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Abstract. Multidrug resistance (MDR) is a major problem 
in the treatment of breast cancer. In the present study, 
next‑generation sequencing technology was employed to iden-
tify differentially expressed genes in MCF‑7/MDR cells and 
MCF‑7 cells, and aimed to investigate the underlying molec-
ular mechanisms of MDR in breast cancer. Differentially 
expressed genes between MCF‑7/MDR and MCF‑7 cells 
were selected using software; a total of 2085 genes were 
screened as differentially expressed in MCF‑7/MDR cells. 
Furthermore, gene ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment analyses 
were performed using the DAVID database. Finally, a 
protein‑protein interaction network was constructed and the 
hub genes in the network were analyzed using the STRING 
database. GO annotation demonstrated that the differen-
tially expressed genes were enriched in various biological 
processes, including ‘regulation of cell differentiation’, ‘cell 
development’, ‘neuron development’, ‘movement of cell or 
subcellular component’ and ‘cell morphogenesis involved in 
neuron differentiation’. Cellular component analysis by GO 
revealed that differentially expressed genes were enriched in 
‘plasma membrane region’ and ‘extracellular matrix’ terms. 
Furthermore, KEGG analysis demonstrated that the target 
genes were enriched in various pathways, including ‘cell 
adhesion molecules (CAMs)’, ‘calcium signaling pathway’, 
‘tight junction’, ‘Wnt signaling pathway’ and ‘pathways 
in cancer’ terms. A protein‑protein interaction network 
demonstrated that certain hub genes, including cyclin D1, 
nitric oxide synthase 3 (NOS3), NOTCH3, brain‑derived 
neurotrophic factor (BDNF), paired box 6, neuropeptide Y, 

phospholipase C β (PLCB) 4, PLCB2 and actin α cardiac 
muscle 1, may be associated with MDR in breast cancer. 
Subsequently, RT‑qPCR confirmed that the expression of 
these 9 hub genes was higher in MCF‑7/MDR cells compared 
with MCF‑7 cells, consistent with the RNA‑sequencing anal-
ysis. Additionally, a Cell Counting Kit‑8 assay demonstrated 
that specific inhibitors of NOS3 and BDNF/neurotrophic 
receptor tyrosine kinase, type 2 signaling reduced the IC50 
of MCF‑7/MDR cells in response to various anticancer 
drugs, including adriamycin, cisplatin and 5‑fluorouracil. 
The results of the present study provide novel insights into 
the mechanism underlying MDR in MCF‑7 cells and may 
identify novel targets for the treatment of breast cancer.

Introduction

Globally, breast cancer is the most commonly occurring type 
of cancer in women. Currently, despite substantial advances 
in treatment, multidrug resistance (MDR) remains a major 
clinical obstacle to effective treatment and results in a poor 
prognosis for these patients. MDR is a phenomenon that 
occurs when cancer cells exposed to anticancer drugs develop 
cross‑resistance to a range of structurally and functionally 
dissimilar agents.

Previous studies have demonstrated that numerous 
mechanisms are involved in the regulation of MDR. The 
most recognized genes associated with MDR are the 
ATP‑binding cassette (ABC) transporter family. ABC 
transporters are members of a large protein family that are 
involved in the import or export of an extensive spectrum of 
substrates, and increasing evidence has confirmed the role 
of ABC proteins, such as ABCB1, ABCC1 and ABCG2, in 
an MDR breast cancer cell phenotype (1‑3). Altered drug 
metabolism is also a major mechanism that contributes to 
MDR. Glutathione S‑transferases (GSTs) consist of a family 
of phase II metabolic isozymes that facilitate the addition 
of reduced glutathione to xenobiotic substrates for detoxi-
fication, and overexpression of GSTs has been implicated 
in breast cancer MDR (4). In addition, defects in apoptotic 
machinery are reported to lead to abnormal chemoresistance, 
abnormal expression of the Bcl‑2 family has been implicated 
in breast cancer drug resistance and various anticancer drugs, 
such as imatinib, gefitinib, and bortezomib, are regarded as 
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Bcl‑2‑like 11‑targeting therapeutic agents (5,6). Furthermore, 
caspase‑3, a member of the caspase family, is activated by 
various chemotherapeutic agents, including doxorubicin and 
etoposide (7,8), and has an important role in apoptotic path-
ways through its cleavage of cellular proteins. In addition, 
tumor suppressor p53 and Raf‑1 proto‑oncogene have also 
been reported to influence the response of breast cancer to 
doxorubicin treatment (9,10). Homeostasis disruption also 
influences chemoresistance in breast cancer (11), and inter-
leukin‑6, estrogen and nomegestrol acetate are reported to 
affect MDR in breast cancer (12‑14).

