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Abstract. The present study aimed to screen all types of RNAs 
involved in the development of papillary thyroid carcinoma 
(PTC). RNA-sequencing data of PTC and normal samples were 
used for screening differentially expressed (DE) microRNAs 
(DE-miRNAs), long non-coding RNAs (DE-lncRNAs) and 
genes (DEGs). Subsequently, lncRNA-miRNA, miRNA-gene 
(that is, miRNA-mRNA) and gene-gene interaction pairs 
were extracted and used to construct regulatory networks. 
Feature genes in the miRNA-mRNA network were identi-
fied by topological analysis and recursive feature elimination 
analysis. A support vector machine (SVM) classifier was built 
using 15 feature genes, and its classification effect was vali-
dated using two microarray data sets that were downloaded 
from the Gene Expression Omnibus (GEO) database. In 
addition, Gene Ontology function and Kyoto Encyclopedia 
Genes and Genomes pathway enrichment analyses were 
conducted for genes identified in the ceRNA network. A total 
of 506 samples, including 447 tumor samples and 59 normal 
samples, were obtained from The Cancer Genome Atlas 
(TCGA); 16 DE-lncRNAs, 917 DEGs and 30 DE-miRNAs 
were screened. The miRNA-mRNA regulatory network 
comprised 353 nodes and 577 interactions. From these data, 
15 feature genes with high predictive precision (>95%) were 
extracted from the network and were used to form an SVM 
classifier with an accuracy of 96.05% (486/506) for PTC 
samples downloaded from TCGA, and accuracies of 96.81 
and 98.46% for GEO downloaded data sets. The ceRNA 
regulatory network comprised 596 lines (or interactions) and 
365 nodes. Genes in the ceRNA network were significantly 
enriched in ‘neuron development’, ‘differentiation’, ‘neuroac-
tive ligand-receptor interaction’, ‘metabolism of xenobiotics by 
cytochrome P450’, ‘drug metabolism’ and ‘cytokine-cytokine 

receptor interaction’ pathways. Hox transcript antisense RNA, 
miRNA-206 and kallikrein-related peptidase 10 were nodes 
in the ceRNA regulatory network of the selected feature gene, 
and they may serve import roles in the development of PTC.

Introduction

Thyroid carcinomas originate from follicular or parafol-
licular thyroid cells (1). Papillary thyroid carcinomas (PTC) 
are the most frequent histologic type of thyroid carcinoma, 
and account for 75-85% of reported cases (2). The incidence 
rate of PTC has increased rapidly in recent years, and 5-10% 
of patients with PTC experience a particularly aggressive 
development of the disease (3). The underlying molecular 
mechanisms of the aggressiveness and mortality in such 
patients remain unknown. A stratification system that may 
accurately and effectively identify patients with high mortality 
risk may have great value.

Bioinformatics-based approaches offer considerable 
promise for evaluating patients with high risk to specific 
factors (4). Long non-coding RNAs (lncRNAs) serve crucial 
roles in cancer biology and cancer pathways at transcriptional, 
post-transcriptional and epigenetic levels (5). lncRNAs gener-
ally lack conserved motifs that may be used for detection and 
identification; however, current highly developed sequencing 
technologies have made it easier to identify lncRNAs. By 
combining lncRNAs with known miRNAs, chromatin interac-
tions and RNA-coding proteins, bioinformatics tools are now 
able to recognize and functionally annotate a large number of 
lncRNAs (6). Micro (mi)RNAs are post-transcriptional gene 
regulators that lead to translational repression, gene silencing 
and mRNA degradation (7). It has been reported that lncRNAs 
may interact with miRNAs and modulate their regulatory 
roles by acting as decoys (8). Computational prediction is a 
useful tool for the construction of miRNA-lncRNA interaction 
networks, and is a widespread method (9). Multiple types of 
non-coding RNAs (including lncRNA, circRNAs and pseu-
dogenes) along with protein-coding mRNAs function as key 
competing endogenous (ce)RNAs to regulate the expression 
levels of other mRNAs in mammalian cells (10,11). A regula-
tory role of ceRNA crosstalk with cancer-associated genes has 
been reported (12). For example, the lncRNA hepatocellular 
carcinoma upregulated lncRNA was demonstrated to bind to 
miRNA (miR)-372 and serve a regulatory function (13).
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Although the crucial roles of miRNAs, lncRNAs and 
ceRNAs in cell-fate determination and in various human 
diseases have been implicated, the regulatory interaction 
networks among them remain unknown. In the present study, 
a ceRNA regulatory network comprising miRNAs, lncRNAs 
and mRNAs in PTC samples was constructed, and the impor-
tant nodes in the networks were extracted to establish a support 
vector machine (SVM) classifier.

