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Abstract. Focal segmental glomerulosclerosis (FSGS) is a
pathological lesion rather than a disease, with a diverse etiology.
FSGS may result from genetic and non-genetic factors. FSGS is
considered a podocyte disease due to the fact that in the majority
of patients with proven-FSGS, the lesion results from defects
in the podocyte structure or function. However, FSGS does not
result exclusively from podocyte-associated genes, however
also from other genes including collagen V-associated genes.
Patients who carry the collagen type IVA3 chain (COL4A3)
or COL4A4 mutations usually exhibit Alport Syndrome (AS),
thin basement membrane neuropathy or familial hematuria
(FH). Previous studies revealed that long-time persistent
microscopic hematuria may lead to FSGS. A case of a family
is presented here where affected individuals exhibited FH with
FSGS-proven, or chronic kidney disease. Renal biopsies were
unhelpful and failed to demonstrate glomerular or basement
membrane defects consistent with an inherited glomeru-
lopathy, and therefore a possible underlying genetic cause for a
unifying diagnosis was pursued. Genomic DNA of the siblings
affected by FH with biopsy-proven FSGS was analyzed, and
their father was screened for 18 gene mutations associated
with FSGS [nephrin, podocin, CD2 associated protein, phos-
pholipase C g, actinin a 4, transient receptor potential cation
channel subfamily C member 6, inverted formin, FH2 and
WH?2 domain containing, Wilms tumor 1, LIM homeobox
transcription factor 1 3, laminin subunit 3 2, laminin subunit
B 3, galactosida o, integrin subunit § 4, scavenger receptor
class B member 2, coenzyme Q2, decaprenyl diphosphate
synthase subunit 2, mitochondrially encoded tRNA leucine 1
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(UUA/G; TRNLI1) and SWI/SNF related, matrix associated,
actin dependent regulator of chromatin, subfamily a like 1]
using matrix-assisted laser desorption/ionization time-of-flight
mass spectrometry technology. Then whole exome sequencing
(WES) was performed in the two probands to ascertain
whether there were other known or unknown gene mutations
that segregated with the disease. Using mass array technology,
a TRNLI missense homozygous mutation (m. 3290T>C) was
identified in the probands diagnosed with FH and manifested
as FSGS on biopsy. In addition, a COL4A4 missense muta-
tion c. 4195A>T (p. M1399L) in heterozygous pattern was
identified using WES. None of these variants were detected
in their father. In the present study, a mutation in TRNLI1
(m. 3290T>C) was identified, which was the first reported
variant associated with FSGS. The COL4A4 (c. 4195A>T)
may co-segregate with FSGS. Screening for COL4A mutations
in familial FSGS patients is suggested in the present study.
Genetic investigations of families with similar clinical pheno-
types should be a priority for nephrologists. The combination
of mass array technology and WES may improve the detection
rate of genetic mutation with a high level of accuracy.

Introduction

Focal segmental glomerulosclerosis (FSGS) is a description
of a histological lesion, rather than a disease; characterized
by focal and segmental glomerular sclerosis and podocyte
foot-process effacement and its clinical manifestations include
proteinuria and progressive renal failure. Current treatments
for FSGS frequently fail to achieve remission (1,2). Therefore,
unravelling the pathogenesis of FSGS is of primary concern
for the development of targeted therapy.

The etiology of FSGS has been identified as diverse.
FSGS may occur following immunologically-mediated injury,
genetic factors, circulating permeability factor/s, and hemo-
dynamic adaptations resulting in glomerular hypertrophy
and direct podocyte injury also lead to FSGS (3). The most
common clinical manifestation of FSGS is proteinuria, which
may range from subnephrotic to nephrotic levels. However,
a number of the patients with proven-FSGS present with
hematuria (4).

The renal glomerular filtering apparatus consists of three
major components: The fenestrated endothelial cell layer, the
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glomerular basement membrane (GBM) and the epithelial
podocyte layer. Injury to any layer may result in red blood
cells or protein escaping into the urine through a defect in the
glomerular filtration barrier. It has been demonstrated that
podocyte damage serves a central role in the pathogenesis of
FSGS (5,6). A number of genes have also been demonstrated
to be mutated in FSGS (7-24) (Table I), and most of the
encoded proteins are localized in podocytes, whereas others
are expressed in other tissues and cell types including in
GBM (20-22,25-26). According to statistical analysis, 1/3-1/2
of children with isolated, persistent hematuria have a familial
history (27-28). It has been demonstrated by previous studies
that long-term persistent microscopic hematuria (MH) may
lead to chronic kidney disease (CKD) (29-32). A total of
~14-50% of familial cases progress to end-stage renal disease
(ESRD) on long-term follow-ups (33).

