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Abstract. Following long-term exposure to endotoxins, 
macrophages enter an immunosuppressive state that renders 
them unable respond to subsequent exposures to endotoxin, a 
phenomenon that is termed ʻendotoxin tolerance .̓ Endotoxin 
tolerance increases the risks of secondary infection and 
mortality in patients with sepsis. In endotoxin‑tolerant 
macrophages, the mixed variation of gene transcription is 
referred to as macrophage reprogramming. The mechanisms 
underlying macrophage reprogramming remain unclear at 
present. Interferon‑induced double‑stranded RNA‑dependent 
protein kinase (PKR) is a widely expressed serine/threonine 
protein kinase. In addition to antiviral effects, PKR regulates 
the transcription of inflammatory cytokines by affecting 
transcription factors. However, the role of PKR in macrophage 
reprogramming remains to be elucidated. In the present 
study, the expression of inflammatory cytokines differed in 
lipopolysaccharide (LPS)‑tolerant RAW264.7 macrophages 
compared with LPS‑activated macrophages. Specifically, 
reverse transcription-quantitative polymerase chain reaction 
results demonstrated that the mRNA levels of tumor necrosis 
factor-α, interleukin-1β (IL-1β), C-X-C motif chemokine 
ligand 11, C-C motif chemokine ligand (CCL17), CCL22 
and suppressor of cytokine signaling 3 were decreased, and 
mRNAs levels of arginase-1 (Arg1) and nitric oxide synthase 
2 (iNOS) were increased, in LPS-tolerant macrophages 
compared with LPS‑activated macrophages. Furthermore, 

western blot analysis demonstrated that the protein levels of 
phosphorylated (p)‑PKR were significantly decreased in the 
LPS‑tolerant cells. PKR activation with rotenone (10 µM) 
abrogated endotoxin tolerance by increasing the levels of 
the IL-1β, CCL17 and CCL22 mRNAs and decreasing the 
levels of the Arg1 and iNOS mRNAs. Furthermore, western 
blotting demonstrated that AKT was markedly inactivated in 
endotoxin‑tolerant cells, as indicated by reduced p‑AKT levels. 
However, levels of p‑AKT were markedly increased following 
rotenone‑induced PKR activation in endotoxin‑tolerant cells. 
Ly294002 (10 µM), a phosphatidylinositol-4,5-bisphosphate 
3-kinase (PI3K)/AKT signaling inhibitor, partially reversed 
the rotenone‑induced alleviation of endotoxin tolerance. These 
results demonstrated that PKR inhibition mediated endotoxin 
tolerance in macrophages, and these effects were partially 
mediated by PI3K/AKT signaling. PKR may be a potential 
target for the treatment of endotoxin tolerance in patients with 
sepsis.

Introduction

Innate immune cells, such as monocytes/macrophages, func-
tion in the defense against pathogens and the initiation and 
maintenance of the inflammatory response (1,2). A robust 
inflammatory response is triggered when innate cells detect 
pathogens or their associated endotoxins, such as lipopolysac-
charide (LPS), through pattern recognition receptors, including 
toll‑like receptor 4 (TLR4), expressed on the cell surface (3,4). 
However, macrophages are not able to respond to a subsequent 
challenge with LPS following long-term or repeated exposure 
to LPS. This phenomenon is termed ̒ endotoxin toleranceʼ (5,6). 
The characterization of gene transcription following endotoxin 
tolerance revealed downregulation of certain genes upon LPS 
restimulation, including tumor necrosis factor-α (TNF-α) (7), 
interleukin (IL)-1β (8), C-C motif chemokine ligand (CCL)17, 
CCL22 (9) and nitric oxide synthase 2 (iNOS) (10), while the 
expression of other genes, including chitinase-like 3 (Chil3) 
and arginase‑1 (Arg1), was upregulated (11). The mixed 
transcriptional phenotype observed in tolerant cells indicates 
a gene reprogramming mechanism rather than a simple 
downregulation of LPS‑induced gene expression (5,12,13). 
The phenomenon of endotoxin tolerance has been observed 
in vitro and in vivo (14‑16). In patients with sepsis, endotoxin 
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tolerance has been reported to occur following inflammatory 
hypercytokinemia (17). Therefore, researchers previously 
hypothesized that endotoxin tolerance may be a mechanism 
used to protect the host against excessive inflammatory 
damage, as an uncontrolled inflammatory response leads to 
extensive tissue damage and septic shock (2). However, more 
recently, a different hypothesis has been formulated, which 
suggests that the endotoxin tolerant state is associated with 
secondary infection and may render the host more susceptible 
to septic progression and death (18). Therefore, strategies for 
the prevention of endotoxin tolerance may represent an effec-
tive treatment for sepsis (19).

