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Abstract. The identification of optimal methylation 
biomarkers to achieve maximum diagnostic ability remains a 
challenge. The present study aimed to elucidate the potential 
molecular mechanisms underlying osteosarcoma (OS) using 
DNA methylation analysis. Based on the GSE36002 dataset 
obtained from the Gene Expression Omnibus database, differ-
entially methylated genes were extracted between patients 
with OS and controls using t-tests. Subsequently, hierarchical 
clustering was performed to segregate the samples into two 
distinct clusters, OS and normal. Gene Ontology (GO) and 
pathway enrichment analyses for differentially methylated 
genes were performed using the Database for Annotation, 
Visualization and Integrated Discovery tool. A protein-protein 
interaction (PPI) network was established, followed by hub 
gene identification. Using the cut‑off threshold of ≥0.2 average 
β-value difference, 3,725 unique CpGs (2,862 genes) were 
identified to be differentially methylated between the OS 
and normal groups. Among these 2,862 genes, 510 genes 
were differentially hypermethylated and 2,352 were differ-
entially hypomethylated. The differentially hypermethylated 
genes were primarily involved in 20 GO terms, and the top 
3 terms were associated with potassium ion transport. For 
differentially hypomethylated genes, GO functions principally 
included passive transmembrane transporter activity, channel 
activity and metal ion transmembrane transporter activity. 
In addition, a total of 10 significant pathways were enriched 
by differentially hypomethylated genes; notably, neuroactive 
ligand‑receptor interaction was the most significant pathway. 
Based on a connectivity degree >90, 7 hub genes were selected 
from the PPI network, including neuromedin U (NMU; 

degree=103) and NMU receptor 1 (NMUR1; degree=103). 
Functional terms (potassium ion transport, transmembrane 
transporter activity, and neuroactive ligand-receptor inter-
action) and hub genes (NMU and NMUR1) may serve as 
potential targets for the treatment and diagnosis of OS.

Introduction

Osteosarcoma (OS) is the most common type of malignant 
bone carcinoma, which occurs primarily in the metaphyseal 
regions of long bones in adolescents and young adults (1). The 
5-year survival rates of patients with OS without metastases 
is 60% (2). Although the survival rate has improved consider-
ably following the introduction of neoadjuvant chemotherapy, 
it has reached a plateau and novel biological therapies are 
required to achieve further improvement. Although genetic 
alterations in OS have been extensively studied, understanding 
of the etiology of OS remains limited. Notably, epigenetics is 
emerging as an promising strategy for the study of OS.

DNA methylation, one of the most important mecha-
nisms involved in microRNA expression regulation (3), 
gene silencing (4) and alternative gene splicing (5), exerts 
important functions in the early stage of carcinoma. As DNA 
methylation is stable and easily detected qualitatively or quan-
titatively, it has been identified to be a promising diagnostic 
marker for the early detection of cancer (6), compared with 
copy number variations (7), single nucleotide polymorphisms 
(SNPs)/mutations (8) and gene/microRNA expression (9). 
Previously, numerous instances of abnormal DNA meth-
ylation in the early stage of OS have been identified. For 
example, previous studies have indicated that Ras association 
domain family member 1A, death associated protein kinase, 
O-6-methylguanine-DNA methyltransferase, TIMP metallo-
peptidase inhibitor 3, and RB transcriptional corepressor 1 are 
hypermethylated in OS (10‑12). In addition, Sonaglio et al (13) 
demonstrated that the hypermethylation of cyclin dependent 
kinase inhibitor 2A is associated with the absence of OS 
metastases, although estrogen receptor 1 hypermethylation is 
associated with decreased overall survival in OS. In addition, 
hypomethylation of iroquois homeobox 1 has been suggested 
to promote OS metastasis by inducing C-X-C motif chemokine 
ligand 14/nuclear factor-κB signaling (14). Despite the fact that 
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a number of diagnostic panels have been developed, to the best 
of our knowledge, the causes of OS remain to be completely 
elucidated. 

Previously, microarray analysis has been used to detect 
genetic alterations and identify potential targets in human 
OS cell lines. Kresse et al (15) combined the genetic and 
epigenetic profiles of 19 OS samples on the basis of microarray 
technologies, and deposited the OS-associated DNA methyla-
tion dataset in the Gene Expression Omnibus (GEO) database 
(no. GSE36002). In the previous study, the differentially 
methylated genes were extracted and functional enrichment 
analysis was implemented. However, the interactions among 
the differentially methylated genes were not measured.