Alport's Syndrome (AS) and thin basement membrane
neuropathy (TBMN), which occur most frequently in glomer-
ular MH, result from defects in type IV collagen. The type IV
collagen a3a4a5 chain is a major component of the GBM and
a heterotrimer that is encoded by three genes: Collagen type IV
o 3 chain (COL4A3), COL4A4 and COL4AS5 (34). During the
last three decades, six genes (COL4A3, COL4A4, COL4AS,
complement factor H related 5, myosin heavy chain 9 and
fibronectin 1) have so far been identified in familial micro-
scopic hematuria of glomerular origin (34). In addition to AS
and TBMN, familial FSGS may also be a factor resulting in
familial glomerular microscopic hematuria (GMH) (4).

It has been demonstrated by previous studies that long-term
persistent MH may lead to renal injury regardless of TBMN,
AS or other disease presenting with hematuria (29-32).
Therefore, pediatric nephrologists need to be aware that chil-
dren with familial hematuria and a family history of CKD have
a high probability of developing proteinuria and progressing
to renal failure in adult life. Especially at early stages when
MH appears as an isolated warning sign, it is worth having a
step-wise algorithm for deeper investigations of the etiology
and pathogenesis of the disease.

Advances in DNA analysis technology may facilitate
greater use of molecular diagnostics, which reduce the need to
use invasive methods including renal biopsy (4). Importantly,
molecular diagnostics may be performed at an early stage
of disease, frequently providing a broader set of therapeutic
options and an increased window of opportunity to ameliorate
disease progression (35).

Recently the implementation of high-throughput
sequencing technologies including mass array technology
and whole exome sequencing (WES) make it possible to test
multiple genes simultaneously in a single experiment faster and
more efficiently (36). The performance of the next-generation
sequencing may help to identify novel genes or novel unre-
ported mutations and discover co-segregating genetic regions.
However, the appropriate application and combination of
sequencing methods with conventional gene-discovery
strategies should be considered for each patient and research
project (36). Only then may they be of use in making a
diagnosis in a more precise way.

The present study reports on a family in which affected
individuals exhibited familial hematuria and the siblings
had biopsy-proven FSGS and normal GBM. Renal biopsies
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demonstrated non-specific pathological alterations and failed
to exhibit glomerular or basement membrane defects consis-
tent with an inherited glomerulopathy, and therefore a
possible underlying genetic cause for a unifying and definitive
diagnosis was pursued. The present study hypothesized that
FSGS in the siblings resulted from a defect in the 18 genes
[nephrin (NPHSI), podocin (NPHS2), CD2 associated protein
(CD2AP), phospholipase C ¢ (PLCEI), actinin a 4 (ACTN4),
transient receptor potential cation channel subfamily C
member 6, (TRPCO6), inverted formin, FH2 and WH2 domain
containing (INF2), Wilms tumor 1 (WTI), LIM homeobox
transcription factor 1p (BLMXIB), laminin subunit f3
(LAMB) 2, LAMB3, galactosidase a, integrin subunit f3 4,
scavenger receptor class Bmember 2 (SCARB2),coenzyme Q2
(COQ?2),decaprenyl diphosphate synthase subunit 2 (PDSS2),
mitochondrially encoded tRNA leucine 1 (UUA/G; TRNLI)
and SWI/SNF related, matrix associated, actin dependent
regulator of chromatin, subfamily a like 1. Under this assump-
tion, the siblings were identified as possessing a homozygous
mutation for TRNL1 (m. 3290T>C), which may segregate
with disease using matrix-assisted laser desorption/ionization
time-of-flight (MALDI-TOF) mass spectrometry technology.
WES on the siblings was performed to identify the existence
of other genes or mutations that co-segregate with familial
hematuria or FSGS when mutated. The results demonstrated
that the two sisters carried a single heterozygous mutation c.
A4195T (p. M1399L) in the COL4A4 gene, which may serve a
role in the pathology of FSGS and act as a modifier to TRNLI.
To the best of the authors' knowledge, this is the first report
of a family with familial hematuria and proven-FSGS with
a mutation in the TRNLI gene, and with a mutation in the
COL4A4 gene that co-segregated with disease. In addition,
this may be the first study to use mass array technology and
WES simultaneously in the identification of disease genes.