Although endotoxin tolerance has been observed for 
>50 years (20), the mechanisms underlying macrophage repro-
gramming remain unclear. Overexpression of certain regulators 
in the TLR4 pathway, including IL-1 receptor-associated 
kinase‑M (IRAK‑M), SH2‑containing inositol‑5'‑phosphatase 
and IRAK-M inducer hypoxia-inducible factor-1α, was previ-
ously reported to be implicated in the pathological process 
of endotoxin tolerance (14,21,22). Among these regulators, 
interferon-induced double-stranded RNA-dependent protein 
kinase (PKR) was investigated in the present study. PKR is 
a widely expressed serine/threonine protein kinase (23). It 
is activated by multiple stimuli, including the inflammatory 
cytokines interferon and TNF-α (24), bacterial infection and 
viral double‑stranded RNA (25‑27). In addition to its antiviral 
properties, phosphorylated (p)-PKR also affects multiple tran-
scription factors by activating numerous signaling pathways. 
These transcription factors, including interferon regulatory 
factor 3 (28) and nuclear factor-κB (NF‑κB) (29,30), are 
required for the expression of genes encoding inflammatory 
cytokines (25). However, the role of PKR in macrophage 
reprogramming remains to be elucidated. In the present study, 
the role of PKR in endotoxin tolerance was determined. In 
addition, the associated signaling pathways through which 
PKR may mediate macrophage reprogramming were also 
investigated.

Materials and methods

Cells and reagents. LPS (cat. no. L2654) and LY294002 
(cat. no. L9908) were purchased from Sigma‑Aldrich (Merck 
KGaA, Darmstadt, Germany). Rotenone (cat. no. 557368) was 
purchased from Millipore (Merck KGaA). RAW264.7 cells 
were purchased from the Type Culture Collection of the Chinese 
Academy of Sciences (Shanghai, China) and maintained 
in Dulbecco's modified Eagle's medium (DMEM; Thermo 
Fisher Scientific, Inc., Waltham, MA, USA) containing 10% 
fetal bovine serum (Thermo Fisher Scientific, Inc.). Cells were 
maintained in a 5% CO2 humidified incubator at 37˚C. Cell 
Counting Kit-8 (CCK-8) was obtained from Dojindo Molecular 
Technologies, Inc. (Kumamoto, Japan). Primary antibodies 
against AKT (cat. no. 4691S; rabbit), p‑AKT (Thr308; cat. 
no. 13038S; rabbit) and β‑actin (cat. no. 4970S; rabbit), and the 
anti‑rabbit IgG, HRP‑linked Antibody (cat. no. 7074S), were 
purchased from Cell Signaling Technology, Inc. (Danvers, 
MA, USA). The PKR antibody (cat. no. sc‑708; rabbit) was 
purchased from Santa Cruz Biotechnology, Inc. (Dallas, TX, 
USA). The p‑PKR antibody (T446; cat. no. ab32036; rabbit) 
was purchased from Abcam (Cambridge, UK). The primers 

for IL-1β, CCL17, CCL22, Arg1, iNOS, TNF-α, suppressor of 
cytokine signaling 3 (Socs3), C-X-C motif chemokine ligand 
11 (CXCL11) and β‑actin were supplied by Sangon Biotech 
Co., Ltd. (Shanghai, China). The Eastep Super Total RNA 
Extraction kit, GoScript Reverse Transcription System and 
GoTaq qPCR Master Mix were purchased from Promega 
Corporation (Madison, WI, USA).

Cell viability assays. Cell viability was measured using 
the CCK‑8 assay according to the manufacturer's protocol. 
Briefly, RAW264.7 cells were seeded in 96‑well culture plates 
at a density of 5,000 cells/well in DMEM and incubated in a 
humidified incubator at 37˚C overnight. Cells were exposed 
to different concentrations of LPS (0, 1, 10, 100, 500 and 
1,000 ng/ml) for 24 h. After a 24 h incubation with LPS, 
10 µl CCK-8 reagent was added to each well and incubated 
for 1 h. Subsequently, the optical density (OD) was measured 
at a wavelength of 450 nm. The percentage of viable cells 
was determined using the following formula: Ratio (%)=[OD 
(treated)-OD (blank)/OD (control)‑OD (blank)] x100. Cell 
viability data are presented as the mean ± standard error of 
the mean of three independent experiments, each containing 
three replicates.

