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Abstract. Sepsis is the most important predisposing cause 
inducing acute respiratory distress syndrome (ARDS); 
however, the mechanism of sepsis leading to the develop-
ment of ARDS remains to be elucidated. Suppression of the 
mitogen-activated protein kinase (MAPK) signal by blocking 
the phosphorylation of Jun N-terminal kinase (JNK) and p38 in 
lung tissues could alleviate acute lung injury induced by sepsis. 
MAPK signaling may have a crucial role in development of 
the sepsis‑induced acute lung injury. The specific inhibitors of 
JNK and p38 MAPK, SP600125 and SB203580, were admin-
istrated by intragastric injection 4 h before induction of ARDS 
after cecal ligation and puncture (CLP). Rats were sacrificed at 
1, 6 or 24 h after CLP challenge. The histological evaluation, 
lung water content, and biochemical analysis were performed. 
The results revealed that the JNK and p38 MAPK inhibitor 
improved lung permeability, attenuated system inflamma-
tion, further alleviated the lung injury induced by sepsis. In 

conclusion, JNK and p38 MAPK signaling are essential for 
the development of ARDS following sepsis. Further studies 
are needed to illuminate the detailed mechanisms of JNK and 
p38 MAPK signaling in sepsis-induced ARDS.

Introduction

Acute respiratory distress syndrome (ARDS) is acute respi-
ratory failure, which was the main cause of death among 
critically ill patients, with a mortality rate as high as 40% (1,2). 
ARDS has a close association with sepsis in the intensive care 
unit (ICU). Sepsis is the most common of ARDS (3), ~50% 
of ICU patients with sepsis also have complications with 
ARDS (4). Additionally, clinical research reveals that when 
sepsis-induced ARDS patients are compared with non-sepsis 
ARDS patients, greater severity of the illness and higher 
in-hospital mortality rates were observed (5). However, the 
mechanism of the sepsis leading to the development of ARDS 
remains to be elucidated (6).

Sepsis is the systematic response to infection; excessive 
inflammation damages the lungs leading to ARDS. Previous 
studies show inflammatory damage triggers a robust influx 
of neutrophils and monocytes to the site of tissue injury (7), 
and the damaged or dead cells may trigger the inflamma-
some-dependent responses, then alert the innate immune 
system to the impending tissue damage, suggesting differing 
roles for inflammasomes in the development of ARDS (8). The 
mitogen-activated protein kinase (MAPK) signal transduction 
pathways of inflammatory cells modulate a dysregulated, 
overly aggressive inflammatory response, which promotes the 
development of sepsis (9). Inflammatory signals are initiated 
by the recognition of inflammatory stimuli by specific trans-
membrane and intracellular receptors, previous studies have 
found that following inflammatory stimulation, some major 
MAPK subfamilies, including extracellular signal-regulated 
kinase (ERK), p38 and Jun N-terminal kinase (JNK) were 
activated (10), which induces the expression of multiple genes 
that together regulate the inflammatory response (11).

Through the phosphorylation of a range of downstream 
substrates, different MAPKs have diverse roles in transmitting 
the receptor-proximal signals to the transcriptional activation 
of selected genes (12). Previous studies found that MAPK 
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pathways may provide drug targets in inflammation to inhibit 
cytokine production (13,14). Previous studies determined that 
in mice with cecal ligation and puncture (CLP) the protein 
expression of Toll-like receptor 4 (TLR4), phosphorylated 
(p)-p38, p-JNK and p-ERK was increased, whereas treat-
ment with Compound 9a protected against septic injury by 
suppressing MAPK‑mediated inflammatory signaling (15). In 
a lipopolysaccharide (LPS)-stimulated ARDS mouse model, 
some drugs or compounds (including Decitabine, 5-azaciti-
dine, Andrographolide sulfonate, Hydroxy-Jolkinolide B-1 
and Astilbin) alleviated LPS-induced ARDS by suppressing 
LPS-induced activation of the MAPK signaling pathways by 
blocking the phosphorylation of JNK, ERK and p38 in lung 
tissues (16-19). Previous studies indicated that glycyrrhizic acid 
and Losartan have a protective effect against sepsis-induced 
acute lung injury by inhibiting the inflammatory response, 
reducing damage from oxidative stress, and apoptosis via inac-
tivation of JNK and p38 MAPK (20,21). The aforementioned 
studies indicated the effect of MAPK signaling, particularly the 
JNK and p38 MAPK on sepsis-induced ARDS. The aim of the 
current study was to identify the effect of MAPK signaling on 
sepsis-induced acute lung injury in ARDS rats, to further clarify 
the mechanism of sepsis leading to the development of ARDS.

