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Abstract. Insulin‑like growth factor 1 (IGF‑1) is a well‑known 
growth factor with well‑defined neuroprotective effects 
against cerebral ischemia. However, the age‑dependent differ-
ences in the expression of IGF‑1 and its receptor (IGF‑1R) in 
the brain following transient cerebral ischemia (TCI) have not 
been elucidated. In the present study, the differences in IGF‑1 
and IGF‑1R in the gerbil hippocampal CA1 region of young 
and adult gerbils 5 min following TCI were determined. Seven 
days following TCI, the neuronal death in the hippocampal 
CA1 region of young gerbils was significantly less than that 
observed in adult gerbils. In addition, the immunoreactivity, 
and levels of IGF‑1 and IGF‑1R in the CA1 region of the 
normal young were higher than those in the normal adult. Four 
days following TCI, the immunoreactivity, and protein levels 
of IGF‑1 and IGF‑1R were markedly decreased in the adult 
group. By contrast, in the young group, the immunoreactivity 
and expression levels were much greater than those in the 
adult group. However, 7 days following TCI, all immunore-
activity and expression levels were markedly decreased when 
compared with those in the normal adult and young groups. 

In addition, the immunoreactivity and expression levels in the 
young groups were significantly higher than those of the adult 
groups. In conclusion, the present study demonstrated that the 
higher and sustained expression of IGF‑1 and IGF‑1R in the 
young gerbil hippocampal CA1 region following TCI may be 
associated with the reduced neuronal death compared to that 
in the adults.

Introduction

Experimental transient cerebral ischemia (TCI) induced by 
the reduction of blood supply to the brain by the occlusion 
of the bilateral common carotid arteries results in irreversible 
neuronal damage in some sensitive brain regions, such as 
the hippocampus (1‑3). The region I of hippocampus proper 
(CA1), in particular, is well known for the grading of the 
susceptibility to transient global cerebral ischemia (4,5). The 
loss of neurons in the adult hippocampal CA1 region progres-
sively occurs from day 3 to 4 after a transient ischemic injury, 
which is referred to as ‘delayed neuronal death’ (DND) (6). It 
is well known that the process of DND is different according 
to age. For instance, it has been reported that young animals 
are partly resistant to ischemia‑induced neuronal damage (7). 
Also, our previous studies clearly showed that after 5 min 
of TCI DND occurred from day 7 to 10 in the young gerbil, 
which was considerably more delayed and less severe than that 
in the adult gerbils (7,8).

The growth hormone insulin‑like growth factor 1 (IGF‑1) 
is a well‑known growth factor with well‑defined effects 
on many organs, including the brain  (9). IGF‑1 is highly 
expressed throughout the brain, including the cortex and 
hippocampus (10,11). Many researchers have reported that 
IGF‑1 participates in neuronal survival and glucose utilization 
in the hippocampus (12,13). It is also reported that IGF‑1 could 
regulate neuronal integration into the synaptic circuits of the 
hippocampus (14,15). In addition, IGF‑1 was found to promote 
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synapse formation and prevent the death of neurons in neuro-
degenerative diseases (15,16). Additionally, blunting IGF‑1 
was reported to cause an obvious decrease in the survival of 
neurons under basal conditions or after hypoxia/ischemia (17). 
Most of the IGF‑1 actions are primarily mediated through 
its receptor (IGF‑1R). Indeed, IGF‑1 is the main ligand for 
IGF‑1R  (18), which is a multifunctional transmembrane 
tyrosine kinase (19,20). In the nervous system, IGF‑1 exerts 
its biological function by binding with IGF‑1R, which can inte-
grate with the enhancement of protein synthesis, cell survival 
and cell proliferation (21,22). Recent research demonstrated 
that the IGF‑1R also plays an essential role in neuroprotection 
following hypoxia/ischemia (17,23).

The expression of IGF‑1 and IGF‑1R is significantly 
changed after cerebral ischemia injury  (24). Also, some 
researchers have reported that IGF‑1 and IGF‑1R, which are 
expressed in the hippocampus, are associated with the loss 
of neurons  (25,26). In addition, it has also been reported 
that the expression levels of IGF‑1 and IGF‑1R decrease in 
an age‑dependent manner (27). However, few studies have 
focused on the effect of the age‑dependent change of IGF‑1 and 
IGF‑1R expression in the brain following TCI. Accordingly, in 
the present study, we examined the change in the expression of 
IGF‑1 and IGF‑1R in the hippocampal CA1 region of young 
gerbil (postnatal 1 month) after TCI and compared them with 
those in the adult gerbil (postnatal 6 month) after TCI (28).

