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Abstract. As one of main active ingredients of salvia miltior-
rhizae, which is a traditional Chinese medicine, tanshinone 
IIA is the basis of its pharmacological activities. In the present 
study, the effect of tanshinone IIA on weakening spastic cere-
bral palsy (SCP) in neonatal rats was investigated. Radial arm 
water maze and holding tests were used to measure the altera-
tions of spastic cerebral palsy, inflammation was measured 
using an ELISA kit, and western blot analysis was used to 
analyze the protein expression of p-p38 mitogen-activated 
protein kinase (MAPK) and vascular endothelial growth factor 
(VEGF). The central mechanisms involved in the mediation or 
modulation of inflammation, p‑p38 MAPK and VEGF were 
also investigated. Treatment with tanshinone IIA effectively 
inhibited spastic cerebral palsy, and the activities of interleukin 
(IL)-1β, IL-6, tumor necrosis factor-α, monocyte chemoat-
tractant protein 1, cyclooxygenase-2 and prostaglandin E2 
in a neonatal rat model of SCP. Tanshinone IIA effectively 
suppressed the protein expression of inducible nitric oxide 
synthase (NOS), phosphorylated (p-) nuclear factor (NF)-κB, 
p-p38MAPK and VEGF, and activated the phosphorylation 
of inhibitor of NF-κB and the protein expression of neuronal 
NOS in the SCP rat model. These results suggested that the 
neuroprotective effect of tanshinone IIA weakened SCP 
through inflammation, p38MAPK and VEGF in the neonatal 
rats.

Introduction

Spastic cerebral palsy (SCP) is a common complication in 
premature infants. With the rapid progression of perinatology 
and technology in neonatal intensive care units, the survival 

rates of premature infants have increased (1). However, 
~10-20% of premature infants are affected by sequelae in 
the nervous system at differing levels of severity, placing a 
substantial burden on families and society (2). Therefore, early 
diagnosis and prevention is urgently required (3). In addition 
to premature delivery, the occurrence of cerebral injury in 
premature infants is also correlated with hypoxia-ischemia, 
infection, oxidative stress and inflammatory response. Previous 
studies have demonstrated that inflammatory mediators and 
cytokines are involved in the pathophysiological process of 
SCP (2,3). There has been an increasing focus on the changes 
of inflammatory factors when SCP is present (4).

As an important component of immune responses, the 
inflammatory response is closely associated with SCP (5). 
The inflammatory response includes the adhesion, metas-
tasis, infiltration and activity of inflammatory cells, and 
the release of inflammatory cytokines (6). Inflammatory 
cytokines, including interleukin (IL)-6 and tumor necrosis 
factor (TNF)-α, are involved in the entire process of the 
inflammatory response. The levels of inflammatory cyto-
kines in children with hypoxic-ischemic brain damage are 
high, indicating that infection and hypoxic-ischemic brain 
damage may result in brain tissue damage through inflam-
matory factors (7). Increasing studies have demonstrated that 
high levels of proinflammatory cytokines in amniotic fluid, 
plasma or the umbilical cord blood may be associated with 
periventricular leukomalacia and subsequently lead to the 
development of SCP (6).

The expression of vascular endothelial growth factor 
(VEGF) is involved in the entire process of nervous system 
development (8). VEGF is expressed predominantly in 
surrounding regions of the neuroderm ventricle, which 
decrease from the inside to the outside. With the maturity of 
the central nervous system, the expression of VEGF decreases 
gradually. VEGF can reduce the apoptosis of endothelial cells 
and prevent the disappearance of blood capillaries. It can also 
induce the relaxation of angio-smooth muscle through the 
release of nitric oxide (NO) to protect ischemic brain tissues. 
Animal experiments have shown that, following cerebral 
damage the expression of VEGF can promote angiogenesis, 
resist apoptosis and protect neurocytes. However, the animals 
involved in this study were adults (9).

