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Abstract. Transplacental bone morphogenetic protein (BMP)4 
RNA interference (RNAi) is a technique used to knockdown 
genes in embryos. BMP4 are essential for the development of 
nervous system in the differentiation of neural crest stem cells 
(NCSCs). The failure of differentiation and migration of NCSCs 
may lead to aganglionosis. In the present study, pregnant mice 
were divided into three groups: Ringer's group, pSES group and 
RNAi‑BMP4 group. In order to silence the BMP4 gene in the 
first generation (F1), 11.5 day pregnant mice were injected with 
the small interfering RNA BMP4 plasmid, pSES or Ringer's 
solution via the tail vein. Semi‑quantitative reverse transcrip-
tase‑polymerase chain reaction (RT‑PCR)and western blotting 
were employed to ensure the downregulation of BMP4. Finally, 
X‑rays were performed following a barium enema. Aganglionosis 
was diagnosed by general anatomy and immunohistochemistry. 
Compared with the control group, transplacental RNAi was 
able to downregulate the BMP4‑Smad4 of 11.5 day embryos, 
as determined by semi‑quantitative RT‑PCR and western blot-
ting. The megacolons of the mice were demonstrated by X‑ray 
and confirmed by general anatomy. Aganglionosis of colonic 
mucosa and submucosa were diagnosed by pathology, and 
immunohistochemistry. Knockdown of BMP4 in pregnant mice 
at the middle embryonic stage led to aganglionosis. It was there-
fore demonstrated that BMP‑Smad was essential to the NCSCs 
of middle stage embryos. BMP‑Smad served important roles in 
the generation of aganglionosis. This technique of knockdown 

BMP4 gene may be used to establish an aganglionosis mouse 
model.

Introduction

Aganglionosis or Hirschsprung's disease (HD) is a conge-
nial intestinal dynamic disorder characterized by intestinal 
submucosal and myenteric plexus parasympathetic ganglion 
cell loss, leading to persistent diseased colonic convulsions, 
and contractions in addition to the obstruction of intestinal 
contents (1‑4). This disease is a colonic motor disorder with an 
incidence of 1:5,000 live births worldwide (5‑7). In previous 
studies, the failure of neural crest stem cells (NCSCs) todif-
ferentiate and migrate was demonstrated to be associated 
with the poor development of the enteric nervous system, and 
identified as the main cause of aganglionosis (8,9).

Bone morphogenetic proteins (BMPs) are among the most 
important proteins involved in the development of the enteric 
nervous system  (8‑12). BMP/Smad signalling serve a key 
role in NCSC migration at an early embryonic stage, while 
NCSC differentiation occurs during the middle embryonic 
stages (8,11). Eventually, BMP/Smad signalling determines the 
function of the intestinal nervous system (10‑12). The current 
studies were designed to investigate the effects of the downreg-
ulation of BMP4 gene expression in NCSCs using a transgenic 
mouse model in which low expression level of the BMP4 gene 
was governed by RNAi‑BMP genomic sequences (13‑16). A 
series of pregnant mice at 6.5‑14.5 days post coitum (dpc) with 
post‑implantation staged mouse embryos were injected via 
the tail vein with the pSES‑small interfering RNA (si)BMP4 
plasmid to silence the BMP4 gene, and these procedures were 
applied to establish an animal model������������������������ �����������������������(14). One of the objec-
tives of the present study was to expand current knowledge 
on the effect of BMP4 on NCSCs during the middle stage of 
embryo development. The current study also aimed to assess 
the neurodevelopmental abnormalities associated with the 
knockdown of BMP4.

Materials and methods

Animals and experimental groups. Balb/c mice (male 12, 
female 36; 8‑12 weeks old; weight 14‑18 g) were purchased 
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from the Animal Center of Chongqing Medical University 
(Chongqing, China). The mice were kept in a specific 
pathogen‑free facility room at the Chongqing Children's 
Hospital Animal Center (Chongqing, China), with 50±5% 
humidity and a temperature of 25±2˚C. Food and water were 
provided ad libitum. Male and female mice were kept in single 
cages at a 1:2‑1:4 ratio. A female mouse in which a vaginal 
plug was identified the next dawn was marked as 0.5 dpc and 
housed separately. The present study was approved by The 
Ethics Committee of Chongqing Medical University.