Materials and methods

Clinical data and DNA preparation. Clinical data and histor-
ical renal biopsies were reviewed where available. Following
informed consent being obtained, DNA was obtained from the
siblings (1~14 years old) and their father (33-34 years old; data
not available from their mother) obtained from the Second
Xiangya Hospital during the period March/2014-March/2015.
The research was approved by the Ethics Commission of the
Second Xiangya Hospital (Changsa, China). DNA was isolated
from peripheral leukocytes using the DNA purification kit
(Tiangen Biotech Co., Ltd., Beijing, China) according to the
manufacturer's protocol.

Single nucleotide polymorphism (SNP) analysis using
MALDI-TOF technology. The genes and SNPs were selected
on the basis of currently available literature (22). The 15
genes were selected following searching databases including
PubMed, the Online Mendelian Inheritance in Man (OMIM;
www.ncbi.nlm.nih.gov/omim) and the Human Gene Mutation
Database (nihlibrary.nih.gov/about-us/news/categories/3051).
Database ClinVar and OMIM were searched for clinically
relevant mutations or SNPs from the 18 genes. The database
search identified 179 candidates. Certain candidates either
lacked complete information or were not compatible for
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Table 1. Continued.

(Refs.)

Phenotype

Protein

Inheritance

Locus

Gene

Author, year
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(22)

NEP syndrome-NS, epidermolysis bullosa and pulmonary disease

AR p4-integrin

17925

Other-Metabolic or lysosomal

ITGB4

Kambham, 2000

(23)

Scavenger receptor class B Nephrotic syndrome, nephrotic syndrome with C1q deposits, progressive

member 2

SCARB2 (lysosomal) 4q21.1 AR

Berkovic, 2008

myoclonic epilepsy (Action myoclonus renal failure syndrome + hearing

loss)

(24)

a-galactosidase A Andeson-Fabry disease

XLR

Xq22.1

Serebrinsky, 2015 GLA

AR, autosomal recessive; AD, autosomal dominant; XLLR, X-linked recessive; CNS, central nervous system; FSGS, focal segmental glomerulosclerosis; NS, nephrotic syndrome; NEP, nephrotic syndrome;

DMS, diffuse mesangial sclerosis; MELAS, mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes; HIV, human immunodeficiency virus; GBM, glomerular basement membrane;

NPHS1, nephrin; NPHS2, podocin; CD2AP, CD2 associated protein; PLCEI1, phospholipase C &¢; ACTN4, actinin a 4; TRPC6, transient receptor potential cation channel subfamily C member 6; INF2,

inverted formin, FH2 and WH2 domain containing; WT1, Wilms tumor 1; LMX1B, LIM homeobox transcription factor 13; LAMB, laminin subunit 3; GLA, galactosidase a; ITGB4, integrin subunit {3 4;

SCARB2, scavenger receptor class B member 2; SD, slit diaphragm of podocytes; COQ2, coenzyme Q2; PDSS2, decaprenyl diphosphate synthase subunit 2; UUA/G; TRNLI, mitochondrially encoded

tRNA leucine 1; SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily a like 1; GLA, galactosidase.

MassArray technology. A total of 138 mutations were included
in the assay.

Polymerase chain reaction (PCR). The assay was designed
using MassARRAY® software (version 4.0; Sequenom, San
Diego, CA, USA). The 138 mutations were assigned to six
multiplex assays. PCR primers were designed using Mass
ARRAY® Assay Design 4.0 Software (Sequenom) (Table IT).
PCR was first performed using the following protocol: 4 min
at 95°C for activation of Faststart tag DNA polymerase (Roche
Diagnostics, Basel, Switzerland, cat. no. 12032937001) and
30 sec at 95°C, 30 sec at 56°C, 1 min at 72°C for 45 cycles,
followed by 5 min at 72°C. The PCR products were subjected
to shrimp alkaline phosphatase (SAP) reaction for the degra-
dation of residual dNTPs. The SAP reaction was performed
as follows: 40 min at 37°C and 5 min at 85°C. Following this,
extension reaction was performed by the following protocol:
30 sec at 94°C, 40 cycles for 5 sec at 94°C, from 5 sec at 52°C
to 5 sec at 80°C for 5 cycles, and finally 3 min at 72°C. Then,
the products were desalted using resin. The final products were
analyzed by MALDI-TOF mass spectrometry (Mass ARRAY®
Typer 4.0.5 Software, Sequenom) to identify the mass. SNP
genotyping was performed on SEQUENOM®MassARRAY®
platform using the iPLEX™ assay (Sequenom) (37).