Endotoxin tolerant model in RAW264.7 cells. The 
endotoxin tolerance model was established as follows. 
RAW264.7 cells were seeded in 6‑well culture plates at 
a density of 5x105 cells/well in DMEM and incubated in a 
humidified incubator at 37˚C overnight. Subsequently, cells 
were initially stimulated with medium alone or medium 
containing LPS (100 ng/ml) for 20 h, washed with PBS twice 
and restimulated with medium or LPS (100 ng/ml) for 4 h 
prior to Reverse transcription-quantitative polymerase chain 
reaction (RT‑qPCR) or 2 h prior to western blot analysis. 
Different durations of the second LPS stimulation were 
because expression of inflammatory cytokines depended on 
the activation of regulators and signaling (9,31). Rotenone 
(10 µM) was added 1 h before the second LPS stimulation 
and remained until the cells were lysed. LY294002 was used 
2 h before the second LPS stimulation at a concentration of 
10 µM when necessary and lasted until the end of the second 
LPS stimulation. Macrophages that were continually cultured 
in DMEM were designated medium/medium (M/M), cells 
that were stimulated with LPS following the incubation with 
DMEM were designated medium/LPS (M/L) and cells that 
were restimulated with LPS following stimulation with the 
same dose of LPS were designated LPS/LPS (L/L). The cells 
were incubated in a humidified incubator at 37˚C during the 
whole experimental process.

ELISA. TNF-α levels in the supernatants were analyzed using 
the TNF-α ELISA kit (F11630; Westang BioTechnology 
Corporation Ltd., Shanghai, China), according to the manu-
facturer's protocol. In brief, medium in the 6‑well plate was 
pipetted into the 96‑wells plate directly. During the first 
incubation, TNF-α bound the capture antibody. Following 
washing, a detection antibody was added to the wells, which 
bound to the TNF-α immobilized during the first incubation. 
Subsequently, a horseradish peroxidase (HRP) conjugate was 
added to bind to the detection antibody. Finally, a substrate 
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solution was added and converted by the enzyme to a detect-
able form. The intensity of the colored product reflected the 
concentration of TNF-α.

Preparation of whole‑cell protein lysates. Cells were washed 
twice with ice‑cold PBS and suspended in RIPA lysis buffer 
(P0013B; Beyotime Institute of Biotechnology, Haimen, China) 
containing 1 mM phenylmethanesulfonyl fluoride and 1 mM 
phosphatase inhibitors, and were centrifuged at 16,000 x g for 
10 min to remove nuclei and cell debris. Supernatants were 
rapidly frozen at ‑80˚C or immediately used in western blot 
assays.

Western blot analysis. Protein concentrations were deter-
mined using the Pierce BCA Protein Assay kit (Thermo Fisher 
Scientific, Inc.) and 15 µg cellular proteins were electroblotted 
onto polyvinylidene difluoride membranes following separa-
tion with 10% SDS‑PAGE. The membranes were blocked for 
15 min with QuickBlock Blocking Buffer for Western Blot 
(Beyotime Institute of Biotechnology, Haimen, China) at room 
temperature, followed by an overnight incubation at 4˚C with 
primary antibodies against PKR, p-PKR, AKT, p-AKT and 
β‑actin at a 1:1,000 dilution. Blots were washed three times 
with TBS/0.2% Tween‑20 (TBST) prior to incubation with the 
HRP‑conjugated secondary antibody (1:5,000) for 1 h at room 
temperature. Blots were washed three times with TBST prior 
to development by enhanced chemiluminescence using the 
Immobilon Western Chemiluminescent HRP Substrate (Merck 
KGaA). Band intensities were quantified using Quantity One 
software version 4.6.2 (Bio‑Rad Laboratories, Inc., Hercules, 
CA, USA). β-actin was used as a loading control for whole-cell 
protein lysates.