Materials and methods

Animals. A total of 72 adult male Sprague-Dawley (SD) 
rats (6-8 weeks old; weight, 220-270 g) were obtained from 
Laboratorial Animal Center of Shandong University (Jinan, 
China). All animals were kept in a standard environment 
with ~23˚C room temperature, 30‑60% humidity and a 12‑h 
light/dark cycle, allowed free access to standard rodent chow 
and drink, and adapted to laboratory conditions for a minimum 
of 3 days. The study protocols conformed to the Guide for 
the Care and Use of Laboratory Animals (National Institutes 
of Health, Bethesda, MD, USA) and were approved by the 
Institutional Animal Care and Use Committee of Qingdao 
University (Qingdao, China).

Rat model of sepsis‑induced ARDS (22). All rats were anesthe-
tized with 10% chloral hydrate (300 mg/kg) by intra-peritoneal 
injection before surgical procedures with 8 h preoperative 
fasting food. After a 2-cm incision through midline, the cecum 
was carefully isolated and ligated at distal to the ileocecal 
valve with a 4-0 silk suture to avoid intestinal obstruction. The 
cecum was punctured twice with a sterile 20-gauge needle and 
gently squeezed to extrude a small amount of feces from the 
perforation sites. The quantity of extruded feces was limited 
(small droplet, ~1 mm in diameter) and consistent in all rats. 
Next, the abdominal cavity was closed in two layers with 
continuous suture of 3-0 silk after the cecum was returned. 
In the sham group, the abdomen was opened and the cecum 
manipulated, but no cecal ligation or cecal puncture was 
performed and the abdomen was closed. Following surgery 
each rat received 1 ml normal saline by subcutaneous injection 
for fluid resuscitation and no antibiotics were administrated.

Experimental protocol. Rats were randomly divided into 
6 groups according to a random number table (n=12 for each 
group): i) Sham group (group A); ii) ARDS group (group B), 

in which rats were challenged with CLP to induce the ARDS 
model; iii) dimethyl sulfoxide (DMSO) + ARDS group 
(group C), rats received an equal amount of 10% DMSO 4 h 
before induction of ARDS (16); iv) SP600125 + ARDS group 
(group D), rats received SP600125 (JNK inhibitor) at 30 mg/kg 
4 h before induction of ARDS, SP600125 was dissolved in 10% 
DMSO; v) SB203580 + ARDS group (group E), rats received 
SB203580 (p38 MAPK inhibitor) at 10 mg/kg 4 h before 
induction of ARDS, SB203580 being dissolved in DMSO; 
and vi) SP600125 + SB203580 + ARDS group (group F), rats 
received SP600125 (30 mg/kg) and SB203580 (10 mg/kg), 4 h 
before induction of ARDS. DMSO (Amresco, LLC, Solon, 
OH, USA), SP600125 (Selleck Chemicals, Houston, TX, USA) 
and SB203580 (Selleck Chemicals) were all administered by 
intragastric injection, in group A and group B rats received an 
equal amount of normal saline. Rats were sacrificed at 1, 6 or 
24 h after CLP challenge, and samples were collected from 
each rat for histological evaluation, lung water content (LWC) 
t and biochemical analyses.