miRNAs are a novel class of small, noncoding RNAs that 
regulate the expression of various target genes through RNA 
silencing and post‑transcriptional gene regulation to regulate 
the activity of cells. Certain miRNAs have been reported 
to be associated with drug resistance in breast cancer; for 
example, miR‑326 affected the chemoresistance of breast 
cancer through modulation of multidrug resistance‑associated 
protein 1 (15), miR‑221/222 inhibited tamoxifen resistance 
by targeting p27 (16), miR‑125b suppressed Bcl‑2 antagonist 
killer 1 expression and inhibited resistance in response to 
paclitaxel (17), and miR‑34a was associated with docetaxel 
resistance in breast cancer  (18). Increasing evidence has 
indicated that miRNAs have a key regulatory role in MDR 
through modulation of various mechanisms, thereby providing 
insights for the development of more effective individualized 
therapies for breast cancer treatment.

Numerous signaling pathways are also considered 
to be determinants of MDR in breast cancer, including 
phosphatidylinositol‑3‑kinase/Akt/mechanistic target of 
rapamycin kinase, Janus kinase/signal transducer and acti-
vator of transcription, AMP‑activated protein kinase and 
epithelial‑mesenchymal transition (EMT) (19‑23). Although 
numerous genes and signaling pathways are reported to be 
associated with MDR in cancer, the exact mechanism of MDR 
remains unclear. RNA‑sequencing (RNA‑seq) is a recently 
developed method for transcriptome profiling that employs 
next‑generation sequencing technologies and measures tran-
script levels with increased precision compared with other 
approaches (24). Recently, RNA‑seq has been employed exten-
sively to investigate mechanisms of drug resistance in cancer; 
differentially expressed genes screened by RNA‑seq provide 
novel insight into the complex mechanisms of resistance to 
anticancer drugs (25,26).

To investigate the mechanism of MDR in breast cancer 
cells in vitro, drug resistant cell lines have been isolated by 
exposing cancer cell lines to increasing concentrations of 
various chemotherapeutic agents. MCF‑7, a human breast 
carcinoma cell line that has been employed in studies longer 
than any other breast cancer cell model system, has been 
widely employed in the investigation of apoptosis, MDR 
and a malignant phenotype of breast cancer. MCF‑7/MDR 
breast cancer cells have been reported to exhibit resistance 
to several chemotherapeutic agents for cancer, including 
doxorubicin, paclitaxel, salvianolic acid A, cisplatin, etoposide 
and melphalan (27‑29). In the current study, RNA‑seq was 
performed to analyze the differential expression of genes 
between MCF‑7 and MCF‑7/MDR human breast cancer cells 
to determine the underlying molecular mechanisms of chemo-
resistance in breast cancer.

Materials and methods

Cell culture and reagents. The MCF‑7 human breast 
cancer cell line was obtained from the Cell Bank of 
Type Culture Collection of the Chinese Academy of Sciences 
(Shanghai, China). The multidrug‑resistant human breast 
cancer cell MCF‑7/MDR was purchased from the Cell Bank 
of Xiangya Medical College, Central South University 
(Changsha, China). Cells were cultured in Dulbecco's 
modified Eagle's medium (DMEM; Gibco; Thermo Fisher 
Scientific, Inc., Waltham, MA, USA) supplemented with 10% 
(v/v) fetal bovine serum (FBS; Thermo Fisher Scientific, Inc.), 
100 U/ml penicillin (Gibco; Thermo Fisher Scientific, Inc.), 
100 U/ml streptomycin (Gibco; Thermo Fisher Scientific, Inc.) 
and 10 mmol/l HEPES at 37˚C in a humidified atmosphere 
containing 5% CO2. Adriamycin (ADM), 5‑fluorouracil 
(5‑FU), cisplatin (DDP) and L‑N5‑(1‑Iminoethyl)‑ornithine 
hydrochloride (LNIO) were purchased from Sigma‑Aldrich 
(Merck KGaA, Darmstadt, Germany). ANA‑12 was purchased 
from MedChemExpress (Monmouth Junction, NJ, USA).