RT‑qPCR assays. Total RNA was extracted using the Eastep 
Super Total RNA Extraction kit, according to the manufac-
turer's protocol. A total of 1 µg RNA was reverse transcribed 
into cDNAs using the GoScript Reverse Transcription System, 
including elongation at 42˚C for 15 min and inactivation of 
reverse transcriptase at 70˚C for 15 min. qPCR was performed 

using GoTaq qPCR Master Mix. In brief, denaturation was 
performed at 95˚C for 10 min, annealing at 60˚C for 1 min, 
and elongation at 95˚C for 15 sec for 40 cycles. PCR was 
carried out in triplicate and using the Bio‑Rad CFX96 instru-
ment (Bio‑Rad Laboratories, Inc.). Data were processed using 
Bio‑Rad CFX manager version 3.1 (Bio‑Rad Laboratories, 
Inc.). The housekeeping gene β-actin was used as the internal 
control. The relative expression levels were calculated using 
the 2‑∆∆Cq method (32). The primer pairs used for qPCR are 
presented in Table I.

Statistical analysis. Prism 6 software (GraphPad, La Jolla, CA, 
USA) was used for statistical analysis. All data are presented 
as the mean ± standard error of the mean (n=3 independent 
experiments). Data were analyzed using an unpaired two‑tailed 
Student's t‑test or one‑way analysis of variance followed by a 
Tukey's multiple comparison test. P<0.05 was considered to 
indicate a statistically significant difference.

Results

LPS promotes cell proliferation in a dose‑depended 
manner. The viability of RAW264.7 cells was determined 
using the CCK‑8 assay. As demonstrated in Fig. 1A, treat-
ments with different concentrations of LPS (1, 10, 100, 500 
and 1,000 ng/ml) significantly promoted cell proliferation 
compared with the control group. At LPS concentrations 
<500 ng/ml, cells proliferated in a concentration-dependent 
manner (Fig. 1A). No obvious cytotoxicity was observed 
when cells were treated with LPS at concentrations of 
1-1,000 ng/ml (Fig. 1A).

TNF‑α levels are decreased in L/L macrophages compared 
with M/L macrophages. Cells were cultured and stimulated 
with LPS using the methods described above. Supernatants 
were collected and examined using ELISA. TNF‑α levels were 
demonstrated to be significantly reduced in LPS‑tolerant L/L 
macrophages compared with LPS-activated M/L macrophages 
(Fig. 1B).

Table I. Primer sequences used for reverse transcription‑quantitative polymerase chain reaction.

 Primer sequence (5'→3')
 ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Gene Forward Reverse

TNF-α GACGTGGAACTGGCAGAAGAG  TTGGTGGTTTGTGAGTGTGAG
IL-1β GCAACTGTTCCTGAACTCAACT  ATCTTTTGGGGTCCGTCAACT
CXCL11 GGCTTCCTTATGTTCAAACAGGG  GCCGTTACTCGGGTAAATTACA
CCL17 GACGACAGAAGGGTACGGC GCATCTGAAGTGACCTCATGGTA
CCL22 ATTCTGTGACCATCCCCTCAT TGTATGTGCCTCTGAACCCAC
Socs3 TGCAGGAGAGCGGATTCTAC AGCTGTCGCGGATAAGAAAG
Arg1 CTCCAAGCCAAAGTCCTTAGAG AGGAGCTGTCATTAGGGACATC
iNOS GACGAGACGGATAGGCAGAG CTTCAAGCACCTCCAGGAAC
β-actin GTGCTATGTTGCTCTAGACTTCG ATGCCACAGGATTCCATACC

TNF-α, tumor necrosis factor-α; IL-1β, interleukin-1β; CXCL11, C-X-C motif chemokine ligand 11; CCL, C-C motif chemokine ligand; 
Socs3, suppressor of cytokine signaling 3; Arg1, arginase‑1; iNOS, nitric oxide synthase 2.
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Cytokine expression differs between L/L macrophages and 
M/L macrophages. Cells were stimulated with or without 
LPS for 20 h, washed twice with PBS and restimulated 
with LPS for 4 h. Cells were subsequently lysed and RNA 
was isolated. The gene expression levels in RAW264.7 
cells were detected by RT‑qPCR. Levels of TNF‑α, IL-1β, 
CXCL11, CCL17, CCL22 and Socs3 mRNA were mark-
edly decreased in LPS-tolerant L/L macrophages compared 
with LPS-activated M/L macrophages (Fig. 2A). However, 
elevated levels of Arg1 and iNOS mRNA were detected in the 
LPS-tolerant L/L macrophages compared with LPS-activated 
M/L macrophages.