Materials and methods

Microarray data sets and data preprocessing. miRNA, 
mRNA and lncRNA sequencing data of PTC samples were 
downloaded from The Cancer Genome Atlas (TCGA) through 
the National Cancer Institute Genomic Data Commons data 
portal (https://gdc-portal.nci.nih.gov) on 20 June, 2016. The 
TCGA is a data-rich resource for biological discovery that 
collects information from ~10,000 patient samples together 
with clinicopathological information across >30 types of 
human cancer. The present study reviewed a number of 
previous reports that have used data from TCGA (14,15) and, 
thus, have selected sequencing data based on TCGA, with the 
RNASeqV2 platform used for mRNA and lncRNA sequencing 
data, and with HiSeq2000 used for miRNA sequencing 
data. Following barcode matching, the mRNA, miRNA and 
lncRNAs were annotated using the information recorded 
by the Human Genome Organization Gene Nomenclature 
Committee (http://www.genenames.org). In addition, two 
gene expression data sets, GSE33630 and GSE60542, were 
downloaded from the Gene Expression Omnibus (GEO) data-
base. These microarray data sets were based on the GPL570 
(HG-U133_Plus_2) Affymetrix Human Genome U133 Plus 
2.0 Array platform. GSE33630 contained 49 PTC samples 
and 45 normal sample, while GSE60542 contained 33 PTC 
samples and 32 normal samples. The ‘oligo’ package in R was 
used to conduct the background correction and normalization 
as previously described (16,17).

Differentially expressed (DE)‑lncRNA, ‑mRNA and ‑miRNA. 
DE-lncRNAs, DE-mRNAs (or DE-genes; DEGs) and 
DE-miRNAs between the PTC samples and the normal samples 
were screened using the ‘edgeR’ version 2.4 and ‘multtest’ 
version 1.6 packages in R (18,19). DE-lncRNAs, DE-miRNAs 
and DEGs were selected based on the same cut-off value of 
false discovery rate (FDR) adjusted by Benjamini-Hochberg 
method, as previously described (14,15); |log fold change 
(FC)| >1 and FDR <0.05 were used as cut-off criteria. Heatmaps 
were generated by hierarchical clustering analysis and used to 
identify the differences in gene expression levels between the 
PTC samples and the normal samples.

miRNA‑regulated lncRNAs and genes. The regulatory 
pairs between miRNAs and lncRNAs were obtained using 
miRcode version 11 (http://www.mircode.org) and the 
starBase version 2.0 (http://starbase.sysu.edu.cn) database; 
regulatory pairs of miRNAs-target genes were collected from 
miRTarBase version 7.0 (http://mirtarbase.mbc.nctu.edu.tw). 
Gene-gene interaction pairs were obtained from the Biological 
General Repository for Interaction Datasets version 3.4 
(http://thebiogrid.org), The Human Protein Reference Database 

version 9.0 (http://www.hprd.org) and the Database of 
Interacting Proteins version 2.5 (http://dip.doe-mbi.ucla.edu). 
All interaction or regulatory pairs among genes, miRNAs and 
lncRNAs were first collected from the related databases and 
then the DEGs, DE-lncRNAs and DE-miRNAs were matched 
with them to obtain their connections, an lncRNA-miRNA 
regulatory network and a miRNA-mRNA network. These 
two networks were integrated into a comprehensive ceRNA 
regulatory network to demonstrate the interactions of 
DE-miRNAs with DE-lncRNAs or DEGs. These networks 
were visualized using Cytoscape software version 3.6 
(http://www.cytoscape.org/).

Feature genes in the miRNA‑mRNA regulatory network. 
Topological structure analysis was conducted to identify the 
feature genes in the miRNA-mRNA regulatory network. 
There are four common topological properties, including 
degree, closeness, betweenness and PageRank, which may 
reflect the centrality. ‘Betweenness centrality’ (BC) is a clas-
sical measure that quantifies the importance of a vertex within 
a graph, because it is a ratio of the shortest paths between 
vertex pairs that pass through the vertex of interest (20). In a 
number of previous studies, gene signatures have been iden-
tified largely based on the BC (21,22); therefore, the present 
study used BC as the representative topological parameter to 
indicate node centrality. The BC of genes in the network was 
calculated using the following formula:

Where s, t and v indicate different nodes in the network, in 
which s and t are vertex pairs. σst is the shortest path numbers 
(the total number of the shortest paths) from node s to node t, 
and σst (v) is the path numbers passes node v from s to t. BC 
values ranged between 0 and 1, and values that were closer to 1 
indicated a higher node (gene) degree in the network.

