversed the effect of LPS on the expres-
sion of TLR4. In addition, the miR-21 inhibitor inhibited the 
downregulatory effect of propofol on the expression of TLR4. 
TargetScan analysis showed that TLR4 was included in the 
list of targets of miR‑21. Fluorescent reporter assays showed 
that the miR-21 mimic and propofol treatment reduced the 
fluorescence intensity in cells transfected with a reporter 
vector containing the wild‑type TLR4 3'‑untranslated region. 
Taken together, the results of the present study demonstrated 
that propofol regulated the expression of TLR4 in HUVECs 
through miR-21.

Introduction

Propofol (2,6-diisopropylphenol) belongs to phenol deriva-
tives and its biosynthesis dates back to the 1970s (1). Propofol 
is one of the most commonly used intravenous anesthetics 
at present (2-4). However, several reports have shown that 
anesthetics, including propofol, can inhibit the stress response 
during surgery and exert adverse effects on the immune 
system (5-7). Toll-like receptors (TLRs) are a type of innate 
immune receptor, which are widely distributed in mononuclear 
cells, polymorphonuclear cells, macrophages, lymphocytes, 
dendritic cells and natural killer cells (8,9). TLRs are vital in 
the cell immune defense process (9,10). Firstly, TLR identi-
fies and combines the specific highly conserved sequence of 
several pathogens or pathogenic products. A series of cell 
signal transduction pathways are induced and inflammatory 
mediators are released, and the adaptive immune system 
is activated (11-14). TLR4 was found to be a major receptor 
mediating the course of the lipopolysaccharide (LPS)-induced 
immune response (15-17). The identification and development 
of drugs, which inhibit the TLR4 signaling pathway, has been 
a focus of investigations.

MicroRNAs (miRNAs) are a class of small, non-coding 
RNAs (~20‑25 nucleotides in length), which regulate gene 
expression post-transcriptionally (18,19). MiRNAs are 
involved in several aspects of growth and development, 
depending on their target genes (20-22). The present study 
aimed to investigate whether miRNAs are involved in the 
inflammatory response induced by propofol.

Materials and methods

Cell culture and transfection. The human umbilical vein 
endothelial cell (HUVEC) line was purchased from American 
Type Culture Collection (Manassas, VA, USA). The cells were 
cultured in DMEM (Invitrogen; Thermo Fisher Scientific, 
Inc., Waltham, MA, CA, USA) containing 10% fetal calf 
serum (Invitrogen; Thermo Fisher Scientific, Inc.). The cells 
were grown on sterilized culture dishes (37˚C, 5% CO2) and 
passaged every 48 h with 0.25% trypsin (Invitrogen; Thermo 
Fisher Scientific, Inc.). A mimic negative control, miR-21 
mimic, inhibitor negative control, and miR‑221 inhibitor were 
purchased from Guangzhou RiboBio Co., Ltd. (Guangzhou, 
China). The miR‑221 mimic and inhibitor were transfected 
into HUVECs using Dharmafect1 Transfection Reagent 
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(GE Healthcare Dharmacon, Inc., Lafayette, CO, USA). LPS 
was dissolved in DMSO and added into the culture medium 
at a final concentration of 100 µg/ml for 12 h. Propofol was 
added to the medium to a concentration of 25, 50 and 100 µM 
for 24 h at 37˚C.

Western blot analysis. Total protein was extracted using lysis 
buffer purchased from Pierce; Thermo Fisher Scientific, Inc. 
Total proteins were quantified according to the Bradford 
method, following which 30 µg samples were separated using 
10% SDS‑PAGE. The proteins were transferred onto polyvi-
nylidene fluoride membranes (EMD Millipore, Billerica, MA, 
USA) and incubated overnight at 4˚C with antibodies against 
TLR4 (1:800; cat. no. ab22048; Abcam, Cambridge, MA, USA), 
CD14 (1:800; cat. no. ab182032; Abcam), TNFα (1:2,000; cat. 
no. ab6671; Abcam) and GAPDH (1:2,000; cat. no. 60004‑1‑lg; 
ProteinTech Group, Inc., Chicago, IL, USA). The membranes 
were then incubated with peroxidase‑coupled anti‑mouse (cat. 
no. 5127)/rabbit (cat. no. 58802) IgG (1:2,000; Cell Signaling 
Technology, Inc., Boston, MA, USA) at 37˚C for 2 h. Finally, 
the proteins were visualized using electrochemiluminescence 
(Pierce; Thermo Fisher Scientific, Inc.) and detected using a 
DNR Bio‑Imaging system (DNR Bio‑Imaging Systems, Ltd., 
Jerusalem, Israel). ImageJ version 1.48 u software (National 
Institutes of Health, Bethesda, MA, USA) was used to quantify 
the relative protein levels.

