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Abstract. In order to better understand the etiology of obese 
type 2 diabetes (T2D) at the molecular level, the present 
study investigated the gene expression and DNA methylation 
profiles associated with T2D via systemic analysis. Gene 
expression (GSE64998) and DNA methylation profiles 
(GSE65057) from liver tissues of healthy controls and 
obese patients with T2D were downloaded from the Gene 
Expression Omnibus database. Differentially‑expressed 
genes (DEGs) and differentially‑methylated genes (DMGs) 
were identified using the Limma package, and their 
overlapping genes were additionally determined. Enrichment 
analysis was performed using the BioCloud platform on the 
DEGs and the overlapping genes. Using Cytoscape software, 
protein‑protein interaction (PPI), transcription factor target 
networks and microRNA (miRNA) target networks were 
then constructed in order to determine associated hub genes. 
In addition, a further GSE15653 dataset was utilized in order 
to validate the DEGs identified in the GSE64998 dataset 
analyses. A total of 251 DEGs, including 124 upregulated 
and 127 downregulated genes, were detected, and a total 
of 9,698  genes were demonstrated to be differentially 
methylated in obese patients with T2D compared with 
non‑obese healthy controls. A total of 103  overlapping 
genes between the two datasets were revealed, including 
47  upregulated genes and 56  downregulated genes. The 
identified overlapping genes were revealed to be strongly 
associated with fatty acid and glucose metabolic pathways, 
in addition to oxidation/reduction. The overlapping genes 
cyclin D1 (CCND1), PPARG coactivator α (PPARGC1A), fatty 

acid synthase (FASN), glucokinase (GCK), steraroyl‑coA 
desaturase (SCD) and tyrosine aminotransferase (TAT) had 
higher degrees in the PPI, transcription target networks and 
miRNA target networks. In addition, among the 251 DEGs, 
a total of 35 DEGs were validated to be being shared genes 
between the datasets, which included a number of key genes 
in the PPI network, including CCND1, FASN and TAT. 
Abnormal gene expression and DNA methylation patterns 
that were implicated in fatty acid and glucose metabolic 
pathways and oxidation/reduction reactions were detected 
in obese patients with T2D. Furthermore, the CCND1, 
PPARGC1A, FANS, GCK, SCD and TAT genes may serve a 
role in the development of obesity‑associated T2D.

Introduction

Type 2 diabetes (T2D), characterized by an inadequate β‑cell 
response to progressive insulin resistance, is a highly preva-
lent disease affecting ~9% of the global population, and is 
fast‑becoming a worldwide epidemic (1,2). The clinical symp-
toms of T2D include hyperglycemia, obesity, hypertension and 
hyperlipidemia. Furthermore, T2D may induce disease‑specific 
complications, including blindness, renal failure and increased 
risk of cardiovascular disease, which may result in a reduced 
quality of life and an increased mortality rate of patients with 
T2D (3,4).