The number of DEGs in the miRNA-mRNA regulatory 
network is larger than that of the ceRNA network. Therefore, the 
feature genes were preliminarily selected in the miRNA-mRNA 
regulatory network to avoid missing important feature genes. 
The nodes in the miRNA-mRNA regulatory network with the 
top 100 BC values were preliminarily selected as the feature 
genes that may display significantly different expressions 
between PTC and normal tissue samples. Clustering analysis 
was conducted using these feature genes via clusterStab 
package version 3.4 in R.

SVM classifier construction for different samples. The selected 
feature genes were used to conduct recursive feature elimina-
tion (RFE) analysis (23), which could distinguish different 
samples in the training dataset. The feature genes were subse-
quently utilized to construct the SVM classifier. The robustness 
and portability of the classifier were determined using the 
GSE33630 and GSE60542 microarray data. The classification 
effect was evaluated using correct rate, sensitivity, specificity, 
positive predictive value, negative predictive value and area 
under receiver operating characteristic curve.

Function and pathway enrichment. Gene ontology (GO) 
function enrichment and Kyoto Encyclopedia of Genes 
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and Genomes (KEGG) pathway enrichment analyses were 
performed for the integrated ceRNA regulatory network using 
the Database for Annotation, Visualization and Integrated 
Discovery version 6.8 (https://david.ncifcrf.gov). Fisher 
exact test was applied for the enrichment using the following 
formula:

Where N is the total number of all human genes, M is the 
number of genes in enriched pathways and K is number of 
DEGs.

Results

Microarray data sets and preprocessing. A total of 506 samples 
comprising 447 PTC samples and 59 normal samples were 
obtained from TCGA, from which a total of 877 lncRNAs, 
1,046 miRNAs and 1,8348 mRNAs were annotated from the 
sequencing data. The microarray data sets GSE33630 and 
GSE60542 were downloaded from the GEO database, which 
included 45 and 32 normal samples, as well as 49 and 33 PTC 
samples, respectively.

DE‑lncRNAs, DEGs, and DE‑miRNAs. Using thresholds 
of FDR <0.05 and |logFC| >1, 16 DE-lncRNAs were identi-
fied (Table I), as well as 917 DEGs and 30 DE-miRNAs. 
Clustering analysis of DE-lncRNAs, DE-miRNAs and DEGs 
suggested that tumor samples may be distinguished from 
normal samples based on the expression levels of DE-lncRNAs, 
DE-miRNAs and DEGs (Fig. 1).

lncRNA‑miRNA, miRNA‑mRNA and gene‑gene regulatory 
networks. A total of 246 lncRNA-miRNA regulatory pairs 
were screened from miRcode and starBase, including 19 
DE-miRNAs (Table II). The constructed miRNA-lncRNA 
regulatory network comprised 8 DE-lncRNAs and 
7 DE-miRNAs (Fig. 2). A total of 13,159 target genes 
of the 30 DE-miRNAs were obtained from miRTarBase 
database; 406 DEGs were among these target genes. The 
miRNA-mRNA regulatory pairs were integrated with 
gene-gene interaction pairs to construct a comprehen-
sive miRNA-mRNA regulatory network (Fig. 3). The 
network comprised 353 nodes (miRNAs or genes) and 
577 lines (interactions).

Feature genes extraction. Degree distribution of the nodes 
demonstrated that the constructed miRNA-regulatory 
network followed the characteristics of scale-free networks. A 
total of 100 feature genes were screened according to the BC 
values. The clustering analysis indicated that tumor samples 
may be distinguished from the normal samples based on the 
expression level of the top 100 feature genes ranked by BC 
value (Fig. 4).

SVM classifier. A total of 15 feature genes with high predictive 
precision (>95%) were obtained following refinement by the 
RFE algorithm, as demonstrated in Fig. 5A, the accuracy was 
>95% when there were 15 feature genes. Basic information 

on these 15 genes is provided in Table III. The SVM classi-
fier constructed by the 15 genes demonstrated an accuracy of 
96.05% (486/506; Fig. 5B).