Reverse transcription‑quantitative polymerase chain reaction 
(RT‑qPCR) analysis of miR‑21 using the SYBR‑Green method. 
Total RNA was extracted from cells using TRIzol (Invitrogen; 
Thermo Fisher Scientific, Inc.) according to the manufacturer's 
protocol. The total RNA was then quantified using a Multiskan 
FC microplate reader (Thermo Fisher Scientific, Inc.). The quan-
tification of miRNA from the extracted RNA was performed 
according to the SYBR‑Green method. The qPCR reaction volume 
was 20 µl and consisted of the following: cDNA (0.01 µg/µl), 
5 µl; forward primer (5 µM), 1µl; reverse primer (5 µM), 1 µl; 
H2O, 3 µl; SYBR‑Green Master mix, 10 µl (Applied Biosystems; 
Thermo Fisher Scientific, Inc.). The thermocycling steps were as 
follows: 95˚C for 30 sec, followed by 40 cycles of 95˚C for 5 sec 
and 60˚C for 30 sec. Primers for miR‑21 (Bulge‑Loop™ miRNA 
qRT‑PCR primer set for has‑mir‑2) and U6 (snRNA qRT‑PCR 
primer set; Guangzhou RiboBio Co., Ltd.) were used for qPCR 
analysis using an ABI 7900HT Fast Real‑Time PCR system 
(Applied Biosystems; Thermo Fisher Scientific, Inc.). The primer 
sequences were as follows: Has‑miR‑21‑5p forward primer, GGC 
GGT AGC TTA TCA GAC TGA TG and reverse primer, GTG CAG 
GGT CCG AGG TAT TC; U6 forward primer, CTC GCT TCG 
GCA GCA CA and reverse primer, AAC GCT TCA CGA ATT 
TGC GT. Experiments were performed in triplicate. The rela-
tive levels of gene expression were determined as: ΔCq = Cq 
gene ‑ Cq reference. The fold change of gene expression was 
calculated using the 2-ΔΔCq method (23).

RT‑qPCR of target genes using the SYBR Green method. 
RT‑qPCR analysis was performed using SYBR Green PCR 
master mix (Applied Biosystems; Thermo Fisher Scientific, 
Inc.) on the 7900HT Fast Real-Time PCR system (Applied 
Biosystems; Thermo Fisher Scientific, Inc.). The total volume of 
the PCR reaction system was 20 µl and consisted of the following: 

cDNA (0.02 µg/µl), 5 µl; forward primer (10 µM), 0.5 µl; reverse 
primer (10 µM), 0.5 µl; H2O, 4 µl; SYBR‑Green Master mix, 
10 µl (Applied Biosystems, Thermo Fisher Scientific, Inc.) and 
the reaction process was as follows: 95˚C for 30 sec, 40 cycles of 
95˚C for 5 sec, 60˚C for 30 sec. A dissociation step was performed 
to generate a melting curve to confirm the specificity of the 
amplification. β‑actin was used as the reference gene. Each PCR 
analysis was performed in triplicate. The relative levels of gene 
expression were determined as: ΔCq = Cq gene ‑ Cq reference. 
The fold change of gene expression was calculated using the 
2-ΔΔCq method (23). The primer sequences were as follows: TLR4 
forward, 5'‑CGA ATG GAA TGT GCA ACA CCT‑3' and reverse, 
5'‑ACAAGCACACTGAGGACCGAC‑3'; TNFα forward, 
5'‑CCA CGC TCT TCT GCC TGC T‑3' and reverse, 5'‑GCC AGA 
GGG CTG ATT AGA GAG A‑3'; β‑actin forward, 5'‑GAT AGC 
ACA GCC TGG ATA GCA AC‑3' and reverse, 5'‑CCT GAA CCC 
CAA GGC CAA C‑3'.

Confirmation of the interaction between miR‑21 and target 
genes using luciferase reporter assays. A pmiR-Reporter 
vector, which was obtained from Addgene (Cambridge, MA, 
USA), was used for the reporter assays to detect interactions 
between miR‑21 and TLR4. The wild‑type miR‑21 target site in 
the TLR4 3'‑untranslated region (3'‑UTR) was AUAAGCUA, 
which was predicted using TargetScan (http://targetscan.org/). 
The mutant miR‑21 target site was AUGGGGUA. Luciferase 
activity was examined using the luciferase reporter gene assay 
kit from Promega Corporation (Madison, WI, USA).