RNA‑seq. Total RNA was isolated from MCF‑7 and 
MCF‑7/MDR cells using TRIzol reagent (Invitrogen; 
Thermo Fisher Scientific, Inc.), according to the manufac-
turer's protocol. First‑strand reverse transcription (RT) primer: 
biotin, 5'‑CAAGCAGAAGACGGCATACGAGTVN‑3' was 
conducted using a SuperScript III First‑Strand Synthesis 
system (Thermo Fisher Scientific, Inc.)  (30) was used to 
synthesize the first‑strand cDNA according to the manu-
facturer's protocols, followed by purification of cDNA with 
a NucleoSpin gel and polymerase chain reaction (PCR) 
Clean‑up kit (Macherey‑Nagel GmbH & Co. KG, Düren, 
Germany) to remove free RT primer. Dynabeads® MyOne™ 
Streptavidin C1 (cat. no. 650.01; Thermo Fisher Scientific, 
Inc.) were used for further purification. The second‑strand 
cDNA was synthesized using dNTP mix and Taq DNA poly-
merase with ThermoPol reaction Buffer (cat. no. M0237L; 
New England BioLabs, Inc., Ipswich, MA, USA) following 
the program: 25˚C for 60 min, 68˚C for 30 sec, and 75˚C for 
5 min. Subsequently, the second‑strand cDNA was amplified 
by PCR using the following program: 10 min at 94˚C for 
initial denaturation, 35 cycles of 30 sec at 94˚C for denatur-
ation, 30 sec at 58˚C for annealing, and 30 sec at 72˚C for 
elongation. Following purification, the pooled libraries were 
loaded in a lane of an 8‑lane flow cell and sequenced with the 
HumanHT‑12 v4 Expression BeadChip arrays (Illumina, Inc., 
Sand Diego, CA, USA) on a HiSeq 2500 Illumina sequencer 
(Illumina, Inc.). RNA‑Seq libraries were generated and 12 
libraries were pooled for multiplex (30,31).

Sequencing data analysis. The initial sequence reads were 
generated by the Illumina Genome Analyzer (Illumina, Inc.). 
The expression values were calculated using RSEM (32) for 
each gene (Ensembl, Homo.sapiens.GRCh38.87.gtf) in indi-
vidual samples. A total of 1 million reads were randomly 
selected for quality control with Bowtie 2 (33) mapping to 
Genome Reference Consortium Human Build 38/hg38 (34). 
Differential expression was analyzed between different 
subgroups using Bioconductor edgeR (version 3.12.0) (35). 
A false discovery rate of 0.05 was applied to the resulting 
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P‑values to correct for multiple hypothesis testing. T‑tests were 
employed to screen out differentially expressed genes between 
MCF‑7/MDR and MCF‑7 cells, with a threshold of P<0.05 and 
fold change >2.

Gene ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway mapping analysis. The Database 
for Annotation, Visualization and Integrated Discovery 
(DAVID) database (36) was used to analyze the differentially 
expressed genes between MCF‑7/MDR and MCF‑7 cells. 
The potential targets of differentially expressed genes were 
analyzed by the GO program and enriched pathways were 
analyzed by the KEGG program. The GO analysis included 
biological process and cellular component terms, and P<0.01 
was regarded as statistically significant. In the KEGG pathway 
enrichment analysis, enriched pathways were identified 
according to P<0.05.

RT‑quantitative PCR (RT‑qPCR). Total RNA was isolated from 
5x106 cells using TRIzol reagent, according to the manufacturer's 
protocol. Total RNA concentration and purity were analyzed in 
duplicate samples using a NanoDrop 2000 spectrophotometer 
(Thermo Fisher Scientific, Inc.). cDNA was synthesized from 
the RNA using the TransScriptR Reverse Transcriptase kit 
(Beijing TransGen Biotech Co., Ltd., Beijing, China). The reac-
tion program constituted: 65˚C for 5 sec, 2 min on ice, 25˚C 
for 5 min, 42˚C for 30 min, and 85˚C for 5 sec. qPCR assays 
were performed to evaluate gene expression profiles using an 
ABI PRISM 7300 Sequence Detection system. qPCR was 
performed with the TransStart® Top Green qPCR SuperMix 
kit with SYBR® Green I from Beijing Transgen Biotech Co., 
Ltd. with specified primers. The reaction program consisted of 
95˚C for 3 min followed by 40 cycles of 95˚C for 30 sec, 55˚C 
for 20 sec and 72˚C for 15 sec. GAPDH served as an internal 
control and the relative mRNA levels were calculated by the 
2‑ΔΔCq method (37). Primers were designed and synthesized by 
Sangon Biotech Co., Ltd., (Shanghai, China), as listed in Table I.

