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Abstract. Paeoniflorin (PF), extracted from the peony root, 
has been proved to possess antineoplastic activity in different 
cancer cell lines. However, it remains unclear whether PF 
has an antineoplastic effect against osteosarcoma cells. The 
present study investigated the effects and the specific mecha-
nism of PF on various human osteosarcoma cell lines. Using 
the multiple methods to detect the activity of PF on HOS and 
Saos‑2 human osteosarcoma cell lines, including an MTS 
assay, flow cytometry, transmission electron microscopy and 
western blotting, it was demonstrated that PF induces inhibi-
tion of proliferation, G2/M phase cell cycle arrest and apoptosis 
in the osteosarcoma cell lines in  vitro, and activation of 
cleaved‑caspase‑3 and cleaved‑poly (ADPribose) polymerase 
in a dose‑dependent manner. Furthermore, the pro‑apoptotic 
factors Bcl‑2 X‑associated protein and BH3 interacting domain 
death agonist were uregulated, while the anti‑apoptotic factors 
B‑cell lymphoma 2 (Bcl‑2) and Bcl‑2‑extra large were down-
regulated. In conclusion, these results demonstrated that PF 
has a promising therapeutic potential in for osteosarcoma.

Introduction

Osteosarcoma (OS), the most common primary malignant 
tumor of bone, has two age‑specific peaks in incidence in 

children, adolescents (0‑24 years old) and the elderly (≥60 years 
old)  (1‑3). The incidence rate of OS is ~5‑10 million/year 
worldwide (4). ������������������������������������������With�������������������������������������� the combination of surgery and neoad-
juvant chemotherapy treatment from 1980, patients with 
osteosarcoma have an improved survival time. However, the 
metastases or recurrence of the 5‑year overall survival rate 
for OS patients is 20%, which contributes to the majority of 
mortalities, while 65% of patients have localized disease (5). 
Additionally, the reduced effectiveness of cytotoxic drugs 
due to acquired chemoresistance is growing (6). Therefore, 
finding novel therapeutic agents is important to improve the 
prognosis.

Traditional Chinese medicines (7) have been used as a 
promising agent to treat osteosarcoma in patients with metas-
tasis, chemoresistance and recurrence. Paeoniflorin (PF) is 
isolated from the peony root. Previous research have demon-
strated the proliferation inhibition and apoptosis induction by 
PF in many different tumor cells including hepatoma (8‑10), 
cervical (11,12), gastric (13‑15), colorectal (16) and lung (17) 
cancers.

However, it remains to be determined whether PF has 
a treatment effect on osteosarcoma. Therefore, the present 
study investigated the anti‑tumor effect of PF and the 
specific mechanism on human osteosarcoma cells. Since 
PF could inhibit proliferation and induce apoptosis in 
multiple neoplasias (18‑20), it is highly possible that PF has 
the capacity to suppress proliferation and mediate apop-
tosis in human osteosarcoma cells. Additionally, cell cycle 
proteins, caspase protein and the B‑cell lymphoma 2 (Bcl‑2) 
family were investigated in relation to the effect of PF on 
osteosarcoma.

Materials and methods

Reagents and antibodies. PF was from Sigma‑Aldrich; 
Merck KGaA (Darmstadt, Germany), with a purity >98%. 
The molecular formula of PF is C23H28O11, and its molecular 
weight is 480.46. PF was dissolved in PBS to produce a stock 
solution. The PF stock solution was diluted in a cell culture 
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medium prior to its use in each experiment. Trypsin (0.25%), 
PBS, fetal bovine serum (FBS), Eagle's Minimum Essential 
medium (EMEM) and Mcroy' 5A medium were purchased 
from Gibco; Thermo Fisher Scientific, Inc. (Waltham, MA, 
USA). Hoechst 33258 and an MTS kit were from Promega 
Corporation (Madison, WI, USA). Antibodies against 
caspase‑3 (cat. no. 9662), cleaved‑caspase‑3 (cat. no. 9661), poly 
(ADPribose) polymerase (PARP; cat. no. 9532), cleaved‑PARP 
(cat. no. 5625), BH3 interacting domain death agonist (Bid; 
cat. no. 2002), Bcl‑2 (cat. no. 4223), Bcl‑2 X‑associated protein 
(Bax; cat. no.  5023), Bcl‑extra large (XL; cat. no.  2764), 
cyclin B1 (cat. no. 4135), p21 (cat. no. 2947) and β‑actin (cat. 
no. 3700) were from Cell Signaling Technology, Inc., (Beverly, 
MA, USA). Antibodies against cyclin‑dependent kinase 
(CDK)1 (cat. no. ab133327) and phosphorylated (p)‑CDK1 
(p‑Y15; cat. no.  ab133463) were purchased from Abcam 
(Cambridge, UK).