Western blot analysis. Total protein was extracted by 
using radioimmunoprecipitation assay (RIPA) lysis buffer 
(Beyotime Institute of Biotechnology, Haimen, China). Protein 
was separated by 10% sodium dodecyl sulfate-polyacrylamide 
gel electrophoresis (SDS-PAGE) and electro-transferred 
to polyvinylidene fluoride (PVDF) membranes (0.45 mm; 
EMD Millipore, Bedford, MA, USA). The membranes were 
blocked in Tris-buffered saline (TBS; pH 7.4) containing 0.1% 
Tween-20 (Shanghai Chemical Reagent Company of China 
Pharmaceutical Group, Shanghai, China) and 5% bovine 
serum albumin (Thermo Fisher Scientific, Inc, Waltham, 
MA, USA) for 1 h at room temperature, then incubated 
at 4˚C overnight with primary antibodies for p‑JNK (cat. 
no. sc-135642; 1:100), total JNK (cat. no. sc-571; 1:100), p-p38 
MAPK (cat. no. sc-101759; 1:100), total p38 (cat. no. sc-7149; 
1:100) and β-actin (cat. no. sc-130656; 1:500; all from Santa 
Cruz Biotechnology, Inc, Dallas, TX, USA). Subsequently, 
membranes were incubated for 1 h at room temperature with a 
goat anti-rabbit IgG-horseradish peroxidase (HRP)-conjugated 
secondary antibody (cat. no. 93974; 1:10,000; OriGene 
Technologies, Beijing, China). Immunoreactive bands were 
detected with Pierce ECL western blotting substrate (Thermo 
Fisher Scientific, Inc.).

Hematoxylin and eosin (H&E) staining and lung injury 
scoring. The right upper lobe of the lung was embedded in 
paraffin (Thermo Fisher Scientific, Inc.) and sectioned at 5 µm. 
The sections were stained with H&E (Beyotime Institute of 
Biotechnology). The severity of lung injury was determined 
as previously described (23). Lung injury was graded from 
0 (normal) to 4 (severe) for the following: Edema, alveolar 
and interstitial inflammation, alveolar and interstitial hemor-
rhage, atelectasis and hyaline membrane formation. The total 
lung injury score per mouse was determined as sum of the 
aforementioned scores. Two investigators blinded to the exper-
imental protocol analyzed ten randomly selected high-power 
fields in each slide at a magnification x400.

Evaluation of the LWC. The right lower lobe of the lung 
from the rats was weighed immediately and subsequently 
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dried at 80˚C for 48 h to calculate the wet/dry weight ratio 
(W/D). The LWC was calculated using the following formula: 
LWC = (1 - W/D) x100.

Cytokine detection. Blood samples (5 ml) were collected by 
cardiac puncture and centrifuged at 1,500 x g for 5 min at 
4˚C. The concentration of interleukin‑6 (IL‑6), IL‑10, and 
tumor necrosis factor-α (TNF-α) proteins in the supernatant 
were detected using a commercial rat cytokine-specific 
enzyme-linked immunosorbent assay (ELISA) kits (cat. 
nos. MM-0190R1, MM-0195R1 and MM-0180R1; Jingmei 
Biotech, Beijing, China) following the manufacturer's protocol. 
All samples were tested in duplicate.

Statistical analysis. The data were presented as the mean ± stan-
dard deviation. Statistical analyses were performed using SPSS 
version 19.0 (IBM, Armonk, NY, USA). Comparisons among 
multiple groups were performed using one-way ANOVA 
followed by a Bonferroni's post hoc test. P<0.05 was consid-
ered to indicate a statistically significant difference.

Results

Regulation of pulmonary JNK and p38 MAPK signalling after 
CLP challenge. The protein expression of total JNK, total p38 
MAPK, p-JNK and p38 MAPK (p-p38 MAPK) in lung tissues 
1, 6, and 24 h after CLP challenge were evaluated using western 
blotting analysis. The p-JNK/total JNK and p-p38 MAPK/total 

p38 MAPK protein were increased in the sepsis-induced lung 
injury group (group B) compared with the shame control group 
(group A) (P<0.05). The p-JNK/total JNK protein was down-
regulated in the groups D and F compared with group B (P<0.05; 
Fig. 1A) and the p-p38 MAPK/total p38 MAPK protein was 
downregulated in the group E and F compared with group B 
(P<0.05; Fig. 1B). The same results were found when compared 
with the DMSO control (group C) (P<0.05; Fig. 1).

Effect of MAPK signalling on pulmonary histopathology of 
sepsis‑induced acute lung injury rats. The thickening of the 
alveolar wall, alveolar and interstitial inflammatory cell infil-
tration, haemorrhaging, alveolar exudates and the edema were 
increased in the lung tissue of rats after sepsis-induced lung 
injury (group B), and the lung injury score for quantification 
of the lung injury was also increased compared with group A 
(P<0.05). However, these histopathological characteristics and 
the lung injury score were alleviated at 1, 6, and 24 h in the 
groups D, E and F compared with group B (P<0.05). The same 
effect was found when compared with the DMSO control 
(group C) (P<0.05; Fig. 2).