Western blot analysis. A total of 2x105 MCF‑7/MDR cells/well 
were plated in 6‑well culture plates to determine the optimal 
concentration of LNIO in subsequent experiments, cells were 
treated with 0, 5, 10, 20, 40 and 80 µM LNIO for 48 h at 37˚C 
and western blotting was performed. Western blotting was 
also performed to analyze the difference between the protein 
expression of NOS3 in MCF‑7 and MCF‑7/MDR cells. Total 
protein was extracted from MCF‑7 and MCF‑7/MDR cells with 
200 µl radioimmunoprecipitation assay lysis buffer (Beyotime 
Institute of Biotechnology, Haimen, China) containing 1 mM 
phenylmethylsulfonyl fluoride (Sigma‑Aldrich; Merck KGaA), 
followed by centrifugation at 13,000 x g for 20 min at 4˚C. 
Denatured protein (50 µg) was quantified via a Bicinchoninic 
Acid protein assay kit (Beyotime Institute of Biotechnology) 
was loaded onto 12% SDS polyacrylamide gels. Following 
electrophoresis, the proteins on the gel were transferred onto 
nitrocellulose membranes (EMD Millipore, Billerica, MA, 
USA). The membranes were blocked with 5% non‑fat milk at 
37˚C for 1 h and incubated overnight at 4˚C with the following 
primary antibodies: Monoclonal mouse β‑actin antibody 
(1:1,000; cat. no. sc‑130300; Santa Cruz Biotechnology, Inc., 
Dallas, TX, USA) and polyclonal rabbit NOS3 antibody 

(1:500; cat. no. wl01789; Wanleibo Co., Ltd., Shanghai, China). 
The membranes were subsequently incubated with anti‑mouse 
IgG (1:2,000; cat. no.  7076; Cell Signaling Technology, 
Inc., Danvers, MA, USA) and anti‑rabbit IgG (1:2,000; 
cat. no. 7074; Cell Signaling Technology, Inc.) horseradish 
peroxidase‑conjugated secondary antibodies at room tempera-
ture for 1 h. Finally, the immunoreactive bands of NOS3 and 
GAPDH were visualized using a BeyoECL Star kit (Beyotime 
Institute of Biotechnology). Semi‑quantitative analysis was 
conducted using Quantity‑One software version 4.1 (Bio‑Rad 
Laboratories, Inc., Hercules, CA, USA) to measure densito-
metric values for each band.

In vitro drug sensitivity assay. In vitro drug cytotoxicity was 
measured by a Cell Counting Kit‑8 (CCK‑8; Dojindo Molecular 
Technologies, Inc., Kumamoto, Japan) assay. MCF‑7/MDR 
cells were seeded into 96‑well plates (3,000 cells/well) and 
treated for 48 h at 37˚C in 100 µl DMEM medium containing 
10% FBS and various concentrationsof ADM, DDP and 5‑FU 
(ADM: 0, 5, 10, 20, 40 and 80 µM; DDP and 5‑FU: 0, 0.5, 1, 2, 
4 and 8 µg/ml) with or without pretreatment with 10 µM LNIO 
or 25 µM ANA‑12 for 24 h at 37˚C. The cells incubated without 
drugs were set at 100% survival and were used to calculate the 
concentration of each cytostatic drug that was lethal to 50% 
of the cells (IC50). CCK‑8 reagent was subsequently added and 
the cells were incubated at 37˚C for 1 h. The optical density 
(OD) of each well at 450 nm was recorded on a Varioskan 
Flash microplate reader (Thermo Fisher Scientific, Inc.). The 
cell viability (% of control) was expressed as the percentage of 
(ODtest‑ODblank)/(ODcontrol‑ODblank).

Statistical analysis. All experiments were performed in tripli-
cate and data are presented as the mean ± standard deviation. 
Statistical analysis was performed with SPSS 19.0 software 
(SPSS, Inc., Chicago, IL, USA). Statistical significance was 
determined by a Student's t‑test and one‑way analysis of vari-
ance, followed by a Dunnett's test. P<0.05 was considered to 
indicate a statistically significant difference.

Results

Identification of differentially expressed genes between 
MCF‑7 and MCF‑7/MDR cells. edgeR was used to analyze 
the gene expression profiles and identify the differentially 
expressed genes between MCF‑7/MDR and MCF‑7 cells 
with the described criteria (38). A total of 56,233 genes were 
detected and 2,085 genes exhibited differential expression in 
MCF‑7 compared with MCF‑7/MDR cells. A fold change >2 
and P<0.05 were required for differences to be considered 
as statistically significant. A total of 100 top differentially 
expressed genes, including 50 upregulated genes and 50 down-
regulated genes between MCF‑7/MDR cells and MCF‑7 cells 
were observed (Fig. 1).