T2D is a complex disease that may be attributed to 
the interplay between environmental and genetic risk 
factors (5). Poor diets and sedentary lifestyles are prominent 
environmental contributors leading to the development of 
T2D (6). Epigenetic factors have been revealed to be heavily 
implicated in the complex interplay between environmental 
signals and intrinsic genetic alterations (7). DNA methylation 
is an epigenetic modification most commonly associated with 
cysteine‑phosphate‑guanine (CpG) sites situated within the 
promoter region, and degrees of organismal DNA methylation 
are changeable depending on environmental factors. 
Furthermore, DNA methylation may modulate gene expression 
without altering the sequence of DNA via suppression of DNA 
transcription or modification of the surrounding chromatin. 
Methylation may suppress transcription by modulating 
the binding of transcription factors (TFs) to DNA, and via 
recruitment of methyl binding proteins and transcriptional 
corepressors (8). Therefore, DNA methylation modification 
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represents a link between environmental risk factors and 
disease progression by influencing gene transcription patterns 
and, subsequently, organ function. Typically, advancing age, 
physical inactivity, weight gain and obesity are primary 
risk factors for the development of T2D  (9). In addition, 
patients suffering from metabolic syndromes with inherent 
symptoms of glucose intolerance, insulin resistance and 
abdominal obesity are considered to be in prediabetic state, 
which may ultimately develop into T2D (10). Previous studies 
have revealed an association between DNA methylation 
patterns and alterations in body weight and physical activity. 
Furthermore, CpG markers of DNA methylation are 
biomarkers for metabolic syndrome (11‑13). Alterations in 
metabolite levels, including choline, betaine and methionine, 
are implicated in methylation pathways in the liver (14,15), 
and choline‑associated metabolites have been demonstrated 
to be implicated in the pathological development of T2D (16). 
Therefore, DNA methylation has been hypothesized to have 
an involvement in the pathogenesis of T2D. Furthermore, the 
negative correlation between increased methylation levels 
of β‑cell specific genes, including pancreatic and duodenal 
homeobox1 and insulin, and the expression levels of their 
corresponding proteins, have previously been detected in the 
pancreatic islets of patients with T2D (17,18). Therefore, there 
is an incentive to investigate the potential implications of 
DNA methylation and the associated gene expression pattern 
modifications with regards to the pathogenic onset of T2D.

T2D is a highly complex multisystem disease. Reduced 
rates of muscular glycogen synthesis in patients with 
insulin‑dependent diabetes may be induced by defec-
tive glucose transport/phosphorylation (19). Furthermore, 
alterations in mitochondrial gene transcription patterns in 
skeletal muscle are closely associated with insulin‑depen-
dent T2D  (20). In addition, the liver is implicated in the 
regulation of lipid and glucose metabolism, disorders of 
which frequently occur in non‑alcoholic fatty liver disease 
(NAFLD) and T2D (21). In the present study, a systematic 
analysis was performed using publicly‑available online 
genome‑wide methylome and transcriptome data from 
liver tissues from age‑matched healthy and obese T2D 
men, uploaded by Kirchner et al (22), in order to identify 
disease‑associated genes and to better understand T2D at the 
molecular level. Unlike the study by Kirchner et al (22), the 
present study aimed to reveal the protein‑protein interaction 
(PPI), TF target and microRNA (miRNA) target networks 
among the differentially‑expressed genes (DEGs), in order 
to develop a more comprehensive understanding of protein 
function associated with T2D.

Materials and methods

Microarray data. The raw data on gene expression were 
downloaded from the Gene Expression Omnibus (GEO) data-
base (www.ncbi.nlm.nih.gov/geo), accession no. GSE64998. 
This dataset, including 21 samples (liver biopsies from 
six non‑obese, eight obese non‑diabetic and seven obese 
T2D men), were collected based on the GPL11532 platform 
(HuGene‑1_1‑st) Affymetrix Human Gene 1.1 ST Array [tran-
script (gene) version]. The data on liver tissues isolated from 
six non‑obese men and seven obese T2D men were extracted. 

These data were uploaded by Kirchner et al (22); their study 
was conducted according to the principles described in the 
Declaration of Helsinki, the regional ethics committee at the 
Karolinska Insitute (Solna, Sweden) approved the study, and 
all participants provided informed written consent.

Furthermore, the methylation profile data based on 
the GPL13534 platform [Illumina Human Methylation 
450 BeadChip (HumanMethylation450_15017482)] were 
downloaded from the GEO database, accession no. GSE65057. 
The data on liver tissues isolated from seven non‑obese controls 
and nine obese T2D samples were extracted from GSE65057, 
which were uploaded by Kirchner et al (22).

Data preprocessing. Raw expression profile data in the CEL 
format were preprocessed using the Oligo package in R (23), 
which included format transition, missing value interpolation, 
background correction and data quantile normalization.