Therefore, in order to better understand the molecular 
mechanisms of OS, the present study aimed to extract the 
differentially methylated genes from OS and normal samples 
from GSE36002. Hierarchical clustering was performed 
based on Euclidian distance and average linkage criteria. 
Functional enrichment analysis was respectively implemented 
for differentially hypomethylated/hypermethylated genes, to 
further identify the potential biological processes based on 
the Database for Annotation, Visualization and Integrated 
Discovery (DAVID). Subsequently, a protein-protein interac-
tion (PPI) network was established to analyze the interactions 
between differentially methylated genes, followed by hub 
gene identification. The results of the present study provided 
evidence of the cumulative roles of epigenetic mechanisms in 
OS.

Materials and methods

Collection of DNA methylation data. DNA methylation data 
for OS (accession no. GSE36002) (15) was obtained from the 
GEO in the National Center for Biotechnology Information 
database (www.ncbi.nlm.nih.gov/gds), which was deposited 
in the GPL8490 platform (Illumina Human Methylation27 
BeadChip; Illumina Inc., San Diego, CA, USA). GSE36002 
included 25 samples (19 OS cell lines, and six normal 
samples derived from two osteoblast and four normal bone 
samples). Specifically, the 19 OS cell lines were obtained 
from EuroBoNeT (eurobonet.pathobiology.eu/cd/index.php). 
The two normal bone samples were collected from patients 
with cancer (one with OS and one with renal cell cancer) at 
the Norwegian Radium Hospital (Oslo, Norway). The normal 
bone was obtained from a site as distant as possible from 
the tumor site. The other two normal bone samples from 
different donors were purchased from Capital Biosciences, 
Inc. (Gaithersburg, MD, USA). The two human osteoblast 
cultures separated from the calvariae of different donors were 
purchased from ScienCell Research Laboratories, Inc. (San 
Diego, CA, USA).

DNA methylation data quality control and identification of 
differentially methylated genes. The methylation‑identification 
algorithm in Genelibs (www.genelibs.com/gb) was utilized in 
the present study. The raw methylation status of 27,578 CpG 
sites was downloaded. Probes were eliminated from the 
dataset when they met the following criteria: i) Probes with 
SNP‑CpG distances ≤2; ii) probes on X and Y chromosomes; 
iii) minimum allelic frequency <0.05; and iv) cross-hybridizing 

probes. Subsequently, DNA methylation data from the 
25,628 CpG sites were kept for subsequent analysis.

The DNA methylation microarray data were processed 
using the Lumi package (bioconductor.org/pack-
ages/release/bioc/html/lumi.html) (16,17) of Bioconductor 
software. Data were normalized via the β-mixture quan-
tile normalization method (18). Subsequently, β values 
(percentage methylation changes) were utilized in graphical 
representations of the data and demonstrated the percentage 
of methylation counted using the formula methylated/(methyl-
ated + unmethylated), ranging between 0 and 1; 0 represented 
fully unmethylated, while 1 represented fully methylated. In 
the present study, the β values of the OS and normal groups 
were calculated. Subsequently, the absolute value of the 
difference in mean β values between OS and normal groups 
was calculated, termed A. A Student's t-test was employed 
in the analysis to identify the differentially methylated CpGs 
between the two conditions. Differentially methylated CpGs 
were identified based on P<0.05 and A>0.01. SPSS version 
18.0 (SPSS Inc., Chicago, IL, USA) was used for statistical 
analysis.

Refinement of the basic differential methylation analysis. In 
order to decrease the number of non-variable sites to enhance 
the statistical power of the following analyses, further filtering 
steps were performed to promote a more stringent analysis. 
All sites with β values ≤0.2 and ≥0.8 were deleted from all 
25 samples, in order to decrease the number of non-variable 
sites to further promote the statistical power of the subsequent 
analyses (19). Additionally, only CpGs with a mean β-value 
difference ≥0.2 were kept. The absolute β-values in each 
matched pair were examined. A cut‑off threshold of ≥0.2 
average β-values difference was applied to detect CpGs with 
substantial methylation differences.

Hierarchical clustering analysis. Hierarchical clustering is 
a common approach utilized to determine clusters of similar 
data in multidimensional spaces (20). Generally, cancers 
having similar methylation profiles clustered together. To 
analyze whether these differentially methylated CpGs could 
segregate the samples into two distinct clusters including OS 
and normal samples, unsupervised hierarchical clustering 
was conducted using Euclidian distance and average linkage 
criteria (21). The matrix of mean β-value levels of differen-
tial methylated CpGs was formed between OS and normal 
samples.