In the validation test, the SVM classifier was able to 
correctly distinguish 44 out of 45 normal samples in the 
GSE33630 data set, and 47 out of 49 PTC samples, with an 
accuracy of 96.81% (Fig. 6A). For the GSE60542 data set, 
SVM classifier could correctly distinguish all the 32 normal 
samples and 32 out of 33 PTC samples, with the accuracy 
of 98.46% (Fig. 6B). As demonstrated in Table IV, the SVM 
classifier demonstrated a satisfied classifying characteris-
tics (Table IV).

Table I. Differentially expressed lncRNAs between papillary 
thyroid carcinomas samples and normal tissue samples.

lncRNA logFC P-value FDR

NHEG1 -2.63948 2.87x10-02 9.36x10-02

FAM27B -2.49586 2.48x10-05 2.57x10-04

C12orf77 -2.04917 2.05x10-07 3.01x10-06

RNU11 -1.85277 1.24x10-06 1.45x10-05

TERC -1.66684 9.66x10-22 1.70x10-19

PWRN2 -1.58396 9.41x10-04 5.52x10-03

DIO3OS -1.45712 7.29x10-08 1.28x10-06

TCL6 -1.19462 1.84x10-11 8.10x10-10

SMCR5 -1.08884 4.66x10-10 1.37x10-08

MYCNOS -1.0739 1.65x10-10 5.81x10-09

HYMAI -1.05663 2.20x10-08 4.84x10-07

C9orf170 -1.03293 1.43x10-07 2.29x10-06

SFTA1P 1.325098 4.13x10-18 3.63x10-16

C16orf82 1.437648 6.26x10-03 2.75x10-02

UCA1 2.279467 3.41x10-14 2.00x10-12

HOTAIR 2.707475 2.77x10-03 1.43x10-02

FC, fold change; FDR, false discovery rate; lncRNA, long non-coding 
RNA.

Table II. Differentially expressed lncRNAs that are regulated 
by differentially expressed microRNAs.

lncRNA microRNA

C16orf82 hsa-miR-18b and hsa-miR-876
DIO3OS hsa-miR-7, hsa-miR-206 and hsa-miR-18b
HOTAIR hsa-miR-9-3 and hsa-miR-206
MYCNOS hsa-miR-551b, hsa-miR-18b and hsa-miR-7
PWRN2 hsa-miR-9-3 and hsa-miR-206
SFTA1P hsa-miR-206 and hsa-miR-9-3
TCL6 hsa-miR-9-3, hsa-miR-18b, hsa-miR-490 and
 hsa-miR-7
UCA1 hsa-miR-206

lncRNA, long non-coding RNA; miR, microRNA.
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Figure 3. miRNA-mRNA regulatory network in papillary thyroid carcinomas. Circles represent mRNAs/genes; diamonds represent miRNAs; green color 
indicates downregulated nodes; red color indicates upregulated nodes; white circles represent genes with >5 interactions with miRNA-targeted genes; blue 
lines are miRNA-mRNA interactions; and red lines are gene-gene interactions. miRNA, microRNA.

Figure 1. Sample clustering results by DEGs, DE-microRNAs and DE-long non-coding RNAs. (A) DEGs, (B) DE-microRNAs and (C) DE-long non-coding 
RNAs. Blue represents normal samples and red represents papillary thyroid carcinoma samples. DE, differentially expressed; DEG, differentially expressed 
gene.

Figure 2. Differentially expressed miRNA-lncRNA regulatory network. Diamonds represent miRNAs; triangles represent lncRNAs; green color indicates 
downregulated nodes; and red color indicates upregulated nodes. lncRNA, long non-coding RNA; miR, microRNA; miRNA, microRNA.
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Function and pathway enrichment. The ceRNA regulatory 
network comprised 365 nodes and 596 lines (Fig. 7). Genes 
in the ceRNA network were significantly enriched in 20 GO 
function terms, most of which related to neuron development 

and differentiation (Table V). The present study focused on 
the Biological Process (BP) ontologies in GO as the purpose 
of this current study is the RNA regulatory network of PTC. 
In addition, genes in the ceRNA regulatory network were 

Figure 4. Clustering results of the feature genes with top 100 betweenness centrality values of different samples in the TCGA downloaded dataset.