GO term enrichment analysis. Using the DAVID database, 
functional analysis of the differentially expressed genes was 
performed. In the GO analysis, biological process and cellular 
component terms were included. GO analysis of biological 
processes demonstrated that differentially expressed 
genes were enriched in ‘neurogenesis’ (60 genes), ‘neuron 
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differentiation’ (53 genes) and ‘nervous system development’ 
(84 genes) biological process terms, with others enriched in 
‘locomotion’ (57 genes), ‘cell motility’ (49 genes), ‘localiza-
tion of cell’ (49 genes) and ‘movement of cell or subcellular 
component’ (67 genes). In addition, differentially expressed 
genes were also enriched in ‘cell‑cell signaling’ (54 genes) 
and ‘regulation of extent of cell growth’ (10 genes) biological 
process terms, among others (Fig. 2 and Table II). Furthermore, 
GO analysis of cellular components demonstrated that the 
differentially expressed genes were primarily associated with 
‘plasma membrane region’ (42 genes), ‘proteinaceous extra-
cellular matrix’ (22 genes), ‘extracellular matrix’ (27 genes), 
‘synapse’ (35 genes), ‘synapse part’ (30 genes) and ‘apical 
plasma membrane’ (18 genes; Fig. 3 and Table III).

KEGG pathway enrichment analysis. The enrichment of 
dysfunctional signaling pathways was screened by the KEGG 
pathway analysis, and the results demonstrated that the path-
ways that differentially expressed genes were enriched in 

included ‘pathways in cancer’ (16 genes), ‘calcium signaling 
pathway’ (12 genes), ‘cell adhesion molecules (CAMs)’ 
(11 genes), ‘tight junction’ (9 genes), ‘amoebiasis’ (9 genes), 
‘Wnt signaling pathway’ (8 genes), ‘retrograde endocannabi-
noid signaling’ (7 genes), ‘type I diabetes mellitus’ (5 genes), 
‘intestinal immune network for IgA production’ (5 genes), 
‘asthma’ (4 genes), ‘viral myocarditis’ (5 genes), ‘allograft 
rejection’ (4 genes; Fig. 4 and Table IV).

Protein‑protein interaction network. STRING, a database that 
comprises established and predicted protein interactions, was 
employed in the present study to predict protein interactions 
among the differentially expressed genes. A total of 9 hub nodes 
were screened based on their association with other proteins. 
These hub genes included cyclin D1 (CCND1), nitric oxide 
synthase 3 (NOS3), NOTCH3, brain‑derived neurotrophic 
factor (BDNF), paired box 6 (PAX6), neuropeptide Y (NPY), 
phospholipase C β (PLCB) 4, PLCB2 and actin α cardiac 
muscle 1 (ACTC1) (Table V). Among these genes, CCND1 

Table I. Primers for reverse transcription‑quantitative polymerase chain reaction.

	 Primer sequence (5'‑3')
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Gene 	 Forward	 Reverse

BDNF	 CCAAGGCAGGTTCAAGAGG	 TCCAGCAGAAAGAGAAGAGGA
GAPDH	 ACCCACTCCTCCACCTTTG	 CTCTTGTGCTCTTGCTGGG
PLCB2	 AAGGTGAAGGCCTATCTGAGCCAA	 CTTGGCAAACTTCCCAAAGCGAGT
PLCB4	 GCACAGCACACAAAGGAATGGTCA	 CGCATTTCCTTGCTTTCCCTGTCA
ACTC1	 GCCCTGGATTTTGAGAATGA	 ATGCCAGCAGATTCCATACC
NOS3	 GTGGCTGGTACATGAGCACT	 GTGGTCCACGATGGTGACTT
CCND1	 GCTGCGAAGTGGAAACCATC	 CCTCCTTCTGCACACATTTGAA
NPY	 TGCTAGGTAACAAGCGACTG	 CTGCATGCATTGGTAGGATG
NOTCH3	 TCTCAGACTGGTCCGAATCCAC	 CCAAGATCTAAGAACTGACGAGCG
PAX6	 CGAGACTGGCTCCATCAGAC	 CACTCCCGCTTATACTGGGC
TrkB	 TGGTGCATTCCATTCACTGT	 CGTGGTACTCCGTGTGATTG

BDNF, brained‑derived neurotrophic factor; PLCB2, phospholipase C β2; PLCB4, phospholipase C β4; ACTC1, actin alpha cardiac muscle 1; 
NOS3, nitric oxide synthase 3; CCND1, cyclin D1; NPY, neuropeptide Y; PAX6, paired box 6; TrkB, neurotrophic receptor tyrosine kinase, type 2. 

Figure 1. Heat map of the top 100 differentially expressed genes (50 upregulated genes and 50 downregulated genes) between MCF‑7/MDR and MCF‑7 cells. 
MDR, multidrug resistance; Red, upregulation; Blue, downregulation.
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exhibited the highest node degree of 22. A protein‑protein 
interaction network was constructed as presented in Fig. 5. 
RT‑qPCR was subsequently performed to verify the expres-
sion of these 9 genes in MCF‑7 and MCF‑7/MDR cells; the 
expression of all genes was higher in MCF‑7/MDR cells 
compared with MCF‑7 cells (Fig. 6), which was consistent 
with the RNA‑seq data.