The RnBeads Package (24), which used β‑values in order 
to characterize the degree of DNA methylation, was applied 
for analysis of the downloaded methylation microarray data. 
Initially, the Infinium probes were manipulated using the 
Methylumi package (25). Following this, background correc-
tion was performed with the normal‑exponential convolution 
using the out‑of‑band probes method (26), and normalization 
was performed using the Beta MIxture Quantile dilation 
method (27). Finally, the probes with a detection value of 
P>0.01 or bead count <3, located on sex chromosomes or in 
regions enriched with single nucleotide polymorphisms, were 
deleted (28).

DEG and differentially‑methylated gene (DMG) screening. 
The empirical Bayes approach in the Limma package (29) 
was used in order to identify differing levels of DEGs and 
DMGs between the healthy controls and the obese T2D 
samples. DEGs were classified as those meeting the criteria 
of P<0.05 and |log fold change|≥0.5, and DMGs were those 
with P<0.05. Furthermore, DMGs were mapped to the DEGs 
in order to identify any overlaps.

Funct iona l  and pa thway enr ichment  ana lyses. 
T he  Mu l t i fa c e t e d  A na lys i s  To ol  fo r  Hu m a n 
Transcriptome (www.biocloudservice.com) online tool in 
BioCloud, a platform storing vast amounts of bioinfor-
matics  data and providing analysis software applications, 
was used to perform Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway and Gene Ontology (GO) func-
tional enrichment analyses for the upregulated genes, the 
downregulated genes and the overlapping genes. KEGG and 
GO are freely available for public use for the annotation of 
genes, gene products and gene sequences (30,31). P<0.05 was 
set as the threshold criterion.

Construction of PPI network. The PPIs among the DEGs 
were analyzed using the STRING database  (32) and 
the default parameters, and the combined score >0.4 was set as 
the threshold. Following this, Cytoscape software v3.2.0 (33) 
was used in order to visualize the PPI network, and connec-
tivity degree analysis was performed in order to screen for hub 
genes (34). Furthermore, the sub‑network involving overlap-
ping genes was extracted from the PPI network.
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Construction of the regulatory network for overlapping genes 
involved in the sub‑network. Using the iRegulon plugin (35) 
in Cytoscape software (33), the TFs targeting the overlapping 
genes involved in the sub‑network were predicted. TF target 
pairs with a normalized enrichment score >4, calculated 
with iRegulon plugin, were selected, and the TF target regula-
tory network was constructed using Cytoscape software (33). 
In addition, miRNAs targeting the overlapping genes involved 
in the sub‑network were predicted using  the WebGestalt 
tool (36,37). Following the determination of the miRNA target 
pairs, the miRNA target regulatory network was visualized 
using Cytoscape software (33).

Data validation of DEGs. A further GSE15653 dataset was 
used for validation of the DEGs already identified. The 
GSE15653 dataset was downloaded from GEO, and included 
four liver tissue samples from obese T2D patients and five 
healthy controls. Following this, the raw expression profile 
data in the CEL format from the GSE15653 dataset were 
preprocessed using the same methods above, and the DEGs 
in the obese T2D samples were also identified also using the 
same methods and threshold value used above. Subsequently, 
the shared upregulated and downregulated DEGs in the 
GSE15653 and GSE64998 datasets were obtained via Venn 
analysis, and these identified DEGs were considered to vali-
date the genes identified from GSE64998 dataset.

Results

Identification of DEGs and DMGs. Following analysis 
of the gene expression profiles of the non‑obese and the 
obese T2D samples, 251  DEGs were detected, including 
124  upregulated genes and 127  downregulated genes. 
Furthermore, 9,698  DMGs (6,021 upregulated genes 
and 3,677  downregulated genes) were identified in obese 
diabetic individuals compared with non‑obese controls 
(P<0.05). Following the mapping of the DEGs to the DMGs, a 
total of 103 overlapping genes were revealed (47 upregulated 
genes and 56 downregulated genes) in the gene expression 
profiles.