Tail vein injections. Pregnant mice were randomly divided 
into the following groups: Ringer's group (n=12), pSES group 
(n=12) and RNAi‑BMP4 group (n=12); these were injected 
with 10 µl/g Ringer's solution, 50 ng/µl pSES empty vector and 
50 ng/µl pSES‑SiBMP4 vector, respectively. The pSES vectors 
bore a copy of the entire DsRed coding region, allowing fluo-
rescent detection of the delivered plasmids. At 11.5 dpc, the 
solution (at a volume of 10 µl/g) was injected into the tail vein. 
A 31G needle was used and the injectionusually performed 
within 5±1 sec. Plasmids for siRNA were purchased from 
the Oncogene Laboratory, Biological Sciences Division, 
University of Chicago and contained the following 4 sites of 
RNAi to silence the BMP4 gene, lowercase is the gene match 
to the cutting site): (5'aGG​TCC​AGG​AAG​AAG​AAT​AAt​
ttt3', mouse BMP4 simBMP4‑site 1, sense strand; 3'aTT​ATT​
CTT​CTT​CCT​GGA​CCt​ttt5', mouse BMP4 simBMP4‑site 1, 
antisense strand. 5'aGA​GCC​ATG​CTA​GTT​TGA​TAt​ttt3', 
mouse BMP4 simBMP4‑site 2, sense strand; 3'aTA​TCA​AAC​
TAG​CAT​GGC​TCt​ttt5', mouse BMP4 simBMP4‑site 2, anti-
sense strand. 5'aGG​GAA​AAG​CAA​CCC​AAT​TAt​ttt3', mouse 
BMP4 simBMP4‑site 3, sense strand; 3'aTA​ATT​GGG​TTG​
CTT​TTC​CCt​ttt5', mouse BMP4 simBMP4‑site 3, antisense 
strand. 5'aGG​GAA​AAG​CAA​CCC​AAT​TAt​ttt3', mouse BMP4 
simBMP4‑site 4, sense strand; 3'aTA​ATT​GGG​TTG​CTT​TTC​
CCt​ttt5', mouse BMP4 simBMP4‑site 4, antisense strand). At 
1week [Ringer's group F1 mice (n=16), pSES group (n=18) 
and RNAi‑BMP4 group (n=10)], 2 weeks [Ringer's group 
(n=15), pSES group (n=15) and RNAi‑BMP4 group (n=12)]
and 4 weeks [Ringer's group (n=21), pSES group (n=15) and 
RNAi‑BMP4 group (n=7)] following birth, the F1 mice were 
sacrificed by cervical dislocation. Then, the target tissues were 
removed and rinsed in PBS at 4˚C. Parts of the tissues were 
stored at ‑80˚C and used for western blotting. The remaining 
samples were stored at 4‑20˚C in 4% paraformaldehyde.

Reverse transcriptase‑semi‑quantitative polymerase chain 
reaction (RT‑sqPCR) detection of BMP4 and Smad4 genes. 
Total RNA was extracted from the colon using TRIzol reagent 
(Invitrogen; Thermo Fisher Scientific, Inc., Waltham, MA, USA) 
according to the manufacturer's protocol. To generate cDNA, 
RT was performed with Prime Script RT Enzyme mix reverse 
transcriptase at 4˚C (Invitrogen; Thermo Fisher Scientific, 
Inc.). Then, the cDNA samples were amplified by PCR using 
the following cycling conditions: 94˚C for 5 min; followed by 
39 cycles at 94˚C for 30 sec; 58˚C for 30 sec; 72˚C for 30 sec; 
and a final step at 72˚C for 5 min. Oligonucleotide primers 
were purchased from Invitrogen (Thermo Fisher Scientific, 
Inc.) as follows: BMP4 forward (F), GAC​TTC​GAG​GCG​
ACA​CTT​CT and reverse (R), CCT​GGG​ATG​TTC​TCC​AGA​

TG; Smad4 F, CAT​TCC​AGC​CTC​CCA​TTT​CCA​ATC and 
R, CAC​ATA​GCC​ATC​CAC​AGT​CAC​AAC; β‑actin F, AAG​
ATG​ACC​CAG​ATC​ATG​TTT​GAG​ACC and R, GCC​AGG​
TCC​AGA​CGC​AGG​AT. The amplified products were resolved 
in ethidium bromide‑stained 2% agarose gels. Densitometry 
was performed using Quantity One software version 4.6.2. 
(Bio‑Rad Laboratories, Inc., Hercules, CA, USA).