With the continuous progression of modern pharma-
cology, monomer compositions of various types of traditional 
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Chinese medicine have been shown to have inhibitory effects 
on pulmonary interstitial fibrosis (10). Extracted from the 
classic and traditional Chinese medicine salvia miltiorrhizae, 
tanshinone IIA is a fat-soluble active constituent, which is 
used for treating cardiovascular disease (11). With a definite 
molecular structure, it is an active ingredient with the highest 
stability at a higher content (11). Experiments have shown that 
tanshinone IIA possesses several pharmacological activities, 
including oxygen radical scavenging, and anti‑inflammatory 
and antitumor effects (12,13). Therefore, in the present study, 
the neuroprotective effects of tanshinone IIA on the weak-
ening of SCP were investigated in neonatal rats. The central 
mechanisms involved in the mediation or modulation of 
inflammation, p38 mitogen‑activated protein kinase (MAPK) 
and VEGF were also investigated.

Materials and methods

Animals and SCP model. A total of 26 male Sprague-Dawley 
specific‑pathogen‑free rats (7‑day‑old, 15‑20 g) were provided 
by the Navy General Hospital Experimental Animal Center 
(Beijing, China). The rats were housed at 22‑23˚C and 50‑55% 
humidity with a 12-h light/dark cycle, and ad libitum access to 
pellet chow and water. The animals were randomly assigned 
into three groups (n=26): Sham injury (skin incision of the 
skull only; n=6), SCP model (SCP rat treated with normal 
saline; n=10) and tanshinone IIA group (SCP rat treated with 
20 mg/kg of tanshinone IIA for 5 weeks; n=10).

Unilateral occlusion of the carotid artery was performed 
to establish the SCP animal model. The 7-day-old rats were 
used as the SCP animal model to represent what occurs in 
newborn humans. The rats were anesthetized via an intraperi-
toneal injection of 10% chloral hydrate and placed in a supine 
position. A median neck incision was performed and the left 
common carotid artery was ligated. The wound was then ster-
ilized and sutured, and the animals were placed in cages under 
routine conditions. The animal experiments were approved by 
the Ethics Committee of the Naval General Hospital (Beijing, 
China).

Radial arm water maze test and holding test. The eight-arm 
radial maze consisted of a central platform symmetrically 
extended. The rats were deprived of water for 48 h prior to 
assessment. A single well was placed at the outer end of each 
arm and the rat was allowed to drink for 30 min. The rat was 
allowed to freely explore the maze containing the water‑filled 
wells for 2 days prior to the spatial discrimination test days. In 
the spatial discrimination test, the wells were baited in only 
three arms and the sequence of angles was 135 ,̊ 90˚ and 135 .̊

Each rat was measured over three daily sessions consisting 
of five trials separated at 1‑min intervals. The rat was placed 
on the central platform in each trial, facing arm three, and the 
experiment ended when the rat visited the three baited arms. 
Three measurements were recorded: i) time taken to visit the 
three baited arms; ii) number of re-entries into previously 
visited baited arms; iii) number of entries into a non-baited 
arm. In the holding test, the forepaws of the rat were grasped 
in a hollow plastic tube, which was placed horizontally from 
a desk to allow them to hold freely. The time spent suspended 
during 1 min was recorded.

ELISA analysis. The hippocampus from every rat was 
dissected and homogenized with ice-cold radioimmunopre-
cipitation (RIPA) and 0.1 mmol/l of PMSF for 30 min. The 
concentration of total protein was determined using Bio-Rad 
protein assay reagent (Bio-Rad Laboratories, Inc., Hercules, 
CA, USA). Following determination, l10 µg total protein was 
incubated with TNF-α (cat. no. E-EL-R0019c), interleukin 
(IL)-1β (cat. no. E‑EL‑R0012c), IL‑6 (cat. no. E‑EL‑R0015c) 
and monocyte chemoattractant protein 1 (MCP-1; cat. 
no. E-EL-R0633c) ELISA kits (Elabscience Biotechnology 
Co., Ltd., Bethesda, MD, USA) at 37˚C for 1 h. The absorbance 
was measured using an ELISA analyzer (DNM-9606; Perlong 
Medical, Jiangsu, China) at 450 nm.