Cells and cell culture. The HOS [CRL‑1547TM, American 
Type Culture Collection, Manassas, VA, USA (ATCC)] 
and Saos‑2 (HTB‑85TM; ATCC) human osteosarcoma 
cell lines were from the Cell Bank of Shanghai Institute 
of Biochemistry and Cell Biology, Chinese Academy of 
Sciences (Shanghai, China). HOS cells were cultured 
in EMEM and Saos‑2 cells were cultured in Mcroy' 5A 
medium containing 10% FBS, penicillin (100 U/ml) and 
streptomycin (100  µg/ml; Sigma‑Aldrich, Merck KGaA, 
Darmstadt, Germany). All cell lines were cultured at 37˚C in 
a 5% (v/v) CO2 humidified incubator. The present study was 
approved by the Ethics Committee of the Second Affiliated 
Hospital of Zhejiang University Medical School (Zhejiang, 
China).

Cell viability assay. The viability of osteosarcoma cells treated 
with PF was measured by an MTS assay. In brief, cells were 
seeded into 96‑well plates (5,000‑6,000 cells/well) overnight, 
then they were treated with PF at concentrations ranging from 
200 to 500 µM for 0‑48 h. The MTS kit was added and cells 
were incubated at 37˚C in a humidified incubator for 1‑3 h 
following the manufacturer's protocol. Absorbance was read on 
a MR7000 microplate reader (Dynatech Nevada, Inc., Carson 
City, NV, USA) at 490 nm and the probit model was used to 
obtain IC50 values. Data were averaged in six replicates. Each 
assay was tested in triplicate.

Hoechst staining. To assess the characteristic morphological 
changes of osteosarcoma cell apoptosis, Hoechst 33258 
staining followed by fluorescent microscopy was performed. 
Cells were treated with PF for 24 h. Subsequently, cells were 
stained with Hoechst 33258 at room temperature for 10 min. 
Subsequently, cells were washed twice with PBS and observed 
under a fluorescence microscope (Olympus Corporation, 
Tokyo, Japan) to identify chromatin condensation and nuclei 
fragmentation.

Morphological apoptosis. The morphological ultra‑structure 
changes of treated and control cells were observed using trans-
mission electron microscopy (TEM). Cells were fixed with 
2.5% glutaraldehyde at 4˚C for 4 h and post‑fixed in 1% osmium 
tetroxide at 4˚C for 1 h. The cell pellets were embedded in 

epoxy resin following dehydration in different concentrations 
of alcohol. Sections (0.5‑µm) were treated with uranyl acetate 
and lead citrate, then observed at a magnification of x8,300 
under a transmission electron microscope.

Apoptosis proportion analysis. Apoptosis caused by 
PF was detected by Annexin V‑f luorescein isothio-
cyanate (FITC)/propidium iodide (PI) staining (Biouniquer 
Technology, Nanjing, China). In brief, cells were incubated 
in six‑well plates at a density of 2x105 cells/well and treated 
with varying concentrations of PF (0‑500 µM) for 24 h. The 
cells were stained using Annexin V‑FITC (5 µl) and PI (5 µl) 
for 15 min in the dark. A flow cytometer (FACSCalibur; BD 
Biosciences, San Jose, CA, USA) and ModFit LT (version 3.3; 
Verity Software House, Topshame, ME, USA) was used to 
analyze the samples.

Cell cycle analysis. PI/RNase staining buffer (BD Biosciences) 
was used to determine cell cycle with flow cytometry. In 
brief, after incubation with different concentrations of PF (0, 
200, 300 and 500 µM) for 24 h, ~5x105 cells were fixed with 
70% ethanol at ‑20˚C for 24 h. Following this, the cells were 
incubated with PI/RNase and tested with a flow cytometer 
(FACSCalibur).