Effect of MAPK signalling in sepsis‑induced lung perme‑
ability. The LWC was calculated to evaluate lung edema. LWC 
was significantly reduced at 1, 6, and 24 h in the groups D, 
E and F compared with group B (P<0.05). The same effect 
was found when compared with the DMSO control (group C) 
(P<0.05; Fig. 3).

Figure 1. Regulation of JNK and p38 MAPK signalling in lungs after cecal ligation and puncture challenge. The regulation of pulmonary JNK and p38 MAPK 
signalling were assayed by ratio of (A) phosphorylated JNK/total JNK and (B) phosphorylated p38/total p38 in the lung tissue 1, 6, and 24 h after CLP challenge 
analyzed by western blotting. β-actin was used as an internal control, and the results were expressed as mean ± standard deviation. n=4 at each time point for 
each group. *P<0.05 vs. group A, ^P<0.05 vs. B, !P<0.05 vs. C, D, E and F. ARDS, acute respiratory distress syndrome; MAPK, mitogen activated protein kinase; 
JNK, Jun N-terminal kinase; A, sham; B, ARDS; C, DMSO + ARDS; D, SP600125 + ARDS; E, SB203580 + ARDS; F, SP600125 + SB203580 + ARDS.
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Effect of MAPK signalling on the serum levels of inflamma‑
tory factors in sepsis‑induced acute lung injury rats. The 
levels of the pro‑inflammatory cytokines IL‑6 and TNF‑α and 

the anti‑inflammatory cytokine IL‑10 were measured in the 
serum of rats 1, 6, and 24 h after CLP challenge. Levels of all 
three cytokines were significantly higher at 6, and 24 h when 
group B is compared with group A, while IL-6 and TNF-α 
were increased at 1 h in group B compared with group A 
(P<0.05; Fig. 4). IL-6 and TNF-α were reduced at 1, 6, and 
24 h in the groups D, E and F compared with group B (Fig. 4A 
and B), whereas IL-10 was increased (P<0.05; Fig. 4C). The 
same effects were found when compared with the DMSO 
control (group C) (P<0.05; Fig. 4).

Discussion

ARDS is regarded as part of a systemic inflammatory response, 
particularly systemic sepsis (24), which is usually accompanied 
by excessive inflammatory cell infiltration, cascade release 
of inflammatory factors, and extravasation of protein-rich 
fluid (25). Previous studies have determined that MAPK 
signaling pathways may have an important pathogenic role 
in the inflammatory process associated with sepsis‑induced 
ARDS (19,26,27). As the current study demonstrated, ARDS 
triggered by sepsis after CLP challenge may induce phosphory-
lation of JNK and p38 MAPK in the lung tissue and modulation 
of MAPK signaling by JNK or/and p38 MAPK‑specific inhibitor 

Figure 2. Effect of MAPK signalling on the histopathology of sepsis-induced lung injury. (A) Histopathological analysis of lung tissues was performed at 1, 6 
and 24 h after the cecal ligation and puncture challenge. Magnification, x100. (B) Pathological lung injury scores were expressed as mean ± standard deviation. 
The results showed a significant reduction in the severity of lung injury in group D, E and F mice compared with groups B and C. There was no difference 
between group B and C. n=4 at each time point for each group *P<0.05 vs. group A, ^P<0.05 vs. B, !P<0.05 vs. C, D, E, and F. ARDS, acute respiratory distress 
syndrome; A, sham; B, ARDS; C, DMSO + ARDS; D, SP600125 + ARDS; E, SB203580 + ARDS; F, SP600125 + SB203580 + ARDS.