Inhibition of NOS3 and BDNF decreases chemoresistance 
properties of MCF‑7/MDR cells. To verify the accuracy and 

practicality of RNA‑seq in investigating the mechanism 
involved in breast cancer chemoresistance, specific inhibitors 
of NOS3 and BDNF were employed. As the expression of 
NOS3 was higher at mRNA and protein levels in MCF‑7/MDR 
cells compared with MCF‑7 cells (Figs. 6 and 7A), different 
concentrations of LNIO, which is a specific inhibitor of NOS3, 
was added to determine the optimal inhibitory concentration 
for subsequent drug sensitivity assays. The results of western 
blotting demonstrated that LNIO decreased the expression 
of NOS3 even at a low concentration (5 µM) and 10 µM was 

Figure 2. GO analysis of the enrichment of differentially expressed genes between MCF‑7/MDR and MCF‑7 cells in biological process terms. GO, gene 
ontology; MDR, multidrug resistance.

Figure 3. GO analysis of the enrichment of differentially expressed genes between MCF‑7/MDR and MCF‑7 cells in cellular component terms. GO, gene 
ontology; MDR, multidrug resistance.
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Figure 4. KEGG analysis of the enrichment of differentially expressed genes between MCF‑7/MDR and MCF‑7 cells in specific pathways. KEGG, Kyoto 
Encyclopedia of Genes and Genomes; MDR, multidrug resistance.

Figure 5. Protein‑protein interaction network of the differentially expressed genes between MCF‑7/MDR and MCF‑7 cells. Circles represent proteins, lines 
represent strong association between proteins. MDR, multidrug resistance.
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selected as the optimal concentration (Fig. 7B). LNIO (10 µM) 
was added to MCF‑7/MDR cells prior to treatment with anti-
cancer drugs and a CCK‑8 assay was performed to measure cell 
viability. IC50 values were subsequently calculated in response 
to different anticancer drugs. The results demonstrated that 
10 µM LNIO decreased the IC50 of ADM, DDP and 5‑FU in 
MCF‑7/MDR cells, as demonstrated in Table VI. Furthermore, 
25 µM ANA‑12, a specific inhibitor of BDNF/neurotrophic 
receptor tyrosine kinase, type 2 signaling, decreased the 
mRNA expression of BDNF and TrkB (Fig. 8), and decreased 
the IC50 of ADM and 5‑FU in MCF‑7/MDR cells (Table VII).

Discussion

MDR is a major obstacle in the treatment of breast cancer. 
While the mechanism of MDR is complex, it is particularly 

difficult to identify the key genes and signaling pathways 
involved in regulating MDR. Large‑scale investigation of 
gene expression levels is required in order to screen and 
identify the important factors involved in this phenomenon. 
As RNA‑seq is considered to be a promising technology for 
measuring mRNA expression and may be used to identify 
differentially expressed genes in a manner that is superior 
to certain existing array‑based approaches (39), the present 
study applied RNA‑seq technology to investigate the mecha-
nisms involved in MDR in human breast cancer cells. While 
a total of 2085 differentially expressed genes were screened 
out, GO analysis was performed to analyze the differentially 
expressed genes in terms of their enrichment in biological 
process and cellular component terms. GO analysis revealed 
that MDR in breast cancer MCF‑7 cells was associated with 

Table V. Key hub genes in the protein‑protein interaction 
network.

Gene	 Degree

CCND1	 22
NOS3	 19
NOTCH3	 17
BDNF	 15
PAX6	 14
NPY	 13
PLCB4	 11
PLCB2	 11
ACTC1	 10

CCND1, cyclin D1; NOS3, nitric oxide synthase 3; BDNF, brain‑derived 
neurotrophic factor; PAX6, paired box 6; NPY, neuropeptide Y; PLCB, 
phospholipase C β; ACTC1, actin α cardiac muscle 1.

Figure 6. Reverse transcription‑quantitative polymerase chain reaction 
in MCF‑7/MDR and MCF‑7 cells verified the mRNA expression of the 
9 hub genes identified in the protein‑protein interaction network. *P<0.05 and 
**P<0.01 vs. MCF‑7 cells. MDR, multidrug resistance; BDNF, brain‑derived 
neurotrophic factor; PLCB, phospholipase C β; ACTC1, actin α cardiac 
muscle 1; NOS3, nitric oxide synthase 3; CCND1, cyclin D1; NPY, neuropep-
tide Y; PAX6, paired box 6.