Western blotting analysis of BMP4. Protein extracts were 
prepared from the colon. Tissue samples were homogenized 
in RIPA lysis buffer and phenylmethanesulfonyl fluoride 
(Beyotime Institute of Biotechnology, Shanghai, China), and 
proteins were directly extracted according to the manufacturer's 
protocols. Protein concentrations were determined using a 
Micro Bicinchoninic Acid Protein Assay reagent (Beyotime 
Institute of Biotechnology). Protein samples were then diluted 
to obtain equal (50 µg) protein amounts and heated at 100˚C 
in an equal volume of SDS loading buffer (Beyotime Institute 
of Biotechnology) for 10 min. Proteins were then separated by 
SDS‑PAGE (5% spacer gel, 40 V, 50 min; 8% separating gel, 
80 V, 70 min). Proteins were then electrophoretically trans-
ferred (Bio‑Rad Laboratories, Inc.) onto polyvinylidene fluoride 
membranes (EMD Millipore, Billerica, MA, USA) for 1.5 h at 
250 mA. To block non‑specific binding, the membranes were 
incubated with 5% bovine serum albumin (Kang Yuan Biology, 
Tianjing, China) in Tris‑buffered saline with Tween 20 (250 µl 
Tween20 in 500 ml PBS) at 37˚C for 1.5 h. The membranes were 
then incubated overnight at 4˚C with rabbit anti‑BMP4 primary 
polyclonal antibody (GR49989‑1; 1:400; Abcam, Cambridge, 
MA, USA) and β‑actin (4AH240911; 1:150; 4A Biotech Co., 
Ltd., Beijing, China.). Next, the membranes were incubated at 
4˚C for 1 h with peroxidase‑conjugated secondary anti‑rabbit 
IgG (TA130015; 1:4,000; OriGene Technologies, Inc., Beijing, 
China), according to the manufacturer's protocol. The protein 
of interest was visualized using an enhanced chemilumines-
cence western blotting substrate (Boster Biological Technology, 
Pleasanton, CA, USA) and its relative expression was quanti-
fied using a Chemidoc XRS gel imaging system Quantity One 
software version 4.6.2. (Bio‑Rad Laboratories, Inc.).

Immunohistochemistry. Colontissue was immediately fixed 
in 4% buffered formalin for 48 h, embedded in paraffin, and 
sectioned at 5 µm. Antigen retrieval was performed by boiling 
the sections in 0.01 M sodium citrate in 1L PBS (pH 7.4) 
followed by a 20 min incubation at room temperature, in 3% 
H2O2 for 20 min and blocked in 5% BSA (Kangyuan Biology, 
Tianjing, China) for 20 min at room temperature. Following 
incubation in 5% normal serum for 20 min at room tempera-
ture, sections were incubated with rabbit anti‑BMP4 primary 
polyclonal antibody overnight at 4˚C (GR49989‑1, ab39973; 
1:500; Abcam). Slides were then stained with goat anti‑rabbit 
secondary antibody (PV‑6001, 1:1,500 dilution) from OriGene 
Technologies, Inc. (Beijing, China) for 1 h at room tempera-
ture. Detection was accomplished using a DAB kit (Beyotime 
Institute of Biotechnology, Shanghai, China). Positive staining 
was assessed by the degree of brown colour development. The 
integrated optical density of positive staining was measured 
by NIS‑Elements Viewer version 4.0 (Nikon Corporation, 
Tokyo, Japan) using an Eclipse 55i microscope (x40; 
Nikon Corporation).
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Statistical analysis. The RT‑PCR and western blotting 
greyscale values were expressed as the mean  ±  standard 
deviation. The differences among groups were analysed by a 
one‑way analysis of variance and t‑tests implemented in SPSS 
software version 17.0 (SPSS, Inc., Chicago, IL, USA), followed 
by Student‑Newman‑Keuls‑q test. P<0.05 was considered to 
indicate a statistically significant difference.