PKR inactivation is involved in the altered cytokine 
gene expression observed in LPS‑tolerant macrophages. 
Macrophages were cultured and stimulated with LPS as 
described above. Cells were lysed and protein levels were 
measured by western blotting at 2 h following the LPS 
rechallenge. RAW264.7 macrophages that were restimulated 
with LPS for 2 h after the initial 20 h challenge with LPS 
exhibited significant inactivation of PKR compared with cells 
challenged with LPS for only 2 h (Fig. 2B and C). However, 
the level of p‑PKR was not statistically significantly different 
between M/M and M/L macrophages (Fig. 2C). In addition, 
total PKR levels were not altered among the groups (Fig. 2B).

Figure 2. PKR inactivation is involved in the alterations in cytokine gene expression observed in LPS‑tolerant macrophages. (A) Reverse transcription-quanti-
tative polymerase chain reaction was performed to determine differences in the expression of inflammatory cytokine genes in LPS‑tolerant L/L macrophages 
and LPS‑activated M/L macrophages. The expression of the TNF‑α, IL-1β, CXCL11, CCL17, CCL22 and Socs3 mRNAs was markedly downregulated, 
while the expression of the Arg1 and iNOS mRNAs was upregulated, in LPS‑tolerant L/L macrophages compared with LPS‑activated M/L macrophages. 
(B) Representative western blot bands for the protein expression of p‑PKR and PKR. β‑actin was used as a loading control. (C) Quantification of the ratio of the 
intensities of the p‑PKR/PKR bands by densitometry. #P<0.05 and ##P<0.01 vs. M/M cells; *P<0.05 and **P<0.01 vs. M/L cells. Data represent the results from 
three independent experiments. PKR, interferon‑induced double‑stranded RNA‑dependent protein kinase; LPS, lipopolysaccharide; TNF‑α, tumor necrosis 
factor-α; IL-1β, interleukin-1β; CXCL11, C-X-C motif chemokine ligand 11; CCL, C-C motif chemokine ligand; Socs3, suppressor of cytokine signaling 3; 
Arg1, arginase 1; iNOS, nitric oxide synthase 2; p-PKR, phosphorylated-PKR; M/M, initial incubation with medium followed by further incubation with 
medium; M/L, initial incubation with medium followed by LPS stimulation; L/L, initial incubation with LPS followed by restimulation with LPS.

Figure 1. Effects of LPS stimulation on the cell viability and TNF‑α expression of RAW264.7 macrophages. (A) Increasing concentrations of LPS promoted 
the proliferation of macrophages, as demonstrated using the Cell Counting Kit‑8 assay. **P<0.01 vs. 0 ng/ml LPS group. Data represent the results from three 
independent experiments. (B) ELISA results demonstrated a decrease in the TNF‑α level in LPS-tolerant L/L macrophages compared with LPS-activated 
M/L macrophages. **P<0.01 vs. M/L cells. Data represent the results from three independent experiments. LPS, lipopolysaccharide; TNF‑α, tumor necrosis 
factor-α; M/L, initial incubation with medium followed by LPS stimulation; L/L, initial incubation with LPS followed by restimulation with LPS.
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Rotenone alleviates endotoxin tolerance by activating PKR 
in RAW264.7 cells. It has been previously demonstrated that 
rotenone activates PKR (33). The level of p‑PKR was markedly 
increased following treatment with rotenone (10 or 20 µM) 
in LPS-tolerant L/L macrophages compared with untreated 
LPS-tolerant L/L macrophages (Fig. 3A and B). In addition, 
the level of p‑PKR was not statistically significantly different 
between LPS-tolerant L/L macrophages treated with 10 and 
20 µM rotenone. Furthermore, the mRNA levels of IL‑1β, 
CCL17 and CCL22 were increased, while the mRNA levels 
of the Arg1 and iNOS were decreased, in rotenone-treated 
LPS-tolerant L/L macrophages compared with untreated 
LPS-tolerant L/L macrophages (Fig. 3C). The levels of TNF‑α, 
CXCL11 and Socs3 mRNA were not statistically significantly 
different between rotenone-treated and untreated LPS-tolerant 
L/L macrophage groups.