Figure 3. Effect of mitogen activated protein kinase signalling on 
sepsis-induced lung permeability. Lung edema was measured using the 
lung water content. W/D indicates the ratio of the lung wet weight to dry 
weight, which was detected at 1, 6 and 24 h after cecal ligation and punc-
ture. n=4 at each time point for each group. The results are expressed as 
the mean ± standard deviation. *P<0.05 vs. group A, ^P<0.05 vs. B, !P<0.05 
vs. C, D, E, and F. ARDS, acute respiratory distress syndrome; A, sham; B, 
ARDS; C, DMSO + ARDS; D, SP600125 + ARDS; E, SB203580 + ARDS; F, 
SP600125 + SB203580 + ARDS.
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may significantly improve the pulmonary histopathology and 
lung permeability, increasing the serum levels of anti‑inflamma-
tory factors and reducing the serum levels of pro‑inflammatory 
factors in sepsis-induced acute lung injury rats.

Some of MAPKs, including ERK1, ERK2, p38α, JNK1 
and JNK2 have been confirmed to be involved in innate 
immunity (10), Germline-encoded pattern recognition recep-, Germline-encoded pattern recognition recep-
tors (PRRs) recognize invariant microbial components, termed 
pathogen-associated molecular patterns and then stimulate 
the innate immune response after infection (28,29). PRRs 
activate both MAPK and nuclear factor-κB (NF-κB) pathways 
then activate the immune responses (30). Previous studies 
have revealed that in sepsis-induced ARDS mice after CLP 
the phosphorylation of p38 MAPK, ERK, and JNK increased 
significantly in lung tissue (15,21). As the links between infl am‑. As the links between infl am‑ As the links between infl am‑As the links between inflam-
mation and ARDS (13), another study found that SB203580, 
a selective p38 inhibitor inhibited TNF production (14), and 
SP600125, a specific JNK inhibitor, reduced CLP-induced 
activation of JNK and modulated the early and late steps of 
the inflammatory cascade in a murine model of CLP‑induced 
sepsis (31). According to these fi ndings, the present study identi‑. According to these findings, the present study identi-
fied a robust phosphorylation of JNK and p38 MAPK in lung 
tissue of sepsis-induced ARDS rats after CLP challenge. The 
specific JNK or p38MAPK inhibitor, SP600125 or SB203580 
administered by intragastric injection may significantly reduce 
the phosphorylation of JNK and p38 MAPK in lung tissues. 
This suggested that in sepsis-induced ARDS, the JNK and p38 

MAPK signalling in lung tissue were stimulated, which could be 
downregulated by oral administration of their specific inhibitor.

Previous studies showed that inflammatory injuries 
trigger a robust influx of neutrophils and monocytes to the 
site of tissue injury (7) and the damaged or dead cells are 
thought to trigger the inflammasome‑dependent responses, 
then alert the innate immune system to the impending tissue 
damage (8). Previous studies confirmed that the mechanism 
of some drugs, including Decitabine, 5-azacitidine, Losartan 
and Andrographolide sulfonate, protect lungs against injury 
induced by sepsis via the inhibition of the phosphorylation 
of the ERK, JNK and p38 MAPK, which may result in 
the suppression of the proinflammatory cytokine expres-
sion (16,17,21). Inhibition of the p38 MAPK and JNK, but not 
ERK could alleviate inflammatory cell infiltration and micro-
vascular permeability in sepsis-induced ARDS mice (32). It 
is possible that JNK and p38 MAPK have an important role 
in sepsis-induced lung injury. In the current study, lung injury 
after CLP increased the expression of phosphorylated JNK 
and p38MAPK in lung tissue and administration of the JNK 
and p38 MAPK inhibitor may be able to reduce the severity 
of lung injury in mice. The beneficial effects of the JNK and 
p38MAPK inhibitor achieved in this model confirmed that 
JNK and p38MAPK are essential for the development of 
ARDS after sepsis and the potential therapeutic effects of 
JNK and p38MAPK inhibitor in such pathological conditions 
were elucidated.