Materials and methods

Experimental animals. The male Mongolian gerbils (Meriones 
unguiculatus) were bought from the Experimental Animal 
Center of the Kangwon National University (Chuncheon, South 
Korea). Mongolian gerbils aged 1-month old (body weight, 
25‑30 g) were divided into the young group and those aged 
6 months old (body weight, 65‑75 g) were divided into the adult 
group. The animals were housed in pathogen‑free conditions 
at 23±2˚C and 58±2% relative humidity, with a 12‑h light/12‑h 
dark cycle, and had free access to food and water. Procedures 
involving animals handling and their care were conformed to 
current international laws and policies (Guide for the Care and 
Use of Laboratory Animals, the National Academies Press, 
8th Edition, 2011). All efforts were made to minimize animal 
suffering and the number of experimental animals. The 
animal protocol was approved based on ethical procedures 
and scientific care by the Yangzhou University‑Institutional 
Animal Care and Use Committee (YIACUC‑14‑0013).

Induction of TCI. Transient global cerebral ischemia was 
induced as follows, which was described previously (29). The 
bilateral common carotid artery of gerbil was occluded using 
non‑traumatic aneurysm clips under anesthesia by inhalation 
of 2.5% isoflurane in 33% oxygen and 67% nitrous oxide. The 
complete interruption of blood flow was confirmed by observing 
the central artery in retinae using an ophthalmoscope. After 
5 min of occlusion, the aneurysm clips were removed from 
the common carotid arteries. The restoration of blood flow 
(reperfusion) was observed directly using the ophthalmo-
scope. The body (rectal) temperature under free‑regulating 
or normothermic (37±0.5˚C) conditions was monitored with 
a rectal temperature probe. Meanwhile, the body temperature 

was maintained by a thermometric blanket before, during 
and after the surgery until the animals completely recovered 
from anesthesia. Thereafter, animals were kept on the thermal 
incubator to maintain the body temperature until the animals 
were euthanized. Sham‑operated animals were subjected to 
the same surgical procedures except that the common carotid 
arteries were not occluded.

Tissue processing for histology. Tissues were collected as 
previously described (30), sham‑(n=7 at each time point) and 
ischemia‑operated young (n=7 at each time point) and adult 
(n=7 at each time point) gerbils at designated times (1, 4 and 
7 days after reperfusion) were sacrificed. The animals were 
anesthetized with pentobarbital sodium and perfused trans-
cardially with 0.1 M phosphate‑buffered saline (PBS, pH 7.4) 
followed by 4% paraformaldehyde in 0.1 M phosphate‑buffer 
(PB, pH 7.4). The brains were removed and postfixed in the 
same fixative for 6 h. The brain tissues were cryoprotected 
by infiltration with 30% sucrose overnight. Thereafter, 
frozen tissues were serially sectioned on a cryostat (Leica 
Microsystems GmbH, Wetzlar, Germany) into 30‑µm coronal 
sections, and they were then collected into 6‑well plates 
containing PBS.

Immunohistochemistry. Immunohistochemistry was 
performed according to a previously published procedure (30). 
To examine the change of Neuronal nuclei (NeuN), IGF‑1 and 
its receptors in the CA1 after ischemia‑reperfusion, we carried 
out immunohistochemical staining with rabbit anti‑NEUN 
(1:1,000; Cell Signaling Technology, Inc., Danvers, MA, 
USA), rabbit anti‑IGF‑1 and IGF‑1R (1:200; Santa Cruz 
Biotechnology, Inc., Dallas, TX, USA), and biotinylated goat 
anti‑rabbit IgG (1:250; Vector Laboratories, Inc., Burlingame, 
CA, USA) for secondary antibody. In order to establish the 
specificity of the immunostaining, a negative control test 
was carried out with pre‑immune serum instead of primary 
antibody. The negative control resulted in the absence of 
immunoreactivity in all structures.