Western blot analysis. The hippocampus from every rat 
was dissected and homogenized with ice-cold RIPA and 
0.1 mmol/l of PMSF for 30 min. The concentration of 
total protein was determined using Bio-Rad protein assay 
reagent, and 50 µg/lane total protein was subjected to 8-10% 
SDS-polyacrylamide gel electrophoresis, following which 
it was electrotransferred onto a nitrocellulose membrane. 
The nitrocellulose membrane was blocked with 5% skim 
milk powder in TBST and probed consecutively with the 
following primary polyclonal antibodies: Nuclear factor 
(NF)-κB (cat. no. sc‑109; 1:500; Santa Cruz Biotechnology, 
Inc., Dallas, TX, USA), phosphorylated (p)-p38MAPK (cat. 
no. sc‑17852‑R; 1:500; Santa Cruz Biotechnology, Inc.), VEGF 
(cat. no. sc‑13083; 1:500; Santa Cruz Biotechnology, Inc.), 
p-inhibitor of NF-κB (p-IκB; cat. no. sc‑101713; 1:500; Santa 
Cruz Biotechnology, Inc.), inducible nitric oxide synthase 
(iNOS; cat. no. sc‑649; 1:500; Santa Cruz Biotechnology, 
Inc.), neruronal NOS (nNOS; cat. no. sc‑8309; 1:500; Santa 
Cruz Biotechnology, Inc.) and β-actin (cat. no. sc-7210; 
1:500; Santa Cruz Biotechnology, Inc.) at 4˚C overnight. 
The membrane was then washed with TBST and incubated 
with the anti-rabbit immunoglobulin G secondary antibody 
(1:5,000; cat. no. sc‑2004; Santa Cruz Biotechnology Inc.) 
at 37˚C for 1 h. Protein expression was visualized using 
BeyoECL Plus (Beyotime Institute of Biotechnology, 
Haimen, China) and analyzed using Image_Lab_3.0 soft-
ware (Bio-Rad Laboratories, Inc.).

Statistical analysis. Data are expressed as the mean ± stan-
dard deviation using SPSS 17.0 software (SPSS, Inc., 

Figure 1. Chemical structure of tanshinone IIA.
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Chicago, IL, USA). The experimental results were evaluated 
using one-way analysis of variance by a Tukey post-hoc test. 
P<0.05 was considered to indicate a statistically significant 
difference.

Results

Neuroprotective effect of tanshinone IIA reduces SCP. The 
structural formula of tanshinone IIA is shown in Fig. 1. As 
exhibited in Fig. 2A and B, there was a significant increase 

in the time spent searching and number of mistakes in the 
SCP model group rats, compared with the control group 
rats. Significant decreases in the number of repetitions and 
holding times were observed in rats of the SCP model group, 
compared with those of the control group (Fig. 2C and D). 
Treatment with tanshinone IIA significantly inhibited the 
increased search duration and number of mistakes, and 
increased the inhibited number of repetitions and holding 
times in the SCP rats, compared with the rats in the SCP 
model group (Fig. 2A and D).

Figure 4. Neuroprotective effect of tanshinone IIA reduces the expression of 
COX-2. The expression of COX-2 was reduced by tanshinone IIA. ##P<0.01, 
compared with the sham group; **P<0.01 vs. the model group. SPC, spastic 
cerebral palsy; sham, sham control; Model, SPC model; TSN IIA, tanshinone 
IIA; COX-2, cyclooxygenase 2.

Figure 2. Neuroprotective effect of tanshinone IIA weakens SCP. The neuroprotective effect of tanshinone IIA reduced the (A) time spent searching and the 
(B) number of mistakes, and increased the (C) number of repetitions and (D) holding time of the SPC rats. ##P<0.01 vs. the sham group; **P<0.01 vs. the model 
group. Sham, sham control; Model, SPC model; TSN IIA, tanshinone IIA; SPC, spastic cerebral palsy.

Figure 3. Neuroprotective effect of tanshinone IIA reduces the expression of inflammatory factors. The neuroprotective effect of tanshinone IIA reduced the 
expression of (A) TNF-α, (B) IL-1β and (C) IL-6. ##P<0.01 vs. the sham group; **P<0.01 vs. the model group. SPC, spastic cerebral palsy; sham, sham control; 
Model, SPC model; TSN IIA, tanshinone IIA; TNF-α, tumor necrosis factor-α; IL, interleukin.