Gene ontology (GO) analysis of differentially methylated 
genes. GO analysis has been widely utilized for large-scale 
functional enrichment research (22). In the present study, GO 
functional enrichment analysis was implemented for differen-
tially methylated genes using DAVID (david.ncifcrf.gov) which 
is a software tool providing a comprehensive set of functional 
annotation for researchers to understand the biological meaning 
behind a large number of genes (23). Specifically, Fisher's 
exact test was used to classify the GO category. Subsequently, 
P-values were corrected using the false discovery rate (FDR) 
with the Benjamini & Hochberg method (24). Functional 
terms with FDR <0.01 and gene count >10 were considered to 
be statistically significant.
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Pathway enrichment analysis of differentially methylated 
genes. The Kyoto Encyclopedia of Genes and Genomes 
(KEGG; www.genome.jp/kegg/pathway) is a knowledge base 
used to systematically analyze gene functions (25). In the 
present study, pathway analysis was performed according to 
the KEGG using the DAVID tool. Fisher's exact test was used 
to extract the significant pathways, and the threshold of signifi-
cance was defined by FDR. Significant pathways were selected 
according to the thresholds of FDR <0.01 and gene count >10.

PPI network construction and hub genes identification. The 
Search Tool for the Retrieval of Interacting Genes (STRING) 
database (www.bork.embl-heidelberg.de/STRING) is a global 
resource for analyzing PPI information (26). In the present study, 
the STRING tool was used to identify the PPIs of differentially 
methylated genes. The differentially methylated genes with 
required confidence (combined score) >0.8 were extracted, and 
the PPI network was established and displayed using Cytoscape 
software (cytoscape.org) (27). Given that the networks were 
scale‑free, the hub genes were identified with degree >90.

Results

Identification of differentially methylated genes. Following 
quality control and normalization to remove probes with 
SNP‑CpG distance ≤2, on the X and Y chromosomes, with 
minimum allelic frequency <0.05, and cross-hybridizing, a 
total of 25,628 methylated CpGs remained in the final dataset 
of 25 samples. A volcano plot exhibiting the distribution of the 
25,628 analyzed methylated CpGs was produced, as presented 
in Fig. 1. Among these 25,628 methylated CpGs, 5,889 CpGs 
(representing 4,677 genes) were differentially methylated, 
when the absolute value of the mean β-value difference 
between the OS and normal groups was >0.01 and the P-value 
was <0.05. A total of 572 of the CpGs were hypermethyl-
ated and 5,317 CpGs were hypomethylated in the OS group 
compared with the normal group.

Subsequently, these 5,889 methylated CpGs initially 
extracted as differentially methylated sites were subjected to 
further filtering. Using the cut‑off threshold of ≥0.2 average 
β-values difference, 3,725 unique CpGs (covering 2,862 genes) 
were detected to be differentially methylated between the OS 
and normal groups. Among these 2,862 genes, 510 gene were 
differentially hypermethylated genes and 2,352 were differen-
tially hypomethylated genes.

Cluster analysis of the differentially methylated genes. The 
cluster heat map is presented in Fig. 2. In this figure, it was 
observed that there were distinctive methylation patterns in OS 
and normal samples, which segregated samples into two distinct 
groups comprising those from OS and normal populations.

GO enrichment of differentially methylated genes. In order 
to better understand the potential biological functions of the 
differentially methylated genes, all the genes were annotated 
using GO annotation based on DAVID software. GO catego-
ries with FDR <0.01 and gene count >10 were regarded as 
significantly enriched. Overall, 20 GO terms were significantly 
enriched by differentially hypermethylated genes, as presented 
in Fig. 3. These GO terms were sorted in ascending order 

based on FDR value, and the top 3 most significantly enriched 
differentially hypermethylated genes were associated with 

Figure 1. Volcano plot exhibiting the methylation data of 19 osteosarcoma and 
6 normal samples. X axis, mean methylation differences between osteosar-
coma and normal. Y axis, log transformed P-values. A total of 5,889 CpG sites 
were considered to be significantly differently methylated, exhibited in blue.