Western blot analysis. Cells (5x105) were incubated in 
60‑mm dishes and treated with PF for 24 h. Protein lysates 
were obtained by lysing cells with radioimmunopre-
cipitation assay lysis buffer (Sigma‑Aldrich; Merck KGaA) 
containing a mixture of protease inhibitors (Sigma‑Aldrich; 
Merck KGaA) for 0.5  h at 4˚C to extract total proteins. 
Next, a bicinchoninic acid total protein quantitation kit was 
used to identify the protein content. Total proteins (60 µg) 
were separated by electrophoresis on a 5% stacking gel and 
an 8‑12% separating gel. Proteins were transferred onto 
a polyvinylidene difluoride membrane (EMD Millipore, 
Billerica, MA, USA) and blocked with 5% bovine serum 
albumin at 20˚C for 1 h. Membranes were incubated with 
primary antibodies (1:1,000) at 4˚C for 12 h. After that, 
the membranes were washed five times with TBS with 
0.1% Tween 20 and then incubated with goat anti‑rabbit 
and anti‑mouse immunoglobulin G horseradish peroxide 
conjugated secondary antibodies (Pierce; Thermo Fisher 
Scientific, Inc.; 1:5,000) at 37˚C for 1 h. Following this, an 
Enhanced Chemiluminescence kit was used to visualize 
proteins with exposure to X‑ray film (Kodak, Rochester, 
NY, USA). BandScan 5.0 software (Glyko, Inc., Novato, 
CA, USA) were used to analyze the density of strips. The 
relative expression amount of the target protein is expressed 
as: (Objective protein optical density value)/(β‑actin optical 
density value) x10.

Statistical analysis. All data are expressed as the 
mean  ±  standard deviation. The experiments were tripli-
cated to obtain the mean values. The statistical differences 
were calculated by unpaired Student's t‑test or one‑way 
analysis of variance followed by Dunnett's test using SPSS 
software (version 17.0; SPSS, Inc., Chicago, IL, USA). 
P<0.05 was considered to indicate a statistically significant 
difference.
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Results

PF inhibits cell viability in osteosarcoma cells in a dose‑ 
and time‑dependent manner. To study the effects of PF on 

the growth of osteosarcoma cells, an MTS assay was used 
to measure the cell viability of HOS and Saos‑2 cells. As 
the concentration of PF increased, cell viability decreased; 
following incubation with PF for 48 h, the IC50 values of PF 

Figure 1. PF inhibits the cell viability of HOS and Saos‑2 human osteosarcoma cells and induces cell cycle arrest. (A) MTS was used to test the effect of 
PF. (B) PF induces G2/M phase cell arrest, as analyzed by the flow cytometry. (C) The percentage of cells in each stage of the cell cycle. (D) Representative 
western blot images and (E) quantification of expression levels of the cell cycle‑associated proteins p21, p‑CDK1, CDK1 and cyclin B1. β‑actin served as a 
loading control. Data are presented as the mean ± standard deviation. *P<0.05 vs. control (0 µM). PF, paeoniflorin; p, phosphorylated; CDK1, cyclin‑dependent 
kinase 1.
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were 363.29 µM for HOS and 351.24 µM for Saos‑2 (Fig. 1A). 
The results indicated that PF has the capability to inhibit cell 
viability in a dose‑ and time‑dependent manner.

PF induces cell cycle arrest at the G2/M phase and regulates 
cell cycle protein expression levels in osteosarcoma. In order 
to demonstrate whether PF inhibits cell proliferation through 
mediating cell cycle arrest, flow cytometry analyses were used 
to examine the distribution of the cell cycle. As presented in 
Fig. 1B and C, after incubating with PF for 48 h, HOS and 
Saos‑2 cells exhibited a significant increase in G2/M phase 

arrest, with a corresponding decline in the G0/G1 and S phases 
in a dose‑dependent manner. To determine the underlying 
mechanism, the protein expression levels of cyclin B1, CDK1, 
p‑CDK1 and p21, which have been demonstrated to be cell 
cycle‑regulating proteins, were assessed. The protein expres-
sion levels of cyclin B1, p‑CDK1, CDK1 and p21 increased after 
treating with PF in HOS and Saos‑2 cells in a dose‑dependent 
manner (Fig. 1D and E).