PKR mediates macrophage reprogramming in LPS‑tolerant 
RAW264.7 cells by inactivating AKT. RAW264.7 cells were 
cultured in DMEM and stimulated with LPS as described 
above. Following a 2‑h restimulation with LPS, macrophages 
were lysed and levels of proteins were measured by western 
blotting. AKT was activated in LPS‑activated M/L macro-
phages compared with M/M macrophages that received no 
stimulation with LPS (Fig. 4A and B). However, the levels 

of p-AKT were markedly decreased in LPS-tolerant L/L 
macrophages compared with LPS-activated M/L macrophages 
(Fig. 4A and B). The total AKT levels were not altered among 
the groups (Fig. 4A). Rotenone induces PKR phosphorylation. 
In the present study, AKT was activated in rotenone-treated 
LPS-tolerant L/L macrophages compared with the untreated 
L/L macrophages (Fig. 4C and D). Ly294002, a phosphati-
dylinositol-4,5-bisphosphate 3-kinase (PI3K)-AKT inhibitor, 
was added to LPS-tolerant L/L cells prior to the 1 h rotenone 
treatment. Ly294002 (10 µM) did not affect the activation 
of PKR in rotenone-treated LPS-tolerant L/L macrophages 
(Fig. 5). However, AKT activation in rotenone‑treated 
LPS-tolerant L/L macrophages was inhibited by Ly294002 
(Fig. 6A and B). Furthermore, Ly294002 partially reversed the 
rotenone-induced variations in gene expression in LPS-tolerant 
L/L macrophages (Fig. 6C). Specifically, Ly294002 down-
regulated IL-1β and CCL22 expression and upregulated Arg1 
and iNOS expression in the rotenone-treated LPS-tolerant L/L 
macrophages (Fig. 6C).

Discussion

Following long-term exposure to LPS, macrophages enter 
an immunosuppressive state and are unable to respond 
to further LPS challenges. The immunosuppressive or 

Figure 3. Rotenone ameliorates endotoxin tolerance by activating PKR. (A) Representative western blot bands for the protein expression of p‑PKR and PKR. 
β‑actin was used as the loading control. PKR activation was induced by 10 and 20 µM rotenone in LPS‑tolerant L/L RAW264.7 cells. (B) Quantification of the 
ratio of the intensities of the p‑PKR/PKR bands by densitometry. The OD of the target protein is presented as a proportion of the β‑actin OD. (C) Rotenone 
at a concentration of 10 µM alleviated endotoxin tolerance by activating PKR. Reverse transcription‑quantitative polymerase chain reaction results demon-
strated increased levels of the IL-1β, CCL17 and CCL22 mRNAs, and decreased levels of the Arg1 and iNOS mRNAs, in rotenone-treated LPS-tolerant L/L 
macrophages compared with untreated LPS‑tolerant L/L macrophages. The expression of TNF‑α, CXCL11 and Socs3 mRNAs was not significantly different 
between the rotenone‑treated and untreated LPS‑tolerant L/L macrophage groups. #P<0.05 and ##P<0.01 vs. untreated/control M/L macrophages; *P<0.05 and 
**P<0.01 vs. untreated/control L/L macrophages. Data represent the results from three independent experiments. PKR, interferon‑induced double‑stranded 
RNA-dependent protein kinase; p-PKR, phosphorylated-PKR; LPS, lipopolysaccharide; OD, optical density; IL-1β, interleukin-1β; CCL, C-C motif chemo-
kine ligand; Arg1, arginase 1; iNOS, nitric oxide synthase 2; TNF-α, tumor necrosis factor-α; CXCL11, C-X-C motif chemokine ligand 11; Socs3, suppressor 
of cytokine signaling 3; M/M, initial incubation with medium followed by further incubation with medium; M/L, initial incubation with medium followed by 
LPS stimulation; L/L, initial incubation with LPS followed by restimulation with LPS.
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hyporesponsive state that develops is termed endotoxin toler-
ance (5). Endotoxin tolerance has been associated with various 
diseases, including sepsis, trauma, pancreatitis and acute coro-
nary syndrome (15,34,35). The current hypothesis regarding 
the host immune response in patients with sepsis indicates that 
it is characterized by an initial hyperinflammatory phase that 
is sustained over several days and progresses into a protracted 
immunosuppressive phase, indicating that macrophages enter 
a tolerant state (18,36). In patients with sepsis, mortality occurs 
primarily due to the development of uncontrolled secondary 
infections as a result of immunosuppression (37‑39). Therefore, 
strategies that prevent endotoxin tolerance have become a 
topic of interest in therapies for sepsis (39).