Functional and pathway enrichment analyses. In order 
to examine the biological functions of abnormal genes in 
obesity‑associated T2D, GO and KEGG enrichment analyses 
were performed using the previously identified DEGs and 
the overlapping genes. Fig. 1A and B present the enriched 
KEGG pathways for the downregulated genes and upregu-
lated genes, respectively; and Fig. 1C and D present the top 
five prevalent GO terms for the downregulated genes and 
upregulated genes, respectively. The upregulated genes 
were most significantly enriched in ‘biosynthesis of unsatu-
rated fatty acids’ (KEGG pathway; P=9.46x10‑4), and the 
downregulated genes were significantly enriched in KEGG 

Figure 1. Functional and pathway enrichment analyses of upregulated and downregulated genes in patients with T2D. The results of pathway analysis for 
(A) downregulated genes and (B) upregulated genes in patients with T2D. The top five enriched GO terms for (C) downregulated genes and (D) upregulated 
genes in patients with T2D. KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology; BP, biological process; MF, molecular function; 
CC, cellular component; NADP (H), nicotinamide adenine dinucleotide phosphate; T2D, type 2 diabetes.
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pathways including ‘nitrogen metabolism’ (P=3.52x10‑4) 
and ‘cysteine and methionine metabolism’ (P=2.89x10‑2). 
Furthermore, the 103 overlapping genes were significantly 
enriched in ‘arginine and proline metabolism’ (KEGG 
pathway; P=5.53x10‑3) and ‘oxidation‑reduction reactivity’ 
(GO term; P=3.52x10‑4; Table I).

Construction of PPI network. PPIs were determined by 
STRING database analysis, and a PPI network with 116 nodes 
and 189 edges was generated for the DEGs (Fig. 2). The top 20 
nodes with the highest degrees are detailed in Table II. Notably, 
fatty acid synthase (FASN), cyclin D1 (CCND1), glucokinase 
(GCK), stearoyl‑CoA desaturase (SCD), and PPARG coactivator 
α (PPARGC1A) were all overlapping genes in the PPI network.

Furthermore, KEGG pathway and GO functional 
enrichment analyses revealed that the top 20 nodes were 
predominantly associated with cancer pathways, including 
‘p53 signaling pathway’ (KEGG pathway; P=1.36x10‑3), and 
‘regeneration’ (GO term, P=1.80x10‑6; Table III).

Construction of TF target network and miRNA target 
network. TFs and miRNAs are able to regulate gene expres-
sion via modulation of transcriptional activation and stability 
of mRNA, respectively  (38). In the present study, the TF 

target and miRNA target pairs were predicted based on the 
overlapping genes involved in the sub‑network in order to 
explore their potential regulatory relationships. A total of 
10 TFs were predicted and the TF target network contained 
49 nodes and 161 pairs (Fig. 3). The hub genes with the highest 
degrees are detailed in Table IV. A total of 49 miRNAs, which 
may be implicated in the abnormal expression of the overlap-
ping genes, were predicted. Following this, a miRNA target 
network, including 87 nodes and 180 regulatory relationships, 
was constructed (Fig. 4). Furthermore, the hub genes with the 
highest degrees were screened for (Table V).

Validation of the expression levels of DEGs. A total of 
753 upregulated DEGs and 432 downregulated DEGs were 
identified from the GSE15653 validation dataset using the 
obesity‑associated T2D patients and control samples according 
to the same method used to identify DEGs in the GSE64998 
dataset. By comparing the datasets, it was revealed that among 
the 124  upregulated DEGs in GSE64998, 15 genes were 
overlapping genes (e.g., CCND1 and FASN), while among the 
127 downregulated DEGs, 20 overlapping genes [e.g., tyrosine 
immunotransferase (TAT)] were searched. Overlapping DEGs 
between both datasets were considered to represent preliminary 
verification of said genes in the GSE64998 dataset (Table VI).

Table I. KEGG pathways and the top 10 GO BP terms enriched by the overlapping genes.