PF induces apoptosis in human osteosarcoma cell lines. To 
investigate the inhibition mechanism of PF in the proliferation 

Figure 2. PF induces cell apoptosis in HOS and Saos‑2 human osteosarcoma cells. (A) Hoechst 33258 staining was used to detect the apoptotic morphological 
changes and stain the nuclei. Arrows indicate chromatin condensation and DNA fragmentation. Scale bar=100 µm. (B) The ultrastructure of apoptotic cells 
was detected with a transmission electron microscope (magnification, x8,300). Cell shrinkage, a denser cytoplasm, cytoplasmic vacuoles, nuclear condensa-
tion and the presence of apoptotic bodies were observed in both HOS and Saos‑2 cells treated with PF. Arrows indicate nuclear condensation and asterisks 
indicate disruption of nuclear membrane. Scale bar=2 µm. (C) Histograms and (D) flow cytometry graphs of Annexin V/PI staining. Data are presented as 
the mean ± standard deviation of three independent experiments. *P<0.05 vs. control (0 µM). Ctrl, control; PF, paeoniflorin; PI, propidium iodide; FITC, 
fluorescein isothiocyanate.
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of osteosarcoma cells, Hoechst 33258, TEM and flow cytom-
etry analyses were used in the present study. The Hoechst 
33258 staining revealed morphological changes when the 
cells were treated with PF, such as karyopyknosis and nuclear 
fragmentation (Fig. 2A). Furthermore, TEM revealed more 
detailed apoptotic morphological features in cells treated with 

PF compared with control cells, including cell shrinkage, a 
denser cytoplasm, cytoplasmic vacuoles, karyopyknosis and 
the presence of apoptotic bodies (Fig. 2B). Next, flow cytom-
etry analysis was used to quantify PF‑induced apoptosis in 
human osteosarcoma cells. PF led to apoptosis in osteosar-
coma cell lines in a dose‑dependent manner, consistent with 

Figure 3. Representative western blot images of cleaved caspase‑3, caspase‑3, cleaved PARP, PARP and the Bcl‑2 family of proteins, including Bid, Bax, Bcl‑2 
and Bcl‑XL in human osteosarcoma cells treated with PF for 24 h. β‑actin served as a loading control. PF, paeoniflorin; Bcl‑2, B‑cell lymphoma 2; XL, extra 
large; Bax, Bcl‑2 X‑associated protein; PARP, poly (ADPribose) polymerase; Bid, BH3 interacting domain death agonist; Ctrl, control.

Figure 4. Quantification of protein expression levels of apoptosis‑associated proteins following paeoniflorin treatment in (A and B) HOS and Saos‑2 human 
osteosarcoma cells. The relative expression amount of the target protein is expressed as: (Objective protein optical density value)/(β‑actin optical density value) 
x10. Data are presented as the mean ± standard deviation. *P<0.05 vs. control (0 µM). Bcl‑2, B‑cell lymphoma 2; XL, extra large; Bax, Bcl‑2 X‑associated 
protein; PARP, poly (ADPribose) polymerase; Bid, BH3 interacting domain death agonist.
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the results of the MTS assay. Following treatment with PF, 
Saos‑2 cells exhibited increased rates of apoptosis from 6.3% 
at 0 µM to 48.7% at 500 µM, and HOS cells from 8.8% at 
0 µM to 43.8% at 500 µM (Fig. 2C and D). The result was 
consistent with the finding demonstrated by the MTS assay.

PF induces the apoptosis in the human osteosarcoma cells by 
regulating the expression of Bcl‑2, Bcl‑XL, Bax, Bid, PARP 
and caspase‑3 in osteosarcoma cells. To detect the potential 
cell signaling pathways in apoptosis induced by PF, the protein 
expression levels of the caspase‑3, PARP and Bcl‑2 family 
were examined (Fig. 3). The expression levels of Bcl‑2 and 
Bcl‑XL protein were downregulated following PF treatment 
in a dose‑dependent manner, in both cell lines. However, the 
levels of Bax and Bid protein were upregulated after incubation 
with PF for 48 h (P<0.05). Additionally, the levels of cleaved 
caspase‑3 and cleaved PARP protein were significantly upreg-
ulated in a dose‑dependent manner (P<0.05). Therefore, these 
results demonstrated that apoptosis induced by PF occurred 
via downregulation of the anti‑apoptotic proteins Bcl‑XL and 
Bcl‑2 and upregulation of the pro‑apoptotic proteins Bax, Bid, 
PARP and caspase‑3 (Fig. 4).