Figure 2. Hierarchical clustering analysis of significantly differentially meth-
ylated CpGs between osteosarcoma and normal samples. DNA methylation 
across the 3,725 sites in each of the samples was analyzed by hierarchical 
clustering. Each row is an individual CpG site and each column is a different 
sample. Color gradation from green to red denotes low to high DNA meth-
ylation, with β-values ranging from 0 (no methylation; green) to 1 (complete 
methylation; red).
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potassium ion transport. For differentially hypomethylated 
genes, GO functions primarily included passive transmem-
brane transporter activity, channel activity and metal ion 
transmembrane transporter activity, as described in Fig. 4.

KEGG pathway analysis for differentially methylated genes. 
Pathway enrichment analysis of all differentially methyl-
ated genes was performed based on the KEGG automatic 
annotation server. Based on FDR <0.01 and gene count >10, 
no KEGG pathways were enriched by the differentially 
hypermethylated genes. Notably, differentially hypomethyl-
ated genes were enriched in 10 KEGG pathways, including 
neuroactive ligand-receptor interaction (FDR=3.5x10-9; gene 
count=80), pathway in cancer (FDR=3.2x10-7; gene count=96) 
and Rap1 signaling pathway (FDR=6.5x10-6; gene count=58). 
The specific enrichment results are presented in Table I.

PPI network construction and hub genes identification. With 
the goal of analyzing the association between differentially 

methylated genes, STRING software was used to establish the 
PPI network. When the differentially methylated genes with 
required confidence (combined score) >0.8 were submitted 
into STRING, a total of 3,775 PPI interactions (covering 195 
nodes) were obtained, as presented in Fig. 5. The hub genes in 
the networks with connectivity degree >90 were identified. A 
total of 7 hub genes were selected from the PPI network, which 
included neuromedin U (NMU; degree=103), NMU receptor 
1 (NMUR1; degree=103), NMUR2 (degree=103), calcium 
sensing receptor (degree=103), formyl peptide receptor 
2 (degree =92), melanin concentrating hormone receptor 
(MCHR) 2 (degree=91) and MCHR1 (degree=91).

Discussion

The analysis of DNA methylation data has been widely used 
to identify abnormally methylated genes associated with OS 
and has enabled the extraction of targets for therapeutic strate-
gies. In the present study, OS pathogenesis was analyzed using 

Figure 3. Differentially hypermethylated genes identified between osteosarcoma and normal samples were functionally classificated via gene ontology analysis. 
The most enriched functional terms, which satisfied the FDR <0.01 and gene count >10 criteria, are presented.

Figure 4. Differentially hypomethylated genes identified between osteosarcoma and normal samples were functionally classified via gene ontology analysis. 
The most enriched functional terms, which satisfied the FDR <0.01 and gene count >10 criteria, are presented.
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bioinformatics, including the detection of differentially methyl-
ated genes, functional analyses of the differentially methylated 
genes, PPI construction, and hub genes identification. According 
to the results, the potential mechanisms of OS were revealed, 
which provided novel insights into OS diagnosis and therapy.

Following implementation of the pathway functional 
analyses for differentially hypomethylated genes, the pathway 
of neuroactive ligand-receptor interaction was selected as the 
most significant pathway. Neuroactive steroids act as mediators 
of neurotransmitter receptors to regulate neuronal activity (28). 
The effect of steroids indicates a ligand-receptor interaction. 
Previous studies have reported that neuroactive steroids have 
been suggested to affect the modulation of γ-aminobutyric acid 
(GABA) receptors (29,30). Notably, studies have reported that 
GABA receptors control cell proliferation and have suggested 
that there may be an association between the GABAergic 
system and oncogenesis (31,32). In particular, GABA has been 
observed to be overexpressed in a number of types of tumors, 
including gastric, colon, ovarian, and breast cancer (32-34). At 
present, the pathway of neuroactive ligand-receptor interac-
tion has not been demonstrated to be directly involved in OS. 
According to the results of the present study, it may be inferred 
that neuroactive ligand-receptor interaction might serve a role 
in OS, partially by regulating the expression of GABA. 

Notably, the GO results in the present study indicated that 
the top 3 functions enriched by differentially hypermethylated 
genes were associated with potassium ion transport. A previous 
study suggested that ion channels may be involved in the 
progression of cancer (35). Potassium channels, a class of ion 
channel, have been demonstrated to be aberrantly expressed 
in tumor cells and to be involved in carcinogenesis (36,37). 
Potassium channels serve diverse roles in cancer-associated 
processes, including cell survival, proliferation, and migra-
tion (38,39). Notably, a previous study demonstrated the roles 
of potassium channels in the control of glioma cell survival, 
growth and migration (40). Potassium chloride cotransporter 

2 has been indicated to increase cervical cancer cell invasion 
through an ion transport-based mechanism (41). A high level 
of potassium expression has been reported in OS (42,43). 
Accordingly, the results of the present study indicated a further 
link between potassium ion transport and OS progression. 