Figure 5. Neuroprotective effect of tanshinone IIA reduces the expression of 
MCP-1. The expression of MCP-1 was reduced by tanshinone IIA. ##P<0.01, 
compared with the sham group; **P<0.01 vs. the model group. SPC, spastic 
cerebral palsy; sham, sham control; Model, SPC model; TSN IIA, tanshinone 
IIA; MCP-1, monocyte chemoattractant protein 1.
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Neuroprotective effect of tanshinone IIA reduces the expression 
of inflammatory factors. To examine the anti‑inflammatory 
effect of tanshinone IIA in the SCP rats, the levels of TNF-α, 
IL-1β and IL-6 in the hippocampal tissue samples were 
analyzed. The levels of TNF-α, IL-1β and IL-6 in the SCP 
rats were significantly increased, compared with those in the 
control group rats (Fig. 3A-C). Pre-treatment with tanshinone 
IIA significantly inhibited the increased levels of TNF-α, 
IL-1β and IL-6 in the SCP rats, compared with the rats in the 
sham control group (Fig. 3A-C).

Neuroprotective effect of tanshinone IIA reduces the mRNA 
expression of COX‑2. To further examine the anti‑inflamma-
tory effect of tanshinone IIA in the SCP rats, the expression 
levels of COX-2 were analyzed. The level of COX-2 was 
significantly increased in the SCP model, compared with 
that in the sham group. The administration of tanshinone IIA 
significantly inhibited the promoted expression level of COX‑2 
in the SCP rats, compared with the rats in the sham control 
group (Fig. 4).

Neuroprotective effect of tanshinone IIA reduces the expres‑
sion of MCP‑1. To examine the anti‑inflammatory effect of 
tanshinone IIA in the SCP rat, the expression of MCP-1 was 
also measured. As demonstrated in Fig. 5, the expression if 
MCP‑1 in the SCP model was significantly increased, compared 
with that in the sham group. Treatment with tanshinone IIA 
significantly reduced the expression of MCP‑1 in the SCP rats, 
compared with the rats in the SCP model group (Fig. 5).

Neuroprotective effect of tanshinone IIA inhibits the NF‑κB 
signaling pathway. To investigate the anti‑inflammatory 
mechanism of tanshinone IIA in the SCP rats, the protein 
expression levels of NF-κB and p-IκB were detected using 
western blot analysis. The results of the western blot analysis 
demonstrated that the protein expression levels of NF-κB 

and p-IκB were significantly increased and decreased in 
the SCP model, respectively (Fig. 6A-D). Tanshinone IIA 
significantly suppressed the protein expression of NF‑κB 
and increased the protein expression of p-IκB in the SCP 
rats, compared with the rats in the SCP model group 
(Fig. 6A-D).

Neuroprotective effect of tanshinone IIA reduces the 
expression of NO. In order to examine the effect of tanshinone 
IIA on changes in NO levels, the protein expression levels of 
iNOS and nNOS were analyzed using western blot analysis. 
As exhibited in Fig. 7A-C, the protein expression of iNOS was 
increased and the protein expression of nNOS was reduced 
in the SCP model group, compared with the levels in the 
sham control group. Treatment with tanshinone IIA signifi-
cantly inhibited the induced protein expression of iNOS and 
increased the suppressed protein expression of nNOS in the 
SCP rats (Fig. 7A-C).

Neuroprotective effect of tanshinone IIA reduces the protein 
expression of p38MAPK. The present study further examined 
the mechanism underlying the effects of tanshinone IIA in the 
SCP rats. p38MAPK may be involved in the effect of tanshi-
none IIA on SCP. As exhibited in Fig. 8A and B, the expression 
of p‑p38 of the SCP rat group was significantly increased, 
compared with that in the sham group. This increased 
protein expression of p‑p38 in the SCP rats was significantly 
suppressed by tanshinone IIA (Fig. 8A and B).