Figure 5. Classification effects of the extracted feature genes on PTC samples. (A) Feature elimination of all 100 feature genes. The vertical red line shows 
that when there were 15 genes, the accuracy could reach >95%. (B) Sample distribution distinguished by the support vector machine classifier. PTC, papillary 
thyroid carcinomas.
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Figure 6. Classification confusion matrix and scatter plot of support vector machine classifier on GEO downloaded datasets. (A) The left fig. illustrates 
the accuracy of the SVM classifier to classify the normal and tumor sample in GSE33630 dataset; The right fig. showed the distribution of the samples in 
GSE33630 dataset. (B) The left Figure showed the accuracy of the SVM classifier to classify the normal and tumor sample in GSE60542 dataset; The right 
Figure showed the distribution of the samples in GSE60542 dataset.

Table III. 15 feature genes and related DE-microRNAs.

Gene logFC P-value FDR BC  Related DE-microRNA

DACH2 1.1311 3.99x10-13 1.00x10-11 0.0247 hsa-miR-18b and hsa-miR-206
DPP6 -1.0414 1.09x10-44 2.17x10-42 0.0879 hsa-miR-187 and hsa-miR-506
GALNT13 1.0542 3.72x10-08 5.42x10-07 0.1683 hsa-miR-187, hsa-miR-18b and hsa-miR-873
GRIA4 -1.1509 1.06x10-10 2.07x10-09 0.3746 hsa-miR-187, hsa-miR-18b, hsa-miR-506 and 
     hsa-miR-873
GRM7 -1.1511 1.84x10-09 3.10x10-08 0.0856 hsa-miR-206 and hsa-miR-506
HECW1 -1.3015 8.89x10-31 8.19x10-29 0.0603 hsa-miR-206 and hsa-miR-506
HTR1D 1.2698 2.92x10-14 8.30x10-13 0.1310 hsa-miR-18b, hsa-miR-206 and hsa-miR-873
KLK10 1.2011 9.98x10-42 1.66x10-39 0.0247 hsa-miR-18b and hsa-miR-206
SH2D6 -1.3458 3.08x10-35 3.91x10-33 0.0247 hsa-miR-18b and hsa-miR-206
STRA6 1.4452 5.51x10-48 1.37x10-45 0.0614 hsa-miR-506 and hsa-miR-873
TRHDE -1.1062 2.25x10-12 5.21x10-11 0.0357 hsa-miR-187 and hsa-miR-206
TRPC5 2.0281 1.86x10-58 1.03x10-55 0.0942 hsa-miR-18b, hsa-miR-206 and hsa-miR-506
TRPM3 -1.3570 4.04x10-32 4.07x10-30 0.0345 hsa-miR-206 and hsa-miR-506
VTCN1 1.9145 3.25x10-38 4.64x10-36 0.0350 hsa-miR-18b and hsa-miR-506
ZCCHC16 1.7752 5.37x10-49 1.39x10-46 0.0247 hsa-miR-18b and hsa-miR-206

BC, betweenness centrality; DE, differentially expressed; FC, fold change; FDR, false discover rate; miR, microRNA.
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significantly enriched in four KEGG pathways, including 
‘neuroactive ligand-receptor interaction’, ‘metabolism of 

xenobiotics by cytochrome P450’, ‘drug metabolism’ and 
‘cytokine-cytokine receptor interaction pathway’.

Table IV. Classifying characteristics of the support vector machine classifier on all downloaded data sets.

Data set n Correct rate Sensitivity Specificity PPV NPV AUROC

TCGA 506 0.961 0.9619 0.949 0.993 0.921 0.998
GSE33630 94 0.968 0.959 0.978 0.979 0.956 0.991
GSE60542 65 0.985 0.969 1.000 1.000 0.969 0.973

AUROC, area under receiver operating characteristic curve; TCGA, The Cancer Genome Atlas; NPV, negative predictive value; PPV, positive 
predictive value.

Figure 8. ceRNA regulatory network of DE-miRNAs, DE-lncRNAs and selected feature genes. The feature genes were those used for constructing the SVM 
classifier. Circles represent mRNAs (genes); diamonds represent miRNAs; triangles represent lncRNAs. Green nodes indicate downregulated expression; red 
nodes indicate upregulated expression. Solid lines represent miRNA-mRNA interactions; dotted lines represent lncRNA-miRNA interactions. DE, differen-
tially expressed; lncRNA, long non-coding RNA; miR, microRNA; miRNA, microRNA.