Results

BMP4 and downstream gene downregulation in F1 mouse 
colon is induced by administration of the siBMP4 plasmid to 
pregnant mice. PCR revealed that BMP4 and Smad4 miRNA 
in the colon was significantly lower in the RNAi‑BMP4 group 
compared with the control and pSES groups at 7 days after 
birth (P<0.05; Fig. 1). A decrease in BMP4‑Smad4 in mice may 
lead to aganglionosis (9‑11). Western blotting results revealed 
that colon BMP4 in the RNAi‑BMP4 group was significantly 
lower compared with the control and pSES groups (Fig. 2).

Formation of aganglionosis in F1 mice is induced by trans‑
placental administration of RNAi‑BMP4 to pregnant mice 
at 11.5  days. Barriers to stool discharge and abdominal 
distention were observed in BMP4 knockdown old mice 

(n=35; 10 mice were sacrificed at 1 week). With a barium 
enema, giant colons were identified in 2‑week‑old mice from 
the RNAi‑BMP4 group (n=23; 12 mice were sacrificed at 
1 week). Then, 4‑week‑old mice died from cerebral ischaemia 
and were autopsied (n=7, some mice succumbed naturally). 
Unfortunately, the mouse rectum was so small that there was 
no suitable pressure probe. The spastic colon, transitional 
colonand giant colon were exposed (Fig. 3). With immunocy-
tochemistry, a small number of glial‑like cells were positive for 
BMP4 in the colon of BMP4 knockdown mice. Additionally, 
absence or dysplasia of neurons was observed in RNAi‑BMP4 
colons.

Discussion

There area number of ways to establish aganglionosis in 
animal models (17‑19). The principle methodis to affect the 
migration, differentiation and proliferation of NCSCs or artifi-
cially destroy the intestinal nervous system with drugs (20). A 
high folic acid (FA) diet during pregnancy leads to a gradual 
increase in serum FA in pregnant mice and their offspring, 
causing aganglionosis in the offspring (21). The level of FA 
in the offspring reached the highest value with 160 mg/kg FA 
feeding. It has also been demonstrated that a 0.1% benzalkonium 

Figure 2. Western blot analysis of different groups of colon BMP4. The electropherogram derived from the western blot analysis of neurodevelopmental deficits 
associated protein BMP4 in the colons of three mouse groups. Lane 1: Ringer's group; Lane 2: pSES group; Lane 3: RNAi‑BMP4 group. At the level of protein, 
RNAi‑BMP4‑induced mice, in contrast to the control group, significantly downregulated the levels of BMP4 in the colon. *P<0.05. BMP, bone morphogenetic 
protein; RNAi, RNA interference.

Figure 1. Semi‑quantitative reverse transcriptase‑polymerase chain reaction of the different groups of Balb/C mouse colons. Lane 1: Ringer's group, Lane 2: 
pSES group, Lane 3, RNAi‑BMP4 group and M, marker. At the RNA level, the RNAi‑BMP4‑induced mice, in contrast with the control group, significantly 
downregulated the levels of BMP4 and Smad4 in the colon. *P<0.05. RNAi, RNA interference; BMP, bone morphogenetic protein.
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chloride enema may also be used to establish aganglionos is in 
animal models. Ethylnitrosourea (ENU) is a type of artificial 
synthesised compound that leads to random and single‑base 
mutations in a variety of organisms (22,23). The offspring 
may end up with a severe mega colon phenotype due to 
ENU‑induced mutations in C57BL/6 male mice. Trisomy 
16 mice, which are likely to exhibit aganglionosis, are a type 
of genetic mouse model with clinical manifestations similar to 
those identified in the human trisomy 21 syndrome (24). This 
genetic mouse model, which does not express the endothelin 3 
gene, is also known as piebald and spotted death mice and may 
develop defective intestinal aganglionic syndrome or congen-
ital megacolon (25,26). However, at present, there is a lack of a 
genetic mouse models that exhibits HD gene knockdown with 
unmistakeable implementation.