Densities of NEUN, IGF‑1 and IGF‑1R immunoreactive 
structures were measured as previously described (11), Digital 
images of the hippocampal subregions were captured with 
an image analyzing system equipped with a computer‑based 
microscope (Nikon Corporation, Tokyo, Japan). Cell counts 
were obtained by averaging the counts from the sections 
taken from each animal. In addition, the staining intensity of 
IGF‑1 and IGF‑1R immunoreactive structures was evaluated 
on the basis of an optical density (OD), which was obtained 
after the transformation of the mean gray level using the 
formula: OD=log (256/mean gray level). The OD of back-
ground was taken from areas adjacent to the measured area. 
After the background density was subtracted, a ratio of the 
OD of image file was calibrated as % (relative OD, ROD) 
using Adobe Photoshop version 8.0 and then analyzed using 
NIH Image 1.59 software. All measurements were performed 
in order to ensure objectivity in blind conditions, by two 
observers for each experiment, carrying out the measures of 
experimental samples under the same conditions.

Western blot analysis. In order to examine the protein levels 
of IGF‑1 and its receptors in the ischemic CA1 region, the 
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animals (n=7 at each time point) were used for western blot 
analysis sham, 4, 7 days after the ischemic surgery in the 
young and adult group. Western blot analysis was performed 
out according to a previously published procedure (31). After 
sacrificing them and removing the brains, they were serially 
and transversely cut into a thickness of 400 µm on a vibratome, 
and the hippocampus was dissected with a surgical blade. They 
were preprocessed by Whole Cell Lysis Assay kit (KeyGEN, 
Nanjing, China)/Total Protein Extraction kit. Protein concen-
trations were determined using a Pierce BCA Protein Assay 
kit (Thermo Fisher Scientific, Inc., Waltham, MA, USA). 
Equal amounts of protein (30 µg) were separated by 10% 
sodium dodecyl sulphate‑polyacrylamide gel electrophoresis 
(SDS‑PAGE) and transferred to nitrocellulose membranes 
(EMD Millipore, Bedford, MA, USA). In order to incubate 
antibodies, the same nitrocellulose membranes striped were 
used. To reduce background staining, the membranes were 
incubated with 5% BSA in TBS containing 0.1% Tween‑20 
for 60 min, followed by incubation with rabbit anti‑IGF‑1, 
IGF‑1R (1:1,000; Santa Cruz Biotechnology, Inc.) and β‑actin 
(1:1,000; Cell Signaling Technology, Inc.) overnight at 4˚C 
and subsequently exposed to secondary goat anti‑rabbit IgG 
(Santa Cruz Biotechnology, Inc.) for 2 h at room temperature 
and the SuperSignal West Pico Chemiluminescent Substrate 
(Thermo Fisher Scientific, Inc.) was used for protein detec-
tion. The result of western blot analysis was scanned, and 
densitometric analysis for the quantification of the bands 
was done using Quantity One Analysis Software (Bio-Rad 
Laboratories, Inc., Hercules, CA, USA), which was used to 
count relative optical density (ROD): A ratio of the ROD 
was calibrated as %, with sham‑group designated as 100%. 
Each blot shown is representative of at least three similar 
independent experiments.

Reverse transcription‑quantitative polymerase chain reaction 
(RT‑qPCR). Total RNA was extracted from hippocampus of 
brain tissues using TRIzol reagent (Invitrogen; Thermo Fisher 
Scientific, Inc.) according to the manufacturer's instructions. 
Then, total RNA (2 µg) was purified with the purification kit 
(Thermo Fisher Scientific, Inc.), and reversely transcribed 
into cDNA using the PrimeScript™ II 1st Strand cDNA 
synthesis kit (Takara Bio, Inc., Dalian, Japan) according to the 
manufacturer's instructions. RT‑qPCR was performed using 
the PrimeScript™ RT Master Mix (Takara Bio, Inc.) on a 
LightCycler® 96 Real‑Time PCR System (Roche Diagnostics, 
Basel, Switzerland). The 2‑step PCR was performed: 95˚C for 
10 sec and 40 cycles of 95˚C for 5 sec and 60˚C for 30 sec. 
The RNA U6 mRNA was used as internal controls. All 
the reactions were conducted in triplicate. Primers for U6 
were: 5'‑GGA​ACG​ATA​CAG​AGA​AGA​TTA​GC‑3' (forward) 
and 5'‑TGG​AAC​GCT​TCA​CGA​ATT​TGCG‑3' (reverse). 
Primers for IGF‑1 were 5'‑CTG​GAC​CAG​AGA​CCC​TTT​
GC‑3' (forward) and 5'‑GGA​CGG​GGA​CTT​CTG​AGT​CTT‑3' 
(reverse); Primers for IGF‑1R were 5'‑ACA​CGC​AAC​GAG​
ACT​AAT​CG‑3' (forward) and 5'‑TTA​GAG​ACT​GAG​CGG​
CAT​CC‑3' (reverse). Data are shown as the fold‑change.