Discussion

There is increasing evidence indicating the anti‑tumor proper-
ties of PF in multiple cancer cells, but the impact of PF on 
human osteosarcoma cells remains to be determined. In this 
study, it was indicated that PF inhibited the proliferation of 
osteosarcoma cells in a dose‑ and time‑dependent manner.

To elucidate the mechanisms underlying the anticancer 
properties of PF, further studies were further conducted. 
Annexin V‑FITC/PI double staining illustrated that PF causes 
G2/M phase cell cycle arrest and apoptosis in a dose‑dependent 
manner within a 0‑500 µM range. Fluorescence and electron 
microscopy revealed morphological changes following 
PF treatment, such as cell shrinkage, a denser cytoplasm, 
cytoplasmic vacuoles, karyopyknosis and the presence apop-
totic bodies. The present study illustrated in vitro that PF has 
a therapeutic effect on osteosarcoma through G2/M phase cell 
cycle arrest and inducing apoptosis.

Consistent with previous reports, the present study 
demonstrated that the cell cycle G2 checkpoint (21) is also a 
target of PF. The cyclin B1/CDK1 complex is an important 
regulators of G2/M cell arrest  (22‑24). p21 was demon-
strated to serve a role in regulating G2 phase cell cycle 
progression through the p53‑dependent or p53‑independent 
signaling pathways (25,26). As HOS and Saos‑2 cells are 
p53‑mutant, p53‑independent factors serve a central role in 
the upregulation of p21.

Caspases, a cysteine protease family, act as an important 
regulator of apoptosis. Once the cell is in the process of apop-
tosis, the stimuli will trigger a caspase signaling cascade (27). 
Caspase‑3 marks the end of the downstream effect of 
caspases (28,29), the primary executioner of programmed cell 
death. PARP is the substrate of caspase‑3 (30), a key regulator 
of apoptosis. In the present study, the dose of PF upregulated 
the cleavage of caspase‑3 and cleaved‑PARP and simultane-
ously inhibited the protein expression levels of procaspase‑3 
and PARP, while increasing the rate of apoptosis. These 

findings illustrated that PF inhibits osteosarcoma cells by 
activating apoptotic pathways.

To further illuminate the specific molecular mechanisms, 
related upstream apoptotic proteins were investigated. 
Llambi et al (31) reported that mitochondria‑mediated apop-
tosis is mainly associated with the Bcl‑2 family. The Bcl‑2 
family can be separated into two categories: One involving 
anti‑apoptotic proteins including Bcl‑2 and Bcl‑XL, the other 
involving is pro‑apoptotic proteins, mainly including Bax and 
Bid (32). Bid is a proapoptotic BH3‑only member of the Bcl‑2 
family, and when cleaved into the truncated Bid, it will trans-
locate to the mitochondria to cause apoptosis (33,34), which is 
also called mitochondrial outer membrane permeabilization 
(MOMP), the final common pathway of apoptosis  (35,36). 
Bax forms the MOMP pore, while Bcl‑2 and Bcl‑ XL, the 
anti‑apoptotic proteins, locate in the outer wall of mito-
chondria and inhibit its formation (37,38). Therefore, in the 
pathway of apoptosis, the ratio of Bax/Bcl‑2 and Bax/Bcl‑XL 
serve an important role, in addition to the expression levels 
of Bcl‑2 family members (39). The results indicated that PF 
suppresses HOS and Saos‑2 cells proliferation in vitro through 
the mitochondrial signaling pathway.

In conclusion, although the specific mechanism of PF in 
osteosarcoma has not been totally identified, these data indicated 
that PF may induce apoptosis of osteosarcoma cells directly 
or indirectly through the mediation of apoptosis, resulting in 
G2/M cell cycle arrest, indicating a potential therapeutic agent 
for osteosarcoma. However, further in vivo studies are required 
to further elucidate these mechanisms.
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