In the present study, RAW264.7 macrophage cells were 
stimulated with 100 ng/ml LPS for 20 h, washed twice with 
PBS and restimulated with 100 ng/ml LPS for 2 or 4 h to estab-
lish an LPS‑tolerant model, as described previously (9,11). 
TNF-α levels have been reported to be significantly decreased 
in tolerant macrophages and are considered a reliable marker 
of endotoxin tolerance (6,40,41). In the present study, TNF‑α 
secretion from LPS restimulated tolerant macrophages was 
markedly decreased compared with LPS-activated macro-
phages, indicating that the endotoxin tolerance model was 
successfully established.

In LPS tolerant macrophages, the expression of cytokine 
genes is reprogrammed rather than inhibited (5,12,13). During 

macrophage reprogramming, the expression of certain genes 
is downregulated, while other genes are upregulated (42). This 
phenomenon is similar to macrophage polarization, in which 
macrophages undergo polarized differentiation into classi-
cally activated macrophages (M1) or alternatively activated 
macrophages (M2) in response to different stimuli (43). M1 
macrophages are characterized by increased production of 
proinflammatory cytokines, nitric oxide and reactive oxygen 
species that mediate antimicrobial activities and induce 
cellular immunity (44,45). M2 macrophages are characterized 
by intracellular expression of Arg1 and secretion of chitinases, 
including Chil3, and anti‑inflammatory cytokines, including 
interleukin‑10 (46). Therefore, M2 macrophages have been 
associated with helminthic infection and tissue repair (47). 
Macrophage tolerance and M2 polarization are associated 
processes. It was previously reported that the expression of 
M2-associated cytokines (CCL17, CCL22 and Arg1) was 
upregulated, while the expression of M1-associated cytokines 
(TNF-α, IL-1β, CXCL-11, Socs3 and iNOS) was downregu-
lated, in LPS‑tolerant macrophages (31). In the present study, 
the mRNA levels of the M1-associated cytokines TNF-α, 
IL-1β, CXCL-11 and Socs3 were decreased and the levels of 
the M2-associated mediator Arg1 was increased, similar to 
M2 polarization. However, the levels of the M2‑associated 
mediators CCL-17 and CCL-22 were decreased and the 
level of the M1-associated mediator iNOS was increased in 

Figure 4. PKR mediates macrophage reprogramming in LPS‑tolerant RAW264.7 macrophages by inactivating AKT. (A) Representative western blot 
bands for the protein expression of p‑AKT and AKT in LPS‑activated M/L and LPS‑tolerant L/L macrophages. β‑actin was used as the loading control. 
(B) Quantification of the ratio of the intensities of the p‑AKT/AKT bands by densitometry. #P<0.05 vs. M/M group; *P<0.05 vs. M/L group. (C) Representative 
western blot bands for p‑AKT and AKT protein expression in rotenone‑treated and untreated LPS‑tolerant L/L macrophages. β-actin was used as the loading 
control. (D) Quantification of the ratio of the intensities of the p‑AKT/AKT bands by densitometry. *P<0.05 vs. untreated M/M group; #P<0.05 vs. untreated 
L/L group. Data represent the results from three independent experiments. PKR, interferon‑induced double‑stranded RNA‑dependent protein kinase; LPS, 
lipopolysaccharide; p-AKT, phosphorylated-AKT; M/M, initial incubation with medium followed by further incubation with medium; M/L, initial incubation 
with medium followed by LPS stimulation; L/L, initial incubation with LPS followed by restimulation with LPS.
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LPS-tolerant macrophages, which differed from M2 polariza-
tion. Variation in the expression of iNOS has been reported in 
LPS-tolerant cells as certain studies have demonstrated that it 
was elevated (48,49), while others detected decreased iNOS 
levels, in LPS‑tolerant cells (10,13). These variations may 
depend on the cell type, duration of LPS stimulation and the 
concentration of the LPS used in the different studies.