Statistical analysis. SPSS 16.0 (SPSS, Inc., Chicago, IL, 
USA) was used for all statistical analyses. Student's t‑test was 
performed to compare all data. P<0.05 was considered to 
indicate a statistically significant difference.

Results

Propofol downregulates the LPS‑induced expression of TLR4 
in HUVECs. The expression levels of TLR4 in HUVECs 
treated with LPS and propofol were detected using western 
blot and RT‑qPCR analyses. The results indicated that (Fig. 1) 
LPS upregulated the protein expression levels of TLR4 and 
CD14 in the HUVECs. Propofol inhibited the protein expres-
sion levels of TLR4 and CD14 in a concentration-dependent 
manner at propofol concentrations of 25, 50 and 100 µM. 
The results of the RT‑qPCR analysis showed the same trend 
(Fig. 1B). LPS upregulated the mRNA level of TLR4 in 
the HUVECs, and propofol suppressed the mRNA level of 
TLR4 in a concentration-dependent manner in the HUVECs 
(P<0.05 in control, vs. LPS; P<0.05 in LPS, vs. LPS+25 µM 
propofol). In addition, LPS treatment significantly upregulated 
the mRNA and protein levels of TNFα, whereas propofol 
treatment downregulated its expression (Fig. 1A and B).

Propofol upregulates miR‑21 in HUVECs. The present study 
analyzed changes in the expression of miR‑21 in HUVECs 
using RT‑qPCR analysis. As shown in Fig. 1B, LPS treat-
ment decreased the expression of miR-21 (P<0.05, control vs. 
LPS), whereas propofol treatment increased the expression of 
miR-21 in a concentration-dependent manner in the HUVECs 
(P<0.05 in LPS, vs. LPS+25 µM propofol).
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miR‑21 downregulates TLR4 in HUVECs. The present study 
examined the link between miR‑21 and TLR4 in HUVECs, 
and found that there were binding sites between miR‑21 and 
the 3'‑UTR of TLR4. Therefore, TLR4 may be a target gene of 
miR‑21 in HUVECs. In order to verify whether miR‑21 targeted 
TLR4 in HUVECs, the miR-21 mimic and miR-21 inhibitor 
were transfected into HUVECs, and the transfection efficiency 
was confirmed using RT‑qPCR analysis (Fig. 2). The expression 
of TLR4 was then examined. As shown in Fig. 3, the mRNA 
level of TLR4decreased following miR‑21 mimic transfection. 
The mRNA expression of TLR4 increased in the miR-21 inhib-
itor‑transfected cells. The results of the western blot analysis 
showed that miR‑21 mimic suppressed the protein expression of 
TLR4, whereas transfection with the miR‑21 inhibitor upregu-
lated the protein expression of TLR4. These results indicated that 
miR-21 regulated TLR4 at the mRNA and protein levels.

Propofol regulates TLR4 through miR‑21. The above results 
indicated that propofol regulated the expression of TLR4 

Figure 1. Expression pattern of TLR4, CD14 and miR-21 in HUVECs treated 
with LPS and propofol. (A) Western blots show the expression levels of TLR4, 
CD14 and TNFα were upregulated in HUVECs treated with LPS. Propofol 
inhibited the expression levels of TLR4, CD14 and TNFα in HUVECs in a 
concentration-dependent manner at propofol concentrations of 25, 50 and 
100 µM. (B) Reverse transcription‑quantitative polymerase chain reaction 
analysis showed that LPS upregulated the expression levels of TLR4 and 
TNFα, and propofol inhibited the expression of TLR4 and TNFα in HUVECs, 
in a concentration‑dependent manner. LPS downregulated the expression of 
miR‑21, whereas propofol upregulated the expression of miR‑21 in HUVECs 
in a concentration‑dependent manner (LPS, 100 µg/ml; propofol, 25, 50 
and 100 µM). *P<0.05. HUVECs, human umbilical vein endothelial cells; 
TLR4, Toll‑like receptor 4; CD14, cluster of differentiation 14; TNFα, tumor 
necrosis factor α; LPS, lipopolysaccharide; miR, microRNA.