Figure 7. LNIO inhibited the protein expression of NOS3 in MCF‑7/MDR cells. (A) NOS3 expression in MCF‑7/MDR and MCF‑7 cells was detected by 
western blot analysis. (B) NOS3 protein expression under different concentrations of LNIO was detected by western blot analysis in MCF‑7/MDR cells. 
*P<0.05 and **P<0.01 as indicated. LNIO, L‑N5‑(1‑Iminoethyl)‑ornithine hydrochloride; NOS3, nitric oxide synthase 3; MDR, multidrug resistance.
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‘neuron differentiation’ and ‘development of nervous system’ 
biological process terms, which was consistent with the results 
of a previous study that demonstrated the involvement of the 
central nervous system in patients with advanced breast cancer 
receiving effective drugs (40), though the mechanism involved 
remains unclear. In addition, MDR was also associated with 
‘cell motility’, ‘locomotion’ and ‘movement of cell or subcel-
lular component’ biological process terms. In various cancer 
types, such as lung, atypical teratoid and ovarian cancers, cell 
motility has been reported to be closely correlated with drug 
resistance (41,42). In the GO analysis of cellular component 
terms, ‘plasma membrane region’ and ‘extracellular matrix’ 
were among the terms that differentially expressed genes 
were demonstrated to be enriched in; previously, cell surface 
markers CD9 and CD44 were reported to be associated with 
chemoresistance (43,44) and, in small cell lung cancer, it was 
also reported that extracellular matrix (ECM) is an important 
regulator of drug resistance (45).

KEGG analysis was performed in the present study to 
determine the enrichment of signaling pathways associated 
with MDR in MCF‑7 cells. The results revealed that 12 different 
pathways may be involved. A number of these identified path-
ways were consistent with previous reports, for example, CAM 
signaling was previously reported to mediate chemoresistance 

in renal cell carcinoma and pancreatic adenocarcinoma (46), 
the calcium signaling pathway has been reported to affect 
MDR in cancer chemotherapy  (47) and the Wnt signaling 
has been implicated in the regulation of chemoresistance via 
various mechanisms, including long non‑coding RNA (48) 
and the canonical Wnt/β‑catenin signaling pathway  (49). 
Furthermore, activation of Wnt signaling was important in 
the response to certain anticancer drugs, particularly 5‑fluoro-
uracil and platinum (50,51).

The results of GO biological process analysis of differ-
entially expressed genes also demonstrated that cell mobility 
may be a key regulator of MDR, and mobility is the basis of 
tumor cell metastasis. Matrix metalloproteinases (MMPs), 
a family of enzymes that degrade ECM components, also 
mediated MDR in various cancers, including MMP‑2, MMP‑7 
and MMP‑9 enzymes (52‑54). Claudins (CLDNs), which are 
an important component of tight junctions, have also been 
reported to be factors involved in MDR (55‑58), as 3 of 27 
CLDN family members were observed to be differentially 
expressed in MCF‑7/MDR cells, including CLDN‑1, CLDN‑6 
and CLDN‑11. In our previous study, the results demonstrated 
that CLDN‑6 had an important role in breast cancer  (59), 
verifying that tight junctions, which was a term screened in 
the KEGG enrichment analysis of the present study, may be 
involved in the MDR of breast cancer.

Through protein‑protein interaction network construc-
tion, a series of hub genes were demonstrated to be 
associated with MDR. In total, 9 hub genes were identified 
in the present study, including CCND1, NOS3, NOTCH3, 
BDNF, PAX6, NPY, PLCB4, PLCB2 and ACTC1. These 
genes were previously reported to be associated with drug 
resistance in various cancers. For example, CCND1, which 
has an established role in the cell cycle, was also reported 
to be associated with chemoresistance in various cancers, 
including testicular germ cell tumors and cell lymphoma (60). 
NOS3, also termed endothelial NOS, contributed to DDP 
resistance through various signaling pathways in human 
ovarian cancer cells (61). NOTCH3 has an important role 
in calcium signaling and its overexpression enhanced 
chemoresistance in response to carboplatin, gemcitabine 
and paclitaxel via the Notch signaling pathway  (62‑64). 

Table VI. Inhibition of nitric oxide synthase 3 decreased the 
IC50 of MCF‑7/MDR cells in response to various anticancer 
drugs. 

	 IC50 value
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Anticancer		  MCF‑7/	
drug	 MCF‑7/MDR	 MDR+LNIO	 P‑value

ADM, µM	 44.24±10.37	 26.86±2.05	 0.0160001
DDP, µg/ml	 4.63±1.45	 4.01±1.62	 0.0276806
5‑FU, µg/ml	 5.335±1.23	 4.14±1.81	 0.0443251

MDR, multidrug resistance; LNIO, L‑N5‑(1‑Iminoethyl)‑ornithine 
hydrochloride; ADM, adriamycin; DDP, cisplatin; 5‑FU, 5‑fluoro-
uracil.