Statistical analysis. Data are expressed as the mean ± SEM. 
The data were evaluated by a one‑way ANOVA SPSS program, 
and the means assessed using Duncan's multiple‑range test. 

Figure 1. NeuN immunohistochemistry in the hippocampal CA1 and CA 2/3 
region of the (A‑F) sham and (G‑L) 7 day post‑ischemia groups in the adult‑ 
and young gerbils. The number of NeuN immunoreactive cells in the 7 day 
post ischemia group of young gerbils was greater than that observed in the 
adults. Scale bars=200 µm (A, D, G and J) and 50 µm (B, C, E, F, H, I, K and L). 
The * on each image indicates the expression of NeuN. NeuN, neuronal 
nuclei; CA, cornus ammonis; Is 7 d, 7 day post‑ischemia group.

Figure 2. Immunohistochemistry for IGF‑1 in the adult and young 
(A and B) sham‑ and the ischemia groups: (C and D) 1 day, (E and F) 4 days and 
(G and H) 7 days. IGF‑1 immunoreactivity in the SP of the young sham‑group 
is higher than that in the adult sham‑group. At 4 days post‑ischemia, IGF‑1 
immunoreactivity in the adult SP is distinctively decreased; however, at this 
time, IGF‑1 immunoreactivity in the young SP is sustained. Scale bar=200 µm. 
The * on each image indicates the expression of IGF‑1 or the IGF‑1 receptor in 
the SP. SP, stratum pyramidale; IGF‑1, insulin‑like growth factor 1.
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P<0.05 was considered to indicate a statistically significant 
difference.

Results

Neuronal damages. In the adult sham‑group, NeuN immu-
noreactive neurons were easily observed in the striatum 
pyramidale (SP) of the hippocampus including CA1‑3 region 
(Fig. 1A‑C). However, seven day after ischemia/reperfusion 
(I/R), a few NeuN immunoreactive neurons were found in the 
SP of the hippocampal CA1 not CA2‑3 region (Fig. 1G‑I).

In the young sham‑group, NeuN immunoreactive neurons 
in the SP of the hippocampus were also well observed 
(Fig. 1D‑F). In the 7 days after I/R, the number of NeuN 
immunoreactive neurons in the SP was significantly much 
more than that in the adult group (Fig. 1J‑L).

IGF‑1 immunoreactivity. In the adult sham‑group, IGF‑1 
immunoreactivity in the SP was much lower than that of the 
young sham‑group (Figs. 2A and B; and3A, B and I). One day 

after I/R, IGF‑1 immunoreactivity in the SP was increased 
(Figs. 2C; and 3C and I), its immunoreactivity was apparently 
decreased at 4 days after I/R (Figs. 2E; and 3E and I). Seven 
days after I/R, the immunoreactivity was similar to that at 
4 days after I/R. (Figs. 2B; and 3B and I).

In the young sham‑group, strong IGF‑1 immunoreactivity 
was found in the SP of the CA1 region (Figs. 2B and 3B). IGF‑1 
immunoreactivity was maintained until 4 days post‑ischemia 
in the SP of the CA1 region (Figs. 2D and F; and 3D and F). 
Seven days after I/R, IGF‑1 immunoreactivity in the SP was 
obviously decreased (Figs. 2H; and 3H and I).

IGF‑1R immunoreactivity. In the adult sham‑group, IGF‑1R 
immunoreactivity in the CA1 region was much lower than that 
in the young sham‑group (Figs. 4A, B and E; and 5A, B and E). 
One day after I/R, IGF‑1R immunoreactivity was decreased 
in SP (Figs. 4C; and 5C and I). Four days after I/R, IGF‑1R 
immunoreactivity was hardly detected in SP of the CA1 region 
(Figs. 4E and 5E). Thereafter, IGF‑1R immunoreactivity in the 
SP was weakly detected in the CA1 region (Figs. 4G and 5G).