Figure 2. Transfection efficiency of miR‑21. miR‑21 mimic and miR‑21 inhibitor 
were transfected into HUVECs. Reverse transcription‑quantitative polymerase 
chain reaction analysis showed that the miR‑21 mimic upregulated its expres-
sion and the miR‑21 inhibitor downregulated its expression. *P<0.05. HUVECs, 
human umbilical vein endothelial cells; miR, microRNA.

Figure 3. miR‑21 downregulates the expression of TLR4 in human umbilical 
vein endothelial cells. The results of the reverse transcription‑quantitative 
polymerase chain reaction analysis demonstrated that the mRNA expression 
of TLR4 was downregulated following miR‑21 mimic transfection. miR‑21 
inhibitor upregulated the mRNA expression of TLR4 mRNA. Western blot 
results analysis revealed that the miR‑21 mimic downregulated the protein 
expression of TLR4 and CD14. miR-21 inhibitor upregulated the protein 
expression of TLR4 and CD14. *P<0.05. TLR4, Toll‑like receptor 4; CD14, 
cluster of differentiation 14; miR, microRNA.
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through miR‑21 in the HUVECs. Subsequently, the present 
study examined whether the LPS‑induced upregulation of 
TLR4 and CD14 were reversed by the miR‑21 mimic. As 
shown in Fig. 4, miR‑21 significantly inhibited the protein and 
mRNA expression of TLR4, which were upregulated by LPS 
treatment (Fig. 4A and B). miR‑21 also downregulated the 
protein expression of CD14 induced by LPS (Fig. 4B).

To confirm the role of miR‑21 during propofol‑induced 
downregulation of TLR4, the miR‑21 inhibitor was trans-
fected into HUVECs and the cells were treated with propofol. 
The expression of TLR4 was determined using western blot 
and RT‑qPCR analyses. As shown in Fig. 5A and B, in the 
cells transfected with the miRNA inhibitor control, propofol 
significantly downregulated the mRNA and protein expression 
levels of TLR4. In cells transfected with the miR‑21 inhibitor, 
propofol had no significant effect on TLR4. Similar to TLR4, 
the miR‑21 inhibitor eliminated the downregulation of CD14 
induced by propofol 4 (Fig. 5B). These results showed that 
propofol regulated the expression of TLR4/CD14 though 
miR-21.

TLR4 is a direct target of miR-21. To further determine 
whether TLR4 was a direct target of miR‑21, fluorescent reporter 
assays were performed. The 3'‑UTR of TLR4, containing 
wild‑type (AUAAGCUA) or mutant (AUGGGGUA) binding 
sites for miR‑21, was cloned into a reporter vector (Fig. 6A). 

The ratio of fluorescence intensity for the wild‑type and mutant 
binding sites was then calculated. As shown in Fig. 6B, the 
miR‑21 mimic reduced the fluorescence intensity in cells trans-
fected with the vector containing the wild‑type TLR4 3'‑UTR, 
compared with that in the controls, whereas no significant 
change was observed in the cells transfected with the vector 
containing the mutant binding site. In addition, a reporter assay 
was used to assess the effect of propofol. As shown in Fig. 6C, 
propofol treatment reduced the fluorescence intensity of cells 
transfected with the reporter vector containing the wild‑type 
TLR4 3'‑UTR. These results indicated that miR‑21 binds to the 
TLR4 3'‑UTR directly and downregulates the mRNA expres-
sion of TLR4.

Discussion

TLR4 predominantly responds to LPS from Gram-negative 
bacteria through its co-receptor (24). TLR4 contains three protein 
domains (25): Extracellular, transmembrane and intracellular. 
The extracellular domain consists of a leucine-rich fragment 
and is involved in the identification of pathogen‑associated 
molecular patterns through combining with CD14. The TLR4 
signal transduction pathway is widespread and important in 
inflammatory molecular signaling pathways (26-28). The 
cascade of inflammatory signals triggered by TLR4 is crucial 
during the development of several diseases (29). In the present 

Figure 4. miR-21 reverses the effects of LPS on TLR4 and CD14. (A) Reverse 
transcription‑quantitative polymerase chain reaction analysis demonstrated 
that LPS upregulated the mRNA expression of TLR4, whereas miR‑21 mimic 
inhibited the effect of LPS. (B) miR‑21 significantly inhibited the LPS‑induced 
protein expression of TLR4 and CD14. *P<0.05. Toll‑like receptor 4; CD14, 
cluster of differentiation 14; LPS, lipopolysaccharide; miR, microRNA.