Table VII. Inhibition of brain‑derived neurotrophic factor 
decreased the IC50 of MCF‑7/MDR cells in response to various 
anticancer drugs.

	 IC50 value
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Anticancer		  MCF‑7/	
drug	 MCF‑7/MDR	 MDR+ANA‑12	 P‑value

ADM, µM	 43.98±1.52	 16.80±2.07	 0.0000521
DDP, µg/ml	 6.49±0.17	 6.78±0.19	 0.1182792
5‑FU, µg/ml	 7.06±0.41	 4.74±0.67	 0.0007725

MDR, multidrug resistance; ADM, adriamycin; DDP, cisplatin; 5‑FU, 
5‑fluorouracil.

Figure 8. Reverse transcription‑quantitative polymerase chain reaction 
results demonstrated that various concentrations of ANA‑12 inhibited the 
mRNA expression of BDNF and TrkB in MCF‑7/MDR cells. *P<0.05 and 
**P<0.01, as indicated. BDNF, brain‑derived neurotrophic factor; TrkB, 
neurotrophic receptor tyrosine kinase, type 2; MDR, multidrug resistance.
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Furthermore, a recent study demonstrated that NOTCH3 may 
be regarded as a predictor of distant relapse‑free survival in 
estrogen receptor‑positive breast cancers and its expression 
was associated with clinical chemoresistance in patients 
with breast cancer (65). BDNF was the gene with the largest 
difference in expression between MCF‑7 and MCF‑7/MDR 
cells when verified by RT‑qPCR, and BDNF/TrkB signaling 
has been reported to be responsible for chemoresistance in 
neuroblastoma cells and head and neck squamous cell carci-
noma (66,67). Additionally, PAX6 was reported to mediate 
the temozolomide sensitivity of glioblastoma stem cells (68), 
NPY signaling was activated in chemotherapy‑treated 
neuroblastoma tumors, which indicated that NPY may be 
associated with chemoresistance in neuroblastoma (69), and 
Taxotere® (docetaxel) treatment influenced the expression of 
ACTC1 in breast cancer (70). Numerous genes involved in 
biological process, cellular component and signal transduc-
tion pathways may be involved in regulating MDR. As 9 genes 
were screened in the protein‑protein interaction network, 
taking NOS3 as an example, NOS3 was demonstrated to be 
associated with ‘negative regulation of multicellular organ-
ismal process’, ‘movement of cell or subcellular component’, 
‘locomotion’, ‘localization of cell’, ‘cell motility’, ‘regula-
tion of multicellular organismal development’ and ‘embryo 
development’ terms in the GO biological process analysis. 
NOS3 has also been demonstrated to be involved in embryo 
development (71). In addition, other factors such as EMT, an 
important process, have also been associated with embryo 
development (72); it has been verified that EMT promoted 
chemoresistance in various cancers (73). In the GO cellular 
component analysis of the present study, NOS3 belonged to 
the ‘plasma membrane region’ term. Water‑soluble drugs, 
including DDP, nucleoside analogues and antifolates, are 
only able to traverse the plasma membrane via membrane 
transporters or through hydrophilic channels within the 
membrane (74). Therefore, the plasma membrane region has 
an essential role in chemoresistance. In the KEGG pathway 
enrichment analysis of the present study, NOS3 was associ-
ated with the ‘calcium signaling pathway’ term, and it has 
been reported that the regulation of RhoA/calcium signaling 
may regulate chemoresistance in head and neck squamous 
cell carcinoma (75). Furthermore, the current study confirmed 
that LNIO, a specific inhibitor of NOS3, significantly 
decreased the resistance of MCF‑7/MDR cells to various 
anticancer drugs, including ADM, 5‑FU and DDP, which 
supported a role for NOS3 in chemoresistance. Additionally, 
a specific inhibitor of BDNF/TrkB signaling, ANA‑12, was 
also employed to verify the role of BDNF in breast cancer 
chemoresistance; ANA‑12 significantly decreased resistance 
to ADM and 5‑FU, but not DDP, in MCF‑7/MDR cells. 
Thus, we hypothesized that those hub genes of NOS3 and 
BDNF, may contribute to drug resistance through regulating 
biological processes and signaling pathways in breast cancer 
cells.

In conclusion, the results of the current study provide a 
comprehensive analysis of differentially expressed genes in 
MCF‑7/MDR cells and the associated signaling pathways, 
which may be involved in the development of chemoresistance 
in breast cancer. As the hub genes screened, including NOS3 
and BDNF, may provide insights into the mechanism of drug 

resistance, genome‑wide mRNA profiling may be useful in 
identifying novel targets for the treatment of breast cancer that 
exhibits MDR.
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