WES analysis. WES was performed on the two siblings.
A total of 6 ug sample DNA was prepared. First, the quali-
fied DNA samples were randomly fragmented to generate
200-300 bp DNA fragments. The extracted DNA was ampli-
fied in a ligation-mediated (LM)-PCR, as described earlier.
The NimbleGen human exome array (SeqCap EZ Human
Exome Library; version 2.0; NimbleGen, Roche Diagnostics
cat. no. 06465684001 or 06465692001) was used to capture
the exons of the human genome. High-throughput sequencing
was performed on a Hiseq2000 platform (Illumina), and the
sequence of each library was generated as 90 bp paired-end
reads. The raw image files were processed by Illumina base
calling Software (Illuminalnc.San Diego,CA,USA,version 1.7;
HCS1.5.15.1,RTA1.13.48, OLB 1.9.4). The obtained sequences
were aligned to the reference genome [human genome build37
(hg19)] using Burrows-Wheeler Aligner (BWA; bio-bwa.
sourceforge.net/; version: 0.5.9-r16). Single-nucleotide
polymorphisms (SNPs) were detected by SOAPsnp
(http://soap.genomics.org.cn/soapsnp.html; version 1.05) and
small insertions/deletions (indels) were detected by SAMtools
(version: 0.1.18; www.htslib.org/). Called SNP variants and
indels were annotated and classified using ANNOVAR
(www.ncbi.nlm.nih.gov/pmc/articles/PMC2938201/). Variants
were filtered using data from dbSNP 142 and the 1000
Genomes Project.

Pathological diagnosis. The renal tissue was fixed in 10%
neutral buffered formalin and stored at room temperature or
4°C. The fixed tissue was embedded in paraffin and 2-pm
sections were cut. HE, PAS, PASM+Masson and Masson
staining were performed at 37°C as described previously (22).

In silico analyses of the effect on protein structure and
function. Selected bioinformatics tools were used to
assess the effect of sequence variants on the structure and
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function of the receptor. A total of two indirect in silico
predictors, PolyPhen2 (Polymorphism Phenotyping
version 2; genetics.bwh.harvard.edu/pph2/index.shtml)
and SIFT (sift.jcvi.org), were used to evaluate the possibly
damaging effects of single amino-acid substitutions on the
expression of the proteins of these genes. To identify poten-
tial pathogenic mutations, additional analysis focused on
the variants that are listed in OMIM as being associated
with FSGS (even if frequent) and also any other indels and
nonsense variants. For the missense variants, the high risk
variants were determined by a minor allele frequency (MAF)
of 1% or unknown (using 1,000 Genomes population data;
www.1000genomes. org/node/506).

Results

Quality control. Mass array technology assigns a quality code
for each genotyping call. Codes A, B, C, D and I stand for
conservative, moderate, aggressive, low possibility and bad
spectrum, respectively. The lower the order of the code from
A to Z, the higher the quality of the genotyping calls. Code A
indicates the highest quality and code D and I indicate no geno-
typing call (reported as NA). The overall quality of the assay is
summarized in Table III. The total number of genotyping calls
are 5,658, which is a product of 138 (the number of variations)
and 41 (the number of samples). The percentage of code A calls
is 90. 84% and the sum of code A, code B and code C calls is
98.09%. Overall, the assay achieved a good quality. The assay
quality was also investigated to see the distribution of no call
genotypes (quality code D and I) among the mutations identi-
fied. Two variations (rs121912601, rs2717-192514) did not get
genotypes from >10% samples and genotyping of 4 variations
(rs121918230, 15121907911, rs28935487, rs267607183) failed in
>20% samples. As the Mass array genotyping assay is multi-
plexed, these mutations/SNPs are likely to be susceptible to
assay condition variations. The performance of the assay may
be improved by redesigning the PCR primers and extension
primers for these variations.

The two affected sisters were selected for exome
sequencing. For each participant, 4,4017,835 bases were
created and covered on the target. The sequence data were
generated with a x177 average coverage for each subject. An
average coverage of the target region was 98.96 and 99.27%
of the target region had at least x4 coverage. For each partici-
pant, 21,134 single-nucleotide variants were identified, of
which 9,986 were missense mutations and 135 were nonsense
(premature termination) mutations.