For differentially hypomethylated genes, GO functions were 
associated with transmembrane transporter activity. Facilitated 
glucose transporters regulate the energy-associated transport 
of glucose across the plasma membrane (44). A previous study 
demonstrated that the suppression of glucose transport was 
associated with apoptosis (45). Apoptosis has been implicated 
to exert an important role in the progression of OS. Increasing 
evidence has suggested that the induction of apoptosis may be 
an effective means of inhibiting tumor formation and develop-
ment (46-48). As reported, one cellular mechanism which 
produces resistance to antineoplastic therapy involves the efflux 
of drugs from cancer cells through specific transmembrane 
transporters (49). Therefore, it may be inferred that transmem-
brane transporter activity is associated with OS progression. 

Based on the degree distribution in the PPI network, 
NMU and NMUR1 exhibited the highest degrees. NMU, a 
neuropeptide, has potent activity in energy homeostasis (50). 
A previous study demonstrated that NMU may cause the 
release of inflammatory cytokines from T cells or macro-
phages (51). Notably, cytokine-releasing immune cells may 
stimulate neovascularization to promote the growth of human 
neoplasms. Studies have indicated that NMU is associated 
with tumorigenesis. For example, NMU has been reported 

Table I. KEGG pathway analysis for differentially methylated 
genes, based on FDR <0.01 and gene count >10.

Terms Gene count FDR

Neuroactive ligand-receptor 80 3.5x10-9

interaction
Pathways in cancer 96 3.2x10-7

Rap1 signaling pathway 58 6.5x10-6

Calcium signaling pathway 58 1.9x10-4

Morphine addiction 31 2.1x10-3

MAPK signaling pathway 36 2.4x10-3

Cholinergic synapse 46 3.9x10-3

Circadian entrainment 50 6.4x10-3

cAMP signaling pathway 30 6.5x10-3

Cell adhesion molecules  27 7.1x10-3

FDR, false discovery rate; KEGG, Kyoto Encyclopedia of Genes 
and Genomes; cAMP, cyclic adenosine monophosphate; MAPK, 
mitogen-activated protein kinase; Rap1, telomeric repeat-binding 
factor 2-interacting protein 1.

Figure 5. Protein-protein interaction network constructed from differentially 
methylated genes with the required confidence (combined score) >0.8. 
Yellow nodes represent hub genes.
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to stimulate the migration of renal cancer cells (52,53), and 
acts as a potential growth factor for myeloid leukemia (54). 
NMUR1, a receptor of NMU, has been demonstrated to be 
expressed in renal cancer cells (52). The potential role of NMU 
and NMUR1 in OS has not been documented. According to 
the results of the present study, it may be inferred that NMU 
and NMUR1 may serve an important role in OS. 

In the present study, the data were recruited from the 
DNA methylation dataset GSE36002, which was analyzed by 
Kresse et al (15). Consistent with the study of Kresse et al, 
differentially methylated genes between OS and normal 
samples were extracted in the present study, and GO func-
tional and pathway enrichment analyses were implemented 
to examine the underlying mechanism of OS. However, 
there remain certain discrepancies. On the basis of the study 
of Kresse et al, further analyses using bioinformatics were 
performed in the present study, including the construction of 
the PPI network and hub gene analysis. 

However, the present study had certain limitations. There 
was a small amount of sample data. Additionally, the data used 
in the present study were recruited from the GEO database, 
and not collected specifically for the present study. Since 
GEO is a large data repository, a meta-analysis of the relevant 
datasets for OS may be performed in the future. Additionally, 
the OS samples were obtained from cell lines, while normal 
samples were obtained from the human bones of different 
donors. In addition, the findings were bioinformatics‑based 
identification and were not validated using biological experi-
ments. Therefore, further experimental studies are required. 

In conclusion, the present study provided a comprehensive 
bioinformatics analysis of differentially methylated genes 
which may be involved in the development and progression 
of OS. The results of the present study may provide an insight 
into the potential pathogenesis of OS. Additionally, functional 
terms (potassium ion transport, transmembrane transporter 
activity and neuroactive ligand-receptor interaction) and hub 
genes (NMU and NMUR1) may serve as potential therapeutic 
targets for OS. However, further work is required to improve the 
diagnosis and treatment of OS by regulating functional terms.
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