In addition to its antiviral properties, PKR also participates 
in the regulation of inflammatory cytokine and chemokine 

expression, including IL-1β, IL-18 and high-mobility group 
box 1, by affecting transcription factors (25‑27,33). Total PKR 
levels in tolerant macrophages were reported to be decreased 
through differential K63/K48 ubiquitination (50). However, 
the role of PKR in macrophage reprogramming remains to be 
elucidated. In the present study, p‑PKR levels were markedly 
decreased in LPS-tolerant macrophages, whereas total PKR 
levels remained unaltered. Rotenone is a plant extract that 
activates PKR (33). Administration of rotenone in the present 

Figure 6. Ly294002 partially prevents the alterations in gene expression induced by rotenone in LPS‑tolerant L/L macrophages. (A) Representative western 
blot bands for p‑AKT and AKT protein expression following rotenone treatment with or without Ly294002 in LPS‑tolerant L/L macrophages. β-actin was used 
as the loading control. (B) Quantification of the ratio of the intensities of the p‑AKT/AKT bands by densitometry. #P<0.05 vs. L/L (‑/‑) macrophages, *P<0.05 
vs. L/L (+/‑) macrophages. (C) Reverse transcription‑quantitative polymerase chain reaction results demonstrated that Ly294002 induced downregulation 
of IL-1β and CCL22 expression, and upregulation of Arg1 and iNOS expression, in rotenone‑treated LPS‑tolerant L/L macrophages. ##P<0.01 vs. M/M (‑/‑) 
macrophages. •P<0.05 and ••P<0.01 vs. L/L (‑/‑) macrophages; *P<0.05 and **P<0.01 vs. L/L (+/‑) macrophages. Data represent the results from three indepen-
dent experiments. LPS, lipopolysaccharide; p‑AKT, phosphorylated‑AKT; IL‑1β, interleukin-1β; CCL22, C-C motif chemokine ligand 22; Arg1, arginase 1; 
iNOS, nitric oxide synthase 2; M/M, initial incubation with medium followed by further incubation with medium; L/L, initial incubation with LPS followed 
by restimulation with LPS.

Figure 5. Ly294002 does not affect the activation of PKR in LPS‑tolerant L/L macrophages. (A) Representative western blot bands for p‑PKR and PKR protein 
expression following rotenone treatment with or without Ly294002 in LPS‑tolerant L/L macrophages. β‑actin was used as the loading control. (B) Quantification 
of the ratio of the intensities of the p‑PKR/PKR bands by densitometry. ##P<0.01 vs. M/M (‑/‑) macrophages, **P<0.01 vs. L/L (‑/‑) macrophages and ••P<0.01 
vs. L/L (‑/‑) macrophages. Data represent the results from three independent experiments. PKR, interferon‑induced double‑stranded RNA‑dependent protein 
kinase; LPS, lipopolysaccharide; p-PKR, phosphorylated-PKR; M/M, initial incubation with medium followed by further incubation with medium; L/L, initial 
incubation with LPS followed by restimulation with LPS.
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study regulated the mRNA expression of IL-1β, CCL17, 
CCL22, Arg1 and iNOS in LPS‑tolerant macrophages. Based 
the above data, it may be hypothesized that PKR activation 
partially reverses macrophage reprogramming in endotoxin 
tolerance. However, the expression of the TNF‑α, CXCL11 and 
Socs3 mRNAs was not significantly different between rote-
none‑treated and untreated LPS‑tolerant cells. The expression 
of these cytokines may not be regulated by PKR. However, 
the expression of these cytokines has been previously demon-
strated to be regulated by other proteins, including p21 and 
p50 (11).

It has been demonstrated that several signaling path-
ways, including NF-κb (51,52) and mitogen-activated 
protein kinase (29,53) pathways, are regulated by PKR to 
promote cytokine and chemokine production. PKR has 
also been reported to participate in physiological activities, 
including coordinating skeletal muscle differentiation and 
choroidal neovascularization, via the PI3K/AKT signaling 
pathway (54,55). However, to the best of our knowledge, it 
has not been previously determined whether PKR mediates 
macrophage reprogramming via the PI3K/AKT signaling 
pathway. In the present study, AKT was inactivated in 
LPS‑tolerant macrophages. Rotenone‑induced PKR activa-
tion was demonstrated to increase the level of p-AKT in 
LPS-tolerant cells, reversing endotoxin tolerance-induced 
inactivation of AKT. Furthermore, inhibition of PI3K‑AKT 
signaling with Ly294002, a PI3K/AKT inhibitor, partially 
reversed the rotenone-induced alleviation of endotoxin 
tolerance, which was supported by the alterations in the 
expression of several endotoxin tolerance-associated genes, 
including IL-1β, CCL22, Arg1 and iNOS.

In conclusion, the results of the current study demon-
strated that PKR inhibition induced endotoxin tolerance in 
macrophages and these effects were partially mediated by 
the PI3K/AKT signaling pathway. Therefore, PKR may be a 
potential target for the treatment of endotoxin tolerance.
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