Clinical characteristics. A total of two female siblings
presented with MH at 9 and 6 years-old, respectively. The
oldest sibling was referred to the Second Xiangya Hospital
for persistent MH (8 months) with macroscopic hematuria
initially. The physical examination revealed no abnormalities
and the older sibling did not suffer from hypertension, sensori-
neural deafness, or eye involvement. Laboratory tests revealed
only MH, which was demonstrated to be glomerular hema-
turia by the urinary sediment test (erythrocytes 100,000/high
power field; 70% of glomeruli; urinary protein 0 mg/dl), with
normal renal function. Values obtained in the hematological,
biochemical and serological tests were: Serum creatinine,
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Table III. Analysis of overall quality of the assay.

Class Count Percentage, %
Conservative 5,140 90.84
Moderate 363 642
Aggressive 47 0.83

Low possibility 100 1.77

Bad spectrum 8 0.14
Total 5,658 100

26.8 umol/l; hemoglobin, 111 g/l; total protein, 61.5 g/1; uric
acid, 83.6 u/l; cholesterol, 3.5 gmol/l; complement component,
31.16 g/l and blood urea nitrogen 4.58 pmol/I.

A renal biopsy was performed in hospital and this demon-
strated severe glomerular alterations consistent with FSGS
(Fig. 1). Due to continuous MH and positive family history
with renal disease, a renal biopsy was performed at the Second
Xiangya Hospital. On light microscopy, characteristic lesions
of focal glomerulosclerosis were present in 2 of 28 glomeruli
(Fig. 1A). Sclerotic glomeruli were present in 1 of 28 glom-
eruli and small arteries exhibited loss of smooth muscle fibers.
(Fig. 1B). There was mild mesangial matrix proliferation.
Vacuolation of the tubular epithelial cells, loss of the brush
border of lumen surface and inflammatory cell infiltration was
observed (Fig. 1C). Mitochondria in podocytes demonstrated
normal morphology (original magnification, x10,000; data
not shown). On immunofluorescence, focal segmental coarse
granular deposits of immunoglobulin G(+) and proliferation of
endothelial cells were observed. Electron microscopy exhib-
ited diffuse podocytic foot process effacement (Fig. 1D). The
endothelium was swollen and hypertrophied, however the GBM
exhibited a normal structure and thickness. Paramesangial
deposits were noted. Massive tubules with swollen tubular
epithelial cells, edema in the interstitium and inflammatory
cell infiltration were noted (data not shown).

The patient was born following a full-term normal
pregnancy as the first child of unrelated Chinese parents.
The family history was remarkable in that multiple family
members were affected by isolated MH or other renal disease
in her father's pedigree (Fig. 2). The family history revealed
that the parents were Chinese in origin and non-consan-
guineous. Her sister was also identified as being affected by
isolated MH, histologically characterized as FSGS. Her father
was diagnosed with CKD by qualified doctors 8 years ago,
in another hospital. Her paternal aunts and paternal cousins
have also been identified as exhibiting hematuria. Urinalyses
and blood chemistries identified isolated MH. None of the
affected individuals had ESRD, sensorineural hearing loss, or
eye complications including lenticonus. Their mother was well
and was not known to have any kidney disease.

Variants of TRNLI in the family. Using Massarray technology,
the same mutation in TRNL1 (m. 3290T>C) was identified in
the two sisters, which was not demonstrated by polyphen-2 and
SIFT. However, it was predicted to be a pathogenic alteration
based on OMIM and Pubmed. This mutation mtT3290C was
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Figure 1. Light and electron microscopic images of the renal biopsy taken
from the proband. (A) Light microscopy, PASM staining. A glomerulus is
exhibited with segmental sclerosis, hyalinosis and adhesion to Bowman's
capsule, consistent with an FSGS lesion. (B) Light microscopy, PASM
staining of the renal tubules and glomeruli. Exhibited is globally sclerotic
glomeruli with small arteries demonstrating loss of smooth muscle fibres
(arrow). (C) Light microscopy, periodic acid-Schiff staining of the renal
biopsy taken from the proband. Exhibited is a glomerulus with segmental
sclerosis, hyalinosis (arrow), consistent with an FSGS lesion, vacuolation of
the tubular epithelial cells, effacement of the brush border of lumen surface
and inflammatory cell infiltration. (D) Electron microscopy of kidney
section, (original magnification, x5,000). Glomerular segment with exten-
sive podocytes foot process effacement. The endothelium was swollen and
hypertrophied. The glomerular basement membrane has normal structure
and thickness. Electron-dense deposits were observed in the paramesangial
regions. Massive tubules with swelling tubular epithelial cells, edema in
the interstitium and inflammatory cell infiltration (not shown). FSGS, focal
segmental glomerulosclerosis; PASM, Periodic Schiff-Methenamine Silver.