In the young sham‑group, IGF‑1R immunoreactivity in the 
CA1 region was strongly detected in the SP of CA1 region. 
(Figs. 4B and 5B). All groups after I/R, IGF‑1R immunoreac-
tivity in the SP of young was much higher than that in the adult 
(Figs. 4D, F and H; and 5F, H and I).

Changes in mRNA and protein levels of IGF‑1 /IGF‑1R. The 
mRNA and protein levels of IGF‑1 and IGF‑1R were much 

Figure 3. Immunohistochemistry for IGF‑1 in the adult and young of the 
(A and B) sham‑ and the ischemia groups: (C and D) 1 day, (E and F) 4 days 
and (G and H) 7 days. Scale bar=50 µm. (I) ROD as a percentage of the 
IGF‑1 immunoreactivity. Data are presented as the mean ± standard error of 
the mean (n=7 per group). The  * on each image indicates the expression of 
IGF‑1 or the IGF‑1 receptor in the SP. *P<0.05 vs. the sham group; #P<0.05, 
vs. the respectively preceding group. IGF‑1, insulin‑like growth factor 1; SO, 
stratum oriens; SP, stratum pyramidale; SR, stratum radiatum; ROD, relative 
optical density.

Figure 4. IGF‑1R immunohistochemistry in the adult and young of the 
(A and B) sham‑ and the ischemia groups: (C and D) 1 day, (E and F) 4 days 
and (G and H) 7 days. IGF‑1R immunoreactivity in the SP of the adult group 
is markedly decreased 4 days following ischemia‑reperfusion. In the young 
groups, IGF‑1R immunoreactivity in the SP is well maintained until 4 days 
following ischemia‑reperfusion. Scale bar=200 µm. The * on each image 
indicates the expression of IGF‑1 or the IGF‑1 receptor in the SP. IGF‑1R, 
insulin‑like growth factor 1 receptor; SP, stratum pyramidale.
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higher in the young sham‑group than those in the adult 
sham‑group (Fig. 6). Four and seven days after I/R, the mRNA 
and protein levels of IGF‑1 and IGF‑1R were particularly 
decreased in the adult group. However, in the young group at 
this time after I/R, They were significantly higher than those 
in the corresponding adult‑group (Fig. 6A‑E).

Discussion

Among the multiple risk factors for ischemic stroke, age plays 
a key role in the brain injury induced by cerebral ischemic 
stroke (8). Our previous studies have demonstrated that young 
gerbils have a stronger to anti‑cerebral ischemia activity than 
the adult gerbils under the same condition (7,32). In addition, 
it has been reported that in the young gerbil neuronal death 
occurs in the hippocampal CA1 region 7 days after TCI, which 
is later than it occurs in the adult gerbil (33).

In this study, we found that the immunoreactivity and their 
RNA and protein expression levels of IGF‑1 and IGF‑1R in the 
young gerbil were much higher than those in the adult gerbil 

under physiological conditions. This finding is consistent 
with a previous study that showed that the immunoreactivity 
and protein levels of IGF‑1 and IGF‑1R were significantly 
decreased with age (27). Many researchers have reported that 
IGF‑1 and IGF‑1R act as the key modulator of brain glucose 
to participate in neuroprotection (12,34). Glucose is the major 
source of metabolic energy for the central nervous system 
(CNS), thus it is very important to provide sufficient glucose to 
the brain (35). It is well known that impairment of the energy 
metabolism in the brain is one of the important mechanisms 
of cerebral ischemic injury (36). GLUT‑1, the predominant 
glucose transporter specifically expressed by capillary endo-
thelial cells of the brain, is of great importance in regulating the 
transportation and level of glucose in the brain, and its expres-
sion reflects the rate of cerebral glucose utilization (1,37,38). 
Park et al reported that the higher expression of GLUT‑1in the 
hippocampal CA1 region of the young gerbils after TCI may 
contribute to less and more delayed neuronal death in the young 
gerbil (1). Some studies have reported that IGF‑1 and IGF‑1R 
contributed to increase glucose metabolism, which indicated 
that the elevated expression of IGF‑1 and IGF‑1R expression 
was associated with neuroprotection after TCI (21,39).