A, Pathway				  

ID	 Name	 Count	 P‑value	 Genes

hsa00330	 Arginine and proline metabolism	 4	 5.53x10‑3	 GLS2, ALDH18A1, OAT, PRODH

B, Biological process				  

ID	 Name	 Count	 P‑value	 Genes

GO:0016053	 Organic acid biosynthetic process	 7	 3.07x10‑4	 ALDH18A1, SDS, SCD, ELOVL2, FASN,
				    LGSN, PRODH
GO:0046394	 Carboxylic acid biosynthetic	 7	 3.07x10‑4	 ALDH18A1, SDS, SCD, ELOVL2, FASN, 
	 process			   PRODH
GO:0055114	 Oxidation reduction	 13	 3.52x10‑4	 ME1, HSD17B11, TP53I3, ALDH18A1, 
				    FMO1, SCD, CYP4F22, FASN, AASS, 
				    CYP26A1, PPARGC1A, HPGD, PRODH
GO:0009064	 Glutamine family amino acid	 4	 3.57x10‑3	 GLS2, ALDH18A1, LGSN, PRODH
	 metabolic process			 
GO:0006739	 NADP metabolic process	 3	 3.93x10‑3	 ME1, TP53I3, GCK
GO:0009084	 Glutamine family amino acid	 3	 5.53x10‑3	 ALDH18A1, LGSN, PRODH
	 biosynthetic process			 
GO:0033273	 Response to vitamin	 4	 6.97x10‑3	 CCND1, PDGFA, IGFBP2, SPP1
GO:0007156	 Homophilic cell adhesion	 5	 7.53x10‑3	 RET, CDH15, FAT1, DSG1, CDH23
GO:0007155	 Cell adhesion	 11	 8.04x10‑3	 RET, CDH15, EPDR1, LAMA5, FAT1, DSG1,
				    CPXM2, IL32, CYR61, SPP1, CDH23
GO:0022610	 Biological adhsion	 11	 8.12x10‑3	 RET, CDH15, EPDR1, LAMA5, FAT1, DSG1,
				    CPXM2, IL32, CYR61, SPP1, CDH23

KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology; BP, biological process.
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Discussion

The high prevalence of T2D and the severity of its associated 
complications raise great challenges for effective disease 

management (39). In China, obesity is one of the principal 
contributory risk factors for T2D development (9). Despite 
several genes and their regulatory mechanisms being suggested 
to be implicated in the development of obesity‑associated 
T2D, there remains a requirement for further research in order 
to uncover the underlying molecular mechanisms implicated 
in T2D pathogenesis. In the present study, systematic analysis 
using gene expression patterns and DNA methylation profiles 
of healthy controls and obese T2D patients was performed 
in order to reveal hub genes, which may be involved in the 
pathogenesis of obesity‑associated T2D. By performing PPI, 
TF target and miRNA network analyses, the present study 
demonstrated that the hub nodes CCND1, PPARGC1A, ATP 
citrate lyase (ACLY), TAT and FASN may be implicated in the 
development of obesity‑associated T2D.

CCND1 encodes the cyclin D1 protein, and expression of 
CCND1 has marked periodicity throughout the cell cycle (40). 
Previous studies have demonstrated an association between 
the dysregulation of CCND1 expression and T2D  (41‑43). 
Microarray and reverse transcription‑quantitative polymerase 
chain reaction data have previously revealed a higher 
expression pattern of CCND1 in diabetic islets compared with 
healthy controls (43). In accordance with this, the present study 
predicted from the GSE64998 and GSE15653 datasets that the 
expression of CCND1 was upregulated in patients with T2D. In 
addition, the increased methylation of CCND1 was detectable 
in patients with T2D (44). However, it has previously been 
reported that there is no association between the methylation 
status of CCND1 and its expression  (45). Further studies 
are required to reveal how CCND1 is implicated in T2D 
pathogenesis.