NCSCs originate from cells of the neural crest that migrate 
in chains as they colonize the embryonic gut, eventually 
forming the myenteric and submucosal plexus (27‑29). Failure 
of the neural crest cells to colonize the gut leads to agangli-
onosis in the sigmoid colon, a pathological condition called 
Hirschsprung's disease, also known as congenital megacolon, 
in humans  (28,29). At present, the mechanism associated 
withthe signalling pathways that adjust NCSCs for migration 
to the intestinal tract and differentiation in the enteric nervous 
system remains unclear. The BMP signalling pathway mayin-
volve the migration process of NCSCs to the intestinal tract, 
in addition to the proliferation and differentiation of intestinal 
ganglion cells (30‑32). Studies have suggested that BMP signal-
ling serves an important role in differentiating NCSCs into 
enteric ganglia (8‑12). Therefore, an improved understanding 
of the signalling pathways regulated by NCSCs and associated 
with the mechanisms of action is important to investigate the 
pathogenesis of aganglionosis. BMPs contribute to the largest 
subgroup of the TGF‑β super family and were originally iden-
tified by their ability to induce bone development (27,28,31). 
Additionally, BMPs are expressed in the nervous system 
through out its differentiation. The mechanisms by which these 
BMPs regulate the induction of the neuroectoderm, the CNS 

primordium, and finally the neural crest, which gives rise to 
the NCSCs, have been reviewed (11,33). Following neural tube 
closure, the most dorsal aspect of the tube becomes a signal-
ling centre for BMPs, which directs the pattern of development 
of the dorsal spinal cord. Additionally, certain data suggested 
that BMP4 was a peripherally derived factor that may regulate 
the survival of motor neurons (34).

The RNAi phenomenon was identified in fungi and 
plants  (15,35). The placenta is responsible for transport 
between the mother and foetus and is a tissue barrier of 
high permeability  (14,16). The present study confirmed 
that plasmid vector injected into the tail vein of pregnant 
mice was able to be transferred to foetal mice through the 
blood‑embryo barrier. The plasmid vector transfection of 
tissues and organs depends on the plasmid concentration, 
solvent volume, injection velocity, and weight of pregnant 
mice. The plasmid vector achieved good results when the 
injection concentrationswere 50  ng/µl and 10  µl/g, and 
when the injection time was 5 sec. The majority of human 
aganglionosis cases have revealed an association with 
decreased BMP‑Smad4  (8,30,36). F1 mice that received 
transplacental RNAi‑BMP4 at 11.5 days revealed disordered 
NCSCs. That is, the downregulation of BMP4 in the middle 
embryo stage possibly resulted in developmental problems 
in the peripheral nervous system. BMP4 was also involved 
in the TGF‑β/BMP/Smad‑mediated signalling cascade as a 
transcriptional repressor of Smad proteins.

In summary, knockdown by transplacental RNAi is a 
powerful technique to study the effect of signalling pathways 
on responding tissues at the middle embryonic stage (14,37). 
However, different genes regulate embryonic development 
through specific mechanisms, and different gene plasmids 
possess different transfection efficiencies. Thus, deciding the 
dose and when to intervene should be considered when exploring 
the function of a novel gene (38). The results presented here 
suggested that downregulation of the BMP4 transgene was an 
excellent prognostic factor of neurodevelopmental inactivity 
in mice. This approach may be used to make an aganglionosis 

Figure 3. Colorectal shape was observed in the RNAi‑BMP4 group, and immunohistochemistry staining of the colorectal region was performed in normal 
and RNAi‑BMP4 tissues. (A) The barium enema form of a 3‑week‑old‑mouse in the control group. (B) The barium enema form of a 3‑week‑old mouse in the 
RNAi‑BMP4 group; the red arrow indicates the giant colon. (C) The mouse colon of the control group. (D) The mouse colon of the RNAi‑BMP4 group. The 
black arrow indicates the spastic colon, the white arrow indicates the transitional colon, and the yellow arrow indicates the exposed giant colon. (E) In the 
colon of the control group, the expression of BMP4 was assayed by immunohistochemical staining. The Figure shows the normal neurons and nerve fibres. 
(F) The colon of the RNAi‑BMP4 group, showing agenesis and absence of nerve fibres of neurons (magnification, x200). RNAi, RNA interference; BMP, bone 
morphogenetic protein.
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mouse model. As the mouse colon is relatively short, it is 
planned to use rabbits to research colon gene expression in 
different regions in future studies.
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