We additionally compared changes of IGF‑1and IGF‑1R 
in the CA1 region between adult and young gerbils after isch-
emia‑reperfusion. The IGF‑1 immunoreactivity and its protein 
level in the CA1 region of adult hippocampus were increase 
at earlier time and then dramatically decreased. Hwang et al 
have demonstrated that the expression of IGF‑1 was tran-
siently increased in the hippocampus and cerebral cortex after 
I/R injury, which may be associated with the short resistance 
to DND after ischemic insult (40). However, in the young 
gerbil after ischemia‑reperfusion, the immunoreactivity and 
mRNA and protein expression levels of IGF‑1 was sustained 

Figure 5. IGF‑1R immunohistochemistry in the adult and young of the 
(A and B) sham‑ and the ischemia groups: (C and D) 1 day, (E and F) 4 days 
and (G and H) 7 days. (I) ROD as a percentage of the IGF‑1R. Data are 
presented as the mean ± standard error of the mean (n=7 per group). *P<0.05 
vs. the sham group; #P<0.05 vs. the corresponding adult group. Scale 
bar=50 µm. The * on each image indicates the expression of IGF‑1 or the 
IGF‑1 receptor in the SP. IGF‑1R, insulin‑like growth factor 1 receptor; SO, 
stratum oriens; SP, stratum pyramidale; SR, stratum radiatum; ROD, relative 
optical density.

Figure 6. Western blot analysis and reverse transcription‑quantitative poly-
merase chain reaction of IGF‑1 and IGF‑1R in the CA1 of the young and 
adult groups (n=7/group) following ischemia‑reperfusion. The RNA levels of 
(A) IGF‑1 and (B) IGF‑1R in the hippocampal CA1 region of gerbils. (C) The 
protein levels of (D) IGF‑1 and (E) IGF‑1R in the in the hippocampal CA1 
region of gerbils. ROD as a percentage of the immunoblot band is presented. 
Data are presented as the mean ± standard deviation (n=7/group) *P<0.05 
vs. the sham group; #P<0.05, vs. the corresponding adult group. IGF‑1, 
insulin‑like growth factor 1; IGF‑1R, insulin‑like growth factor 1 receptor; 
ROD, relative optical density.
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until day 4 after ischemia‑reperfusion in the hippocampal 
CA1 region. Certain researchers reported that endogenous 
IGF‑1 and IGF‑1R were involved in the neuroprotective effect 
against ischemic damage in the brain (41‑44). Activation of 
IGF‑1/IGF‑1R stimulates the PI‑3K/Akt pathway and inhibits 
the GSK‑3β pathway, to exert their effect on the antioxidant 
defense of neuron‑, metabolism of glucose‑ and synthesis 
of anti‑apoptotic‑associated proteins, which result in the 
protective effect and ultimately in neuronal survival (21,45). 
It is particularly noteworthy that the Akt signaling pathway, 
as an important upstream signaling pathway, plays an impor-
tant role in the survival and repair of neuronal cells after 
cerebral ischemia (46,47). The activation of Akt can control 
multiple intracellular signals, such as the mTOR signaling 
pathway, GSK‑3β signaling pathway etc. Then, the down-
stream signaling pathways can promote proliferation and 
survival after cerebral ischemia (48‑50). In addition, some 
studies reported that treatment with IGF‑1 after an ischemic 
stroke partially improved the ischemic damage of neurons 
induced by ischemia‑reperfusion injury (51,52). Therefore, 
the reduced neuronal death in the hippocampal CA1 region 
of the young gerbils after TCI compared to that in the adults 
may be associated with the higher and sustained expression 
of IGF‑1 and IGF‑1R. Furthermore, the relevant molecular 
biological mechanisms may be associated with the Akt 
signaling pathway.

In conclusion, our present findings indicated that the expres-
sion levels of IGF‑1 and IGF‑1R in the hippocampal CA1 region 
in the normal young gerbils were much higher than those in the 
normal adult. Additionally, their sustained expression levels 
in the hippocampal CA1 region after ischemia‑reperfusion 
may serve as the evidence to explain the reason for the more 
delayed and reduced neuronal death/damage in the young 
gerbil. Also, it could be hypothesized that increasing the levels 
of IGF‑1/IGF‑1R has potential as an alternative target for the 
prevention of ischemic damage in the brain.
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