PPARGC1A is a transcriptional coactivator that modulates 
genes associated with energy metabolism  (46). Numerous 
studies have demonstrated the link between PPARGC1A, and 
the development of T2D and associated insulin resistance. 
Decreased PPARGC1A expression has been detected in cases 
of insulin resistance (47‑49). Furthermore, increased DNA 
methylation at the site of the PPARGC1A promoter has been 
detected in skeletal muscle tissue and in the islets of patients 
with T2D (50). In addition, a negative correlation between the 
methylation of PPARGC1A and its expression has previously 
been reported  (51). In line with these previous findings, 
abnormal expression and methylation of PPARGC1A was 
demonstrated in liver tissues from obese T2D patients in the 
present study.

In the present study, it was revealed that DNA methyla-
tion corresponds with the upregulation of ACLY, FASN, SCD 
and GCK expression in samples from obese patients with 
T2D, and had high degrees in the PPI network. ACLY, FASN, 
GCK and SCD are all enzymes implicated in metabolic 
processes. ACLY is implicated in the synthesis of cytosolic 
acetyl‑coenzyme (Co)A in numerous tissue types  (52). 
Furthermore, Guay et al (53) demonstrated that ACLY is a 
fundamental regulator of glucose‑induced insulin secretion. 
FASN, coding for fatty acid synthase, catalyzes the synthesis 
of palmitate from acetyl‑CoA and malonyl‑CoA, producing 
long‑chain saturated free fatty acids in the presence of nico-
tinamide adenine dinucleotide phosphate. Genetic alterations 
affecting FASN activity may be significantly correlated with 
T2D via modification of insulin sensitivity (54). A further 

Table II. Top 20 genes with higher degrees in the protein‑protein 
interaction network.

Genes	 Degree

ACLY	 19
FASN	 15
CCND1	 13
GCK	 12
SCD	 12
MET	 12
IGF1	 12
ALDH18A1	 11
SERPINE1	 9
FDFT1	 8
SQLE	 8
TAT	 7
HSPA5	 7
IGFBP1	 7
CDKN1A	 7
C10orf10	 6
SDS	 6
SPP1	 6
FABP4	 6
PPARGC1A	 6

Figure 2. Protein‑protein interaction network for the differentially‑expressed 
genes. Red circle nodes represent upregulated genes and the green diamond 
nodes represent downregulated genes. Overlapping genes between the 
differentially‑expressed and ‑methylated genes are indicated by surrounding 
blue borders.
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interpretation of the association of FASN with T2D is that 
an increase in fatty acids may inhibit insulin signaling and 
induce metabolic insulin resistance in patients with T2D (55). 
Furthermore, it has previously been suggested that methyla-
tion of the FASN promoter at the 611, 096, 61780, 61778 and 
61774 CpG sites may be associated with the progression of 
NAFLD (56), which is associated with an increased risk of 
T2D. SCD encodes for the stearoyl‑CoA desaturase enzyme 
that is responsible for fatty acid biosynthesis, which is impli-
cated in lipid‑induced insulin resistance, and SCD deficiency 
increases insulin signaling (57), Furthermore, the expression 
of SCD is upregulated in diabetic fatty rats (58). In addition, 
it has been suggested that alterations in SCD expression as 
a consequence of DNA promoter methylation in morbidly 
obese patients are associated with the serum levels of free 
fatty acids (59). Furthermore, the levels of mRNA encoding 
ACLY, FASN and SCD were markedly upregulated in the 
livers of Zucker fatty rats, which are commonly used as 
animal models for fatty liver disease, hepatic insulin resis-
tance and obesity investigations (60). Functional enrichment 
analysis in the present study revealed that abnormal FASN 
and SCD expression levels in obesity‑associated T2D were 
predominantly associated with fatty acid biosynthesis 
metabolism and oxidation reduction. GCK is responsible 
for the phosphorylation of glucose in order to produce 

glucose‑6‑phosphate, which is the first step in the majority 
of glucose metabolic pathways (61). GCK is predominantly 

Figure 3. Transcriptional factor target network. White hexagonal nodes 
represent the predicted transcription factors. The red circle nodes represent 
upregulated genes and the green diamond nodes represent downregulated 
genes. Overlapping genes between the differentially‑expressed and 
‑methylated genes are indicated by surrounding blue borders.