Figure 4. Effect of mitogen activated protein kinase signalling on the serum levels of inflammatory factors in sepsis‑induced acute lung injury rats. Levels of 
the proinflammatory cytokines (A) IL‑6, (B) TNF‑α and anti‑inflammatory cytokine (C) IL‑10 in serum of rats 1, 6, and 24 h after cecal ligation and puncture 
challenge were measured using ELISA. n=4 at each time point for each group. Data are expressed as the mean ± standard deviation. *P<0.05 vs. group A, 
^P<0.05 vs. B, !P<0.05 vs. C, D, E, and F. IL-6, -10, interleukin-6, -10; TNF-α, tumor necrosis factor-α; ARDS, acute respiratory distress syndrome; A, sham; 
B, ARDS; C, DMSO + ARDS; D, SP600125 + ARDS; E, SB203580 + ARDS; F, SP600125 + SB203580 + ARDS.
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A previous study determined that p38 MAPK activation was 
essential for CXCR3-mediated endothelial cell apoptosis and 
was associated with the increase of the leakage of protein-rich 
fluid and inflammatory cells in ARDS‑induced lung by CLP (33). 
Inhibition of LPS-induced activation of JNK, ERK, and 
p38MAPK pathways in lung tissues may decrease the indices of 
pulmonary edema, lung wet-to-dry weight ratios markedly (19). 
Inhibition of the p38 MAPK and JNK, but not ERK may alleviate 
inflammatory cell infiltration and microvascular permeability in 
sepsis-induced ARDS mice (32). All of these findings suggested 
that the effect of JNK and p38 MAPK on sepsis-induced lung 
permeability. The present study found that after JNK and p38 
MAPK inhibitor administration the lung edema in ARDS rats 
induced by sepsis after CLP was signifi cantly improved, there‑significantly improved, there‑ improved, there-
fore it is possible that JNK and p38 MAPK were involved the 
deterioration of lung permeability following sepsis.

MAPKs also have an important role in inducing cytokine 
production. It has been previously established that inflam-
matory stimuli may lead to the activation of MAPK and the 
transcription factor NF-κB, which mediates the expression of 
several pro‑inflammatory cytokines, including TNF‑α, IL-1β, 
and IL‑6 which have an important role in many inflammatory 
disease processes (34-37). Previous studies indicated that p38 
MAPK inhibitors can suppress IL-6 and TNF-α expression 
in monocytes and mast cells (38,39). Additional studies have 
suggested roles for p38 MAPK in the in vitro production of 
inflammatory factors, such as TNF‑α (40), IL-6 (41), somewhat 
paradoxically, the anti‑inflammatory factor IL‑10 (42,43). A 
previous study determined that the suppression of the activation 
of the JNK and p38 MAPK would significantly reduce TNF‑α 
content in the plasma of LPS-induced ARDS mice (44). Another 
previous study revealed that berberine inhibited LPS-induced 
expression of proinflammatory genes including IL‑1β, IL-6 
via suppression of the phosphorylation of p38, JNK and ERK 
in peritoneal macrophages (45). Hesperidin downregulated 
the LPS‑induced expression of pro‑inflammatory cytokines, 
including TNF-α, IL-1β, IL-6 and enhanced the production of 
anti‑inflammatory IL‑10, IL‑4, IL‑12, which may be controlled 
by JNK and p38 MAPK pathways (46). Glutamine treatment 
inhibited phosphorylation of p38 MAPK and ERK pathways 
critical for cytokine release, meanwhile, significantly attenuated 
TNF-α and IL-6 after CLP (47). A previous study found that 
the regulation of TLR4-mediated induction of TNF production 
is ERK1 and ERK2 independent (48). In the present study, the 
JNK and p38 MAPK inhibitor was able to significantly reduce 
the pro‑inflammatory cytokines IL‑6 and TNF‑α. Meanwhile, 
an increase the anti‑inflammatory cytokine IL‑10 ws observed 
in the serum of rats after CLP challenge. It provides the direct 
evidence that the JNK and p38 MAPK have an important role 
in the system inflammation response induced by CLP in rats. 
This confirmed that JNK and p38 MAPK may be essential for 
the development of acute lung injury induced by sepsis.

It is of note noted that the present study did not identify 
a difference between the group D or E (single administra-
tion of SB203580 or SP600125) and the group F (combined 
application of SB203580 and SP600125) on pulmonary 
histopathology, lung permeability and the serum levels of 
inflammatory factors. This suggested that there may be a 
common downstream pathway between JNK and p38 MAPK 
and further investigation is required to confirm this.

In conclusion, JNK and p38 MAPK inhibitor improved the 
lung permeability, attenuated system inflammation and allevi-
ated the lung injury induced by sepsis. JNK and p38 MAPK 
signaling are essential for the development of ARDS following 
sepsis, further investigations are required to elucidate the 
detailed mechanisms of JNK and p38 MAPK signaling in 
sepsis-induced ARDS.
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