Neuroprotective effect of tanshinone IIA reduces the protein 
expression of VEGF. The present study investigated whether 
tanshinone IIA had an effect on blood vessels in the brain by 
detecting the protein expression of VEGF. The results indi-
cated that the protein expression of VEGF was significantly 
suppressed in the SCP model group, compared with that in 
the sham control group. Treatment with tanshinone IIA 

Figure 6. Neuroprotective effect of tanshinone IIA weakens the NF-κB signaling pathway. Western blot analysis was used to determine protein expression 
levels of (A) of NF-κB with (B) statistical analysis and for (C) p-IκB with (D) statistical analysis in the SPC rats. ##P<0.01, compared with the sham group; 
**P<0.01 vs. the model group. SPC, spastic cerebral palsy; sham, sham control; Model, SPC model; TSN IIA, tanshinone IIA; NF-κB, NF-nuclear factor-κB; 
p-IκB, phosphorylated inhibitor of NF-κB.
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significantly increased the protein expression of VEGF in the 
SCP group (Fig. 9A and B).

Discussion

SCP refers to the syndrome caused by non-progressive cerebral 
damage and developmental defects occurring between fertil-
ization and infancy, which features dyskinesia and postural 

dysfunction (14). Brain‑derived SCP, non‑progressive cerebral 
damage and symptoms occur at infancy caused by complica-
tions, whereas central coordination disturbance caused by 
progressive disease and temporary motor retardation in normal 
children are excluded (15). In the present study, the tests 
performed showed that tanshinone IIA significantly inhibited 
the time spent searching and number of mistakes, and increased 
the number of repetitions and holding times in the SCP rats.

Figure 8. Neuroprotective effect of tanshinone IIA reduces the protein expression of p38MAPK. (A) Protein expression of p-p38MAPK was determined using 
western blot analysis, followed by (B) statistical analysis in the SPC rats. ##P<0.01 vs. the sham group; **P<0.01 vs. the model group. SPC, spastic cerebral palsy; 
sham, sham control; Model, SPC model; TSN IIA, tanshinone IIA.

Figure 9. Neuroprotective effect of tanshinone IIA weakens the protein expression of VEGF. (A) Protein expression of VEGF was determined using western 
blot analysis, followed by (B) statistical analysis in the SPC rats. ##P<0.01 vs. the sham group; **P<0.01 vs. the model group. SPC, spastic cerebral palsy; sham, 
sham control; Model, SPC model; TSN IIA, tanshinone IIA.

Figure 7. Neuroprotective effect of tanshinone IIA reduces the expression of NO. (A) Protein expression of iNOS and nNOS were examined using western blot 
analysis. Statistical analysis of the protein expression levels of (B) iNOS and (C) nNOS were performed in the SPC rats. ##P<0.01 vs. the sham group; **P<0.01 
vs. the model group. SPC, spastic cerebral palsy; sham, sham control; Model, SPC model; TSN IIA, tanshinone IIA.
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Similar results have been demonstrated in previous animal 
experiments. When lipopolysaccharide was injected into the 
uterus of pregnant rats, the expression levels of TNF-α and 
IL-1β in the brains of newborn rats were dose-dependently 
increased (15). Fibrillary acidic protein was positive in the 
hippocampus and cortex, astrocytes were increased, myelin 
basic protein was deceased, and the activities of oligoden-
droglial cells showed abnormal changes (16). The results of 
the present study revealed that tanshinone IIA significantly 
inhibited the increased levels of TNF-α, IL-1β and IL-6 in 
the SCP rats. Jiang et al also suggested that tanshinone IIA 
protects against folic acid-induced acute kidney injury through 
inhibition of the inflammatory response (17).