Table III. KEGG pathways and GO BP terms enriched for the top 20 nodes in the protein‑protein interaction network.

A, Pathway				  

Pathway ID	 Pathway name	 Count	 P‑value	 Genes

hsa04115	 p53 signaling pathway	 4	 1.36x10‑4	 CDKN1A, CCND1, SERPINE1, IGF1
hsa05218	 Melanoma	 4	 1.54x10‑3	 CDKN1A, CCND1, MET, IGF1
hsa05214	 Glioma	 3	 1.82x10‑2	 CDKN1A, CCND1, IGF1
hsa04510	 Focal adhesion	 4	 2.75x10‑2	 CCND1, MET, IGF1, SPP1
hsa05215	 Prostate cancer	 3	 3.47x10‑2	 CDKN1A, CCND1, IGF1

B, Biological process				  

Pathway ID	 Pathway name	 Count	 P‑value	 Genes

GO:0031099	 Regeneration	 5	 1.80x10‑6	 CDKN1A, CCND1, SERPINE1, IGF1, IGFBP1
GO:0010033	 Response to organic substance	 8	 2.25x10‑5	 CDKN1A, CCND1, GCK, SQLE, FABP4, 
				    IGFBP1, TAT, SPP1
GO:0009725	 Response to hormone stimulus	 6	 9.15x10‑5	 CDKN1A, CCND1, FABP4, IGFBP1, TAT, SPP1
GO:0048545	 Response to steroid hormone stimulus	 5	 1.03x10‑4	 CDKN1A, CCND1, FABP4, TAT, SPP1
GO:0051384	 Response to glucocorticoid stimulus	 4	 1.41x10‑4	 CDKN1A, CCND1, FABP4, TAT
GO:0009719	 Response to endogenous stimulus	 6	 1.46x10‑4	 CDKN1A, CCND1, FABP4, IGFBP1, TAT, SPP1
GO:0009991	 Response to extracellular stimulus	 5	 1.74x10‑4	 CDKN1A, CCND1, HSPA5, PPARGC1A, SPP1
GO:0031960	 Response to corticosteroid stimulus	 4	 1.82x10‑4	 CDKN1A, CCND1, FABP4, TAT
GO:0010907	 Positive regulation of glucose	 3	 2.82x10‑4	 GCK, IGF1, PPARGC1A
	 metabolic process
GO:0010676	 Positive regulation of cellular	 3	 3.13x10‑4	 GCK, IGF1, PPARGC1A
	 carbohydrate metabolic process

KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology.



MOLECULAR MEDICINE REPORTS  17:  7636-7644,  20187642

expressed in pancreatic β cells and hepatocytes, and it is 
implicated the modulation of glucose homeostasis in liver, 
including glucose synthesis, breakdown and storage (62). It 
has previously been demonstrated that fluctuations in the 
expression levels of GCK are a risk factor for the develop-
ment of T2D (63). Furthermore, elevated levels of CpG island 
methylation within the GCK gene have been reported in 
patients with T2D (64). Therefore, the upregulation of ACLY, 
FASN, SCD and GCK gene expression levels, accompanied by 
alterations in DNA methylation levels, may be implicated in 
the development of obesity‑associated T2D via regulation of 
fatty acid and glucose metabolic pathways, and involvement 
in oxidoreductive and insulin signaling pathways.