LmT?ﬁ%

Figure 2. Pedigree of the presenting family. Multiple family members
demonstrated asymptomatic isolated hematuria. Octagons represent females
and squares represent males. Shaded, affected; shaded with arrow, proband.
Diagonal lines represent family members who died because of other disease.

first detected by Opdal er al (38) in 1 of the sudden infant
death syndrome (SIDS) cases and it suggested that mutations
in mitochondrial DNA (mtDNA) may serve a role in certain
cases of SIDS. It was speculated that mtT3290C may segre-
gate with FSGS (38). The results are exhibited in Fig. 3. No
significant sequence mutations were observed in the other 17
genes analyzed.

Variants of COL4A3 in two sisters with familial FSGS. WES
was performed on the proband and her sister, and this identi-
fied a heterozygous candidate COL4A4 missense mutation c.
4195A>T(p. M1399L) which was not identified by polyphen-2
and SIFT. Examination of the mutation using 1,000 Genomes
provided evidence that the identified sequence variant is a rare
polymorphism with a MAF of 0.0022. In addition, the mutation
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that was identified was in the NC1 (trimeric noncollagenous)
domain. It was previously demonstrated that mutations of
COL4A3/COL4A4/COL4AS in the NC1 domain disrupt
heterotrimer formation in podocytes and subsequently inhibit
secretion into the GBM domain (39). These results indicate
that the substitution is pathogenic and may lead to FSGS.

Discussion

In the present study, a Chinese family presenting with GMH, or
CKD were investigated. Renal biopsies from the proband and
her sister demonstrated FSGS and normal GBM. Her father
reached CKD 8 years ago. A genetic analysis was performed on
15 genes associated with FSGS in the proband and her father,
and a homozygous m. 3290T>C missense mutation in TRNLI1
was identified in the two siblings. Next generation sequencing
of the siblings was performed to reveal a second mutation, a
heterozygous c. 4195A>T missense variant in COL4A4. To the
best of the authors knowledge, this is the first report of the two
aforementioned mutations that may co-segregate with disease
in familial hematuria, histologically characterized by FSGS.

It has been demonstrated that podocyte damage is
sufficient to cause FSGS, which results from a number of
podocyte-specific gene mutations (7-24). In the present study,
Massarray sequencing of 18 podocyte-specific genes in a
family including two sisters and their father was performed.
In the family, no mutations were identified in the genes most
frequently reported including NPHS1, NPHS2, CD2AP,
PLCE1, ACTN4, TRPC6, INF2 and WTI.

mtDNA including COQ2 and PDSS2 (18-19), has also
been identified to be associated with focal glomerulosclerosis.
Human mtDNA which encode subunits of enzyme complexes
involved in oxidative energy metabolism may result in various
diseases and syndromes and the most severely affected organs
are the brain, heart, skeletal muscle, sensory organs and the
kidney, in mtDNA associated diseases (40). In recent years, the
involvement of the kidney has been concerned in mitochon-
drial cytopathies by nephrologists. tRNALeu (UUR) gene also
called mitochondrial tRNAleucine 1, is a hotspot in mitochon-
drial disease and has a high incidence of mutations (41). The
tRNALeu (UUR) mutation is associated with the mitochon-
drial myopathy, encephalopathy, lactic acidosis and stroke-like
episodes (MELAS) syndrome. Renal tubular dysfunction
and FSGS have been associated with MELAS (42,43). It
has been reported that the mtDNA mutation may also cause
isolated renal disease in patients who were not diagnosed as
MELAS (44-46). It was reported by Lowik, et al (17) that
3243A-G may be identified in a steroid-resistant nephrotic
syndrome with histological signs of FSGS. They concluded
that mtDNA abnormalities lead to a steroid-resistant nephrotic
syndrome with histological signs of FSGS. In the present
study, an mtT3290C mutation in TRNLI in two siblings was
identified. It was first reported by Opdal et al (38) that the
mtT3290C mutation may serve a role in various patients with
the SIDS cases (40).