Monocytes, macrophages, endothelial cells and contractile 
fiber cells can express MCP‑1 (18). Major biological effects 
of MCP-1 include the chemotaxis of monocytes, and it can 
act on lymphocytes and basophilic granulocytes, although 
it has no biological effects on neutrophile granulocytes (18). 
MCP-1 receptor is a member of the g-protein coupled receptor 
super-family (19). Following the combination of MCP-1 with its 
targeted specific receptor, it activates the specific receptor of 
MCP-1 through g-protein coupling on the cytomembrane (19). 
It also triggers the release of calcium ions in the cytoplasm 
and induces the activation of protein kinase C. In SCP, the 
injured cerebral tissues produce various inflammatory chemo-
kine factors (20). MCP‑1 is a major inflammatory chemokine 
factor, which exhibits potent chemotaxis of monocytes/macro-
phages (20). The monocytes/macrophages gather to regions of 
inflammation, and are involved in the occurrence and progres-
sion of the inflammatory response (21), which causes damage 
to brain tissues (21). The data obtained in the present study 
demonstrated that tanshinone IIA significantly weakened the 
expression levels of MCP-1 and COX-2, inhibited the induced 
protein expression of iNOS and increased the protein expression 
of nNOS in the SCP rats. Tang et al suggested that tanshinone 
IIA in neuropathic pain is mediated predominantly by the down-
regulation of the c-Jun N-terminal kinase/MCP-1 pathway (22).

NF-κB comprises a group of transcription factors in 
eukaryocytes, which is distributed widely in the nervous 
system (23). Under physiological conditions, it does not have 
transcriptional activities. When the cells are stimulated, its 
phosphorylation and ubiquitylation are initiated through 
the secondary messenger system (24). NF‑κB and IκB are 
activated and shift into the nucleus from the cytoplasm (24). 
Studies have found that NF-κB is activated in rats with SCP 
at an early stage (23,25). Activated NF‑κB can be found in the 
cytoplasm and cell nuclei of neurons 24 h following injury (25). 
During the acute inflammatory reaction, NF‑κB is involved in 
the activation of macrophages and hemameba, and controls 
the genetic expression of proinflammatory factors (25). The 
control of this process leads to the amplification of inflam-
matory responses and tissue injury (26). The present study 
observed that tanshinone IIA significantly suppressed the 
protein expression of NF-κB and increased the protein expres-
sion of p-IκB in the SCP rats. Bai et al also suggested that 
tanshinone IIA induces apoptosis through the suppression of 
NF-κB signaling in colon cancer cells (27).

SCP is one of the main factors resulting in neonatal death, 
which is closely associated with SCP (28). VEGF functions 
in promoting endothelial cell proliferation, and increasing 

vascular permeability and angiogenesis (28). It has been 
suggested that VEGF may have direct protective functions on 
endothelial cells and astrocytes of the central nervous system. 
It can promote angiogenesis, and stimulate axon growth and 
neuronal survival (9,29). The present study demonstrated that 
tanshinone IIA significantly induced the protein expression 
of VEGF in SCP rats. Xu et al reported that tanshinone IIA 
protected free flaps against hypoxic injury through VEGF and 
CD34 in epithelial skin cells (30).

The activities of p38MAPK are significantly increased in 
microglial cells (31). Activated p38MAPK locates in the nucleus 
or endochylema, which may be associated with the functions 
and status of microglial cells (32). p38MAPK is associated with 
activities of NF-κB. The inhibition of p38MAPK can inhibit 
the transcription of NF-κB (33). Major biological functions 
following the activation of p38MAPK include generating and 
activating various inflammatory cytokines, including TNF‑α, 
IL-1β, IL‑6 and IL‑8 (34). Macrophages at the ischemic core can 
be found with activated P38MAPK, indicating that p38MAPK 
may be involved in the inflammatory responses when cerebral 
ischemic injury occurs (32). In the present study, it was found that 
tanshinone IIA significantly suppressed the protein expression 
of p-p38 in SCP rats. Liu et al reported that the neuroprotective 
effects of tanshinone IIA significantly suppressed the protein 
expression of p-p38 and induced the protein expression of 
VEGF in SCP rats (35).

In conclusion, tanshinone IIA significantly inhibited the 
searching time and number of mistakes made by the rats, 
and increased the number of repetitions and holding times in 
the SCP rats. Tanshinone IIA also weakened the increased 
expression levels of TNF-α, IL-1β and IL-6, suppressed the 
expression levels of MCP-1 and COX-2, reduced the protein 
expression of iNOS, and induced the protein expression 
of nNOS in the SCP rats, which regulated the NF-κB and 
p38MAPK signaling pathway.
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