The downregulated genes identified in patients with T2D 
were significantly enriched in the cysteine and methionine 

metabolic pathways. A previous study reported that cysteine 
and methionine intake has an association with T2D (65), and 
that levels of oxidation at cysteine and methionine residues 
are markedly higher in patients with diabetes compared with 
nondiabetic individuals  (66). The present study revealed 
that the downregulation of cystathionine γ lyase (CTH) and 
TAT genes is associated with the metabolism of cysteine and 
methionine in patients with T2D. Furthermore, a deficiency 
in CTH may impair H2S biosynthesis and vessel reactivity 
in T2D (67). TAT is present in the liver and catalyzes the 
conversion of L‑tyrosine into phosphorylated hydroxy-
phenylpyruvate, and its expression is abnormal in diabetic 
rats  (68). Thus, we hypothesized that the downregulated 
expression of CTH and TAT altered the DNA methylation 
levels in obese patients with T2D. However, the influence of 
their methylation status on the development of T2D has yet 
to be determined. Further research is required in order to 
determine whether the alteration in DNA methylation levels 
in CTH and TAT is correlated with their downregulated 
expression in T2D.

However, although the present study identified genes 
with altered expression and DNA methylation in T2D by 

Figure 4. MicroRNA target network. White triangle nodes represent the 
predicted microRNAs. The red cycle nodes represent upregulated genes and 
the green diamond nodes represent downregulated genes. Overlapping genes 
between the differentially‑expressed and ‑methylated genes are indicated by 
surrounding blue borders.

Table V. Top 14 genes with higher degrees in the microRNA 
target regulatory network.

Genes	 Degree

TP53INP1	 15
SLC1A2	 13
PPARGC1A	 12
SLITRK3	 11
L3MBTL3	 11
RET	 10
CCND1	 8
RBMS1	 7
GRID1	 7
PSD3	 7
PRKCE	 6
ANKS1B	 5
SULF1	 5
HMCN1	 5

Table IV. Top 12 genes with higher degrees in the transcriptional 
factor‑target regulatory network.

Genes	 Degree

CCND1	 15
PPARGC1A	 11
WNT11	 11
ZSCAN16	 10
PRKCE	 9
SULF1	 9
GCK	 8
RET	 8
SLITRK3	 8
OAT	 7
SCD	 7
ME1	 7

Table VI. Overlapped genes between the GSE64998 dataset 
and GSE15653 validation dataset.

Common upregulated	 Common downregulated
genes	 genes

RDH16, SLC39A7, KRT8, AEN, 	 SLITRK3, CYP2C19, 
HSPA5, KDM8, ALDH18A1, 	 SLC16A4, CA14, GPR88,
ATF5, CDHR2, CCND1, 	 OPN3, VIL1, HAL, 
SLC35C1, CD151, GAS6, 	 HERC5, DNAJC12, TAT, 
ACOT1, HPS5, APOL3, FASN, 	 PFKFB3, SMPDL3A,
CHI3L1, CDKN1A, HBB	 SLC19A2, ABCA8
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reanalyzing a published dataset, a number of novel genes were 
demonstrated to serve potential roles in T2D. These results 
prove beneficial to the development of a deeper understanding 
of obesity‑associated T2D disease progression. However, 
the present study had certain limitations. The sample sizes 
analyzed in GSE64998 and GSE65057 datasets were small. In 
addition, the association between the expression levels of the 
DEGs and patterns of DNA methylation were not investigated. 
Future studies may investigate the correlation between the 
DEGs and DMGs, and analyze the methylation sites in such 
DEGs using large sample sizes.

In conclusion, the present study analyzed the mRNA expres-
sion and DNA methylation profiles of healthy controls and of 
patients with obesity‑associated T2D using a computational 
bioinformatics approach. Genes with abnormal expression 
levels were screened for and the biological functions enriched 
by these genes were explored. In the present study, several key 
genes (ACLY, CCND1, PPARGC1A, FASN, GCK, SCD, CTH 
and TAT) were revealed to be potentially implicated in the 
progression of insulin resistance in obesity and T2D. However, 
further experimental studies are required in order to validate 
the implications of these genes in obesity‑associated T2D.
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