Figure 5. Propofol regulates the expression of TLR4/CD14 through miR‑21. 
(A) Reverse transcription‑quantitative polymerase chain reaction analysis 
demonstrated that propofol significantly downregulated the expression 
of TLR4. In HUVECs transfected with miR‑21 inhibitor, propofol had no 
significant effect on the expression of TLR4. (B) Western blot analysis 
revealed that propofol significantly downregulated the protein expression 
of TLR4 and CD14 in cells transfected with the miRNA inhibitor control. 
In HUVECs transfected with miR‑21 inhibitor, propofol had no significant 
effect on the expression of TLR4 or CD14. *P<0.05. HUVECs, human 
umbilical vein endothelial cells; TLR4, Toll‑like receptor 4; CD14, cluster of 
differentiation 14; LPS, lipopolysaccharide; miR, microRNA.
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study, it was found that LPS promoted the expression of 
TLR4, CD14 and TNFα, suggesting that TLR4 may serve as 
a mediator of inflammatory responses in HUVEC cells. In 
addition, propofol suppressed the expression of TLR4, CD14 
and TNFα in a concentration-dependent manner, suggesting 
that propofol reversed the inflammatory response induced by 

LPS. The role of propofol on inflammation has been reported 
previously. Propofol inhibits the NOD-like receptor family, 
pyrin domain‑containing 3 inflammasome and attenuates 
blast‑induced traumatic brain injury (30). Propofol attenu-
ates high glucose-induced superoxide anion accumulation in 
HUVECs (31), and inhibits pro‑inflammatory cytokines in 

Figure 6. miR‑21 targets TLR4 in human umbilical vein endothelial cells. (A) miR‑21‑TLR4 information from the TargetScan human database. (B) Wild‑type 
and mutant miR‑21 binding sites in the 3'‑UTR of TLR4 were assessed using fluorescent reporter assays. The fluorescence activity of the miR‑21 mimic/mimic 
control was calculated. In cells transfected with the reporter vector containing the wild‑type binding site, luciferase activity was lower in the miR‑21 
mimic‑transfected cells, compared with that in the control cells. (C) Propofol treatment reduced the fluorescence intensity in cells transfected with the reporter 
vector containing the wild‑type TLR4 3'‑UTR. *P<0.05. TLR4, Toll‑like receptor 4; miR, microRNA; 3'‑UTR, 3'‑untranslated region.
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adult rats following traumatic brain injury (32). In accordance 
with these reports, the present study demonstrated that propofol 
was able to reduce the expression of TLR4, which serves as an 
important component of the inflammatory response. However, 
the exact mechanism underlying the regulation of inflamma-
tion and TLR4 by propofol remains to be fully elucidated. The 
present study aimed to determine how propofol downregulates 
the expression of TLR4, and found miR‑21 was an important 
mediator.

miR‑21, which is highly conserved, has been found in several 
vertebrates, including mammals, fish and birds (33-35). It has 
been reported that the expression pattern of miR-21 is closely 
associated with the development of several diseases (36-38). 
However, whether and how miR‑21 is involved in the inflam-
matory response of cells regulated by propofol remain to 
be elucidated. In the present study, it was found that LPS 
treatment downregulated the expression of miR‑21, whereas 
propofol treatment upregulated the expression of miR-21 in a 
concentration-dependent manner in HUVECs. In addition, the 
present study showed that the miR‑21 mimic downregulated 
the expression of TLR4, whereas the miR‑21 inhibitor upregu-
lated the expression of TLR4, indicating that TLR4 is a target 
of miR-21.

These results suggested that propofol regulated the 
LPS-induced expression of TLR4 through miR-21 in HUVEC 
cells. To confirm this hypothesis, the present study demon-
strated that miR-21 reverses the effect of LPS on TLR4. 
The cells were also transfected with miR‑21 inhibitor and 
then exposed to propofol, and the results demonstrated that 
the miR‑21 inhibitor eliminated the downregulatory effect 
of propofol on TLR4, suggesting that miR-21 is essential in 
the biological effect of propofol. To confirm TLR4 as a direct 
target of miR‑21, the present study performed a fluorescent 
reporter assay, which demonstrated that miR‑21 was able 
to bind directly to the TLR4 3'‑UTR. Taken together, these 
results confirmed that propofol regulated the expression of 
TLR4 though miR-21.

In conclusion, the present study demonstrated that propofol 
regulated the expression of TLR4 through the upregulation of 
miR‑21 in HUVECs, which may explain the protective effects 
of propofol against inflammation.
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