The T3290C mutation is located in the T WC loop of the
TRNLI1 gene, disrupting the three-dimensional shape of this
tRNA. It has been proposed that a common pathogenic mecha-
nism associated with mutations in this particular mtDNA gene
may be a decreased steady-state level of tRNALeu (UUR) and
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Figure 3. Sequence analysis of tRNA leucine 1 in the two affected siblings. Two patients are homozygous for a missense mutation (m.3290T>C).

a partial impairment of mitochondrial protein synthesis (47).
Opdal et al (40) proposed that any mtDNA mutation may
affect oxidative energy metabolism and thereby induce
adenosine triphosphate depletion (40), and m. T3290C muta-
tion may affect the complex structural podocyte composition
by affecting metabolic and energy requirements. Hence, there
are several reasons to suggest that m. 3290T>C in TRNLI1
gene may be involved in FSGS. In addition, homozygous
mutation was identified in the two sisters and their father,
whereas mtDNA exhibited maternal inheritance. However,
blood from the mother was not available and it is unclear
whether these mutations are somatic or inherited. To the best
of the authors knowledge, the present study is the first to docu-
ment the development of FSGS and isolated hematuria with
the mitochondrial T3290C transition.

However, the affected cases were in the father's pedigree
including paternal aunts and paternal cousins, and it were not
consistent with typical maternal inheritance.

This suggests that mutations in other genes may also
be involved in the development of FSGS. The list of genes
implicated in the development of FSGS is updated continu-
ously. The introduction of more comprehensive screening
technologies including WES allows simultaneous screens for
mutations in other potentially relevant genes and contributes
to the detection of novel genes or mutations (48,49), instead of
testing for one gene at a time, or screening for certain known
mutations only.

As the sisters exhibited normal GBMs, the type IV
collagen-associated genes were not initially screened.
However, using WES technology a single heterozygous muta-
tion c. A4195T (p. M1399L) in the COL4A4 gene, which
encodes the a4 chain of type IV collagen, the most important
structural component of the GBM, was identified.

Though the variant was not demonstrated by SIFT and
polyphen-2, the COL4A4 mutation that was identified in
the siblings is most likely disease-causing. Firstly, certain
studies suggest that COL4A3 and COL4A4 mutations may
cause a wide spectrum of disease phenotypes from AS to
FSGS (39,50,51). Malone et al (51) was the first to document
COL4A3 and COL4A4 mutations associated with primary
FSGS. The authors identified seven variants in COL4A3 and
COL4A4 in a cohort of 70 families with a pathological diag-
nosis of familial FSGS of unknown cause. Notably, each of
these variants were heterozygous and no mutations in known
FSGS-associated genes were identified (51). The authors

hypothesized that mutations in mature GBM collagen (IV)
may have a direct role in the pathogenesis of FSGS and that
the phenotypes induced by mutations in mature GBM collagen
(IV) genes may phenocopy primary FSGS. Secondly, the
mutation that was identified in these variants is exhibited at
very low frequencies of 0.0022 by 1,000 Genomes. In addition,
the mutation is located in the NC1 domain where the variant
may disrupt heterotrimer formation in the podocyte and
subsequent secretion into the GBM domain (39). Molecular
and bioinformatics analyses suggested that the mutations in
the conserved glycine-rich regions or in the NCI carboxy
terminus of the involved proteins are deleterious (52). It is now
recognized that the mature type IV collagen network, a3a4a5,
originates solely in the podocytes (53). Kruegel er al (54)
proposed that podocyte receptors may recognize the mutated
COLA4 leading to upregulation of podocyte profibrotic factors,
including transforming growth factor-p, connective tissue
growth factor and matrix metalloproteinases-2. -9 and -10.
These data add support to the hypothesis that these variants
may cause disease.

The COL4A4 mutations follow an autosomal dominant or
recessive inheritance pattern. The patients with heterozygous
mutations in the COL4A3/COL4A4 are more common in
the carrier state of atherosclerotic renal artery stenosis and
TBMN than autosomal dominant AS, and familial hema-
turia and GBM morphology are typical clinical features of
these diseases (54,55). The patients with COL4A4 mutations
documented in the present study had significant hematuria at
diagnosis. Biopsies in the families in the present study demon-
strated the typical signs of FSGS on light microscopy and
foot process effacement on EM. However, in the present study
there were no consistent GBM ultrastructural alterations in the
siblings with COL4A4 variant and there was no decrease in
collagen (IV) staining in the GBM. In addition, these pheno-
types also lack extra-renal manifestations including deafness
or ocular symptoms, which are characteristic of AS. In the two
patients, there was not enough supportive evidence that was
consistent with AS or TBMN and the sisters were diagnosed
as familial hematuria rather than AS or TBMN.

Whether or not the reported heterozygous variant
(c4195A>T) alone in the present study is sufficient to
cause FSGS, or is only partially penetrant, the study
by Malone et al (51) demonstrated that the variants in
COL4A3/COL4A4 c may be associated with FSGS, however
the possibility of the presence of other modifier genes and/or
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other acquired factors cannot be excluded (51). These genes or
factors may determine the phenotypic heterogeneity that leads
to variability in disease progression and results in an unpredict-
ably benign course or long-term progression of hematuria to
proteinuria, and ESRD (56). Podocyte foot process effacement
was a constant result in the present report, and it suggests that
the observed phenotype may be due to podocyte abnormalities.
So it is possible that the variable phenotypes demonstrated in
the present study may be due to variants in COL4A4 acting as
disease modifiers for FSGS and this is consistent with the view
of Bullich et al (57).

FSGS-associated genes frequently follow an autosomal
dominant or recessive inheritance pattern, therefore a muta-
tion in mtDNA may have been overlooked. In addition, the
WES cannot be performed to analyze mtDNA mutations. The
results of the present study demonstrated that Massarray tech-
nology and WES technology were complementary, each with
its own advantage. The combination of Massarray technology
and WES may improve the detection rate of genetic mutation
with an increased level of accuracy.

At present, monogenic FSGS subtypes have been reported by
genetic studies primarily focusing on familial FSGS. However,
a rare study on the potential role of combinations of mutations
in different genes was reported in FSGS (12,13). The present
study, to the best of the authors knowledge, is the first report to
document two relevant genes co-segregated with FSGS.

It has been proposed that hematuria is the forgotten CKD
factor (32). In a number of families carrying these mutations,
certain members continue to exhibit chronic and isolated MH
for the rest of their lives, whereas others develop proteinuria
later on in life, usually with hypertension and a variable
gradual progression to CRF leading to ESRD (58,59).

Therefore, the term familial hematuria (FM) would be
appropriate to use instead of misnomer benign familiar
hematuria and the pediatric nephrologist must give a correct
prediction of prognosis to the children with hematuria and
to avoid misdiagnosis. Genetic testing benefits include early
diagnosis, highly-targeted therapy and an ESRD onset delay.
Genetic investigations may be more definitive and diagnostic
than renal biopsies.

For the initial treatment of FSGS, the Kidney Disease
Improving Global Outcomes 2012 guideline (60) recommends
that corticosteroid and immunosuppressive therapy be consid-
ered only in idiopathic FSGS associated with clinical features
of nephrotic syndrome (17). There is no evidence to suggest
corticosteroids or immunosuppressive therapy in the treatment
of the mutation induced FSGS.

The treatment for the two sisters consisted of Chinese
traditional medicines including huaiqihuang and shenyansiwei
capsules. Regular follow-up surveys were carried out in the
clinic. The older sister has had enalapril administered up to
this point as proteinuria was detected five months following
diagnosis with FH. Currently, the proteinuria is in remis-
sion and hematuria is reducing gradually. Blood pressure
was relatively well regulated and renal function was normal
therefore steroid, and immunosuppressive therapy was not
instituted.

The results of the present study demonstrate that it may not
be possible to take a detailed three generational family history
in every pediatric out-patient clinic, however it is always
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worth asking if there is a family history of kidney problems,
especially if these have occurred in relatively young people.
Screening for COL4A mutations in FSGS, particularly when
presenting with FH, is recommended.

Whether the variants in COL4A4 were inherited from their
father and TRNLI were inherited from the healthy mother, has
not been resolved. Next, the blood of the proband's parent and
other affected family members should be obtained to screen
for COL4A4 and TRNLI genes. Then, the pathogenic mecha-
nism of two variants should be verified by animal or in vitro
experiments.

In the present study, the sisters with mtDNA mutation did
not manifest features including hearing loss, diabetes mellitus,
neuromuscular symptoms or cardiomyopathy. The family
members should be followed closely to identify the develop-
ment of associated conditions including diabetes mellitus and
cardiomyopathy.

Heterozygous carriers of COL4A3 or COL4A4 muta-
tions, irrespective of gender, may be asymptomatic, may have
hematuria (carriers of recessive disease) or may progress
to ESRD (58,59). Therefore, the family members require
long-term follow-up.

In the present study, a missense mutation in the COL4A4
and TRNLI genes were identified, which may be responsible
for MH with FSGS in this family. Screening for COL4A
mutations in familial FSGS patients is recommended. Genetic
investigations of families with similar clinical phenotypes
should be a priority for nephrologists. The combination of
Massarray technology and WES may improve the detection
rate of genetic mutation with a high level of accuracy.
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