Figure 7. ceRNA regulatory network of all DE-miRNAs, DE-lncRNAs and DEGs. Circles represent mRNAs (genes); diamonds represent miRNAs; triangles 
represent lncRNAs. Green nodes represent downregulated expression; red nodes represent upregulated expression; white circles represent genes with >5 
interactions to miRNA targeted genes. Blue lines indicate miRNA-gene and miRNA-lncRNA interactions; red lines indicate gene-gene interactions. DE, 
differentially expressed; DEG, differentially expressed gene; lncRNA, long non-coding RNA; miR, microRNA; miRNA, microRNA.
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Table V. Enriched functions for the feature genes.

Term Count P-value Genes

GO:0007267~cell-cell 25 4.05x10-5 CPLX3, CGA, CXCL5, OPRK1, KCNA1, CXCL6, KCNIP1,
signaling   GLI1, IL11, CCL20, HTR1D, IHH, TRHDE, GABRA6, SLC12A5,
   GRIN1, NLGN1, NRXN1, GRIA4, GRM4, GRIA2, SIGLEC6, 
   GRM7, CARTPT and HTR2A
GO:0007268~synaptic 16 1.04x10-4 CPLX3, GABRA6, OPRK1, SLC12A5, KCNA1, GRIN1, NLGN1,
transmission   NRXN1, GRIA4, KCNIP1, GRM4, GRIA2, GRM7, CARTPT,
   HTR1D and HTR2A
GO:0019226~transmission 17 1.87x10-4 CPLX3, OPRK1, GABRA6, SLC12A5, KCNA1, GRIN1, NLGN1,
of nerve impulse   CACNG4, NRXN1, GRIA4, KCNIP1, GRM4, GRIA2, GRM7,
   CARTPT, HTR1D and HTR2A
GO:0051969~regulation of 10 6.47x10-4 CPLX3, KISS1R, GRIA2, RASGRF1, GRIN1, NLGN1, CARTPT,
transmission of nerve impulse   GRIA4, LGI1 and HTR2A
GO:0006811~ion transport 26 6.79x10-4 FXYD3, KCNA2, KCNA1, KCNIP1, SLCO1A2, KCNK9, SLC4A1,
   ANO4, OCA2, TRPM3, CLCA2, GABRA1, TRPM8, TRPC5,
   GABRA6, GRIN1, SLC12A5, CACNG4, GRIA4, TCN1, RHCG,
   GRIA2, SLC13A1, KCTD16, SLC30A10 and KCNH5
GO:0031644~regulation of 10 8.62x10-4 CPLX3, KISS1R, GRIA2, RASGRF1, GRIN1, NLGN1, CARTPT,
neurological system process   GRIA4, LGI1 and HTR2A
GO:0043062~extracellular 10 1.35x10-3 ADAMTS14, RXFP1, TNR, DMP1, NLGN1, POU4F1, COL2A1,
structure organization   NRXN1, COL11A1 and TMPRSS6
GO:0007610~behavior 18 1.65x10-3 DMBX1, CXCL5, OPRK1, SLC6A3, GRIN1, CXCL6, GRM4,
   KISS1R, CCL20, RASGRF1, CCR3, GRM7, CNR2, CARTPT,
   POU4F1, SERPIND1, HTR2A and CMTM5
GO:0050877~neurological 34 2.03x10-3 SLC45A2, CPLX3, SLC6A3, OPRK1, KCNA1, COL2A1, RORB,
system process   KCNIP1, CRX, POU4F1, HTR1D, COL11A1, NYX, TRPM8,
   CRYAA, CNTN5, GABRA6, GRIN1, SLC12A5, NLGN1, CACNG4,
   VAX2, GRIA4, NRXN1, OPN5, GRM4, EYA1, LHFPL5, GRIA2,
   RASGRF1, GRM7, USH1C, CARTPT and HTR2A
GO:0048666~neuron 14 3.56x10-3 NEUROG2, VAX2, RORB, NRXN1, LMX1A, EN2, SLITRK2,
development   LHFPL5, RASGRF1, TNR, GBX2, POU4F1, OLFM3 and GAP43
GO:0007423~sensory 11 4.17x10-3 EYA1, LHFPL5, CRYAA, HOXC13, GBX2, RORB, VAX2, COL2A1,
organ development   OLFM3, COL11A1 and PTPRQ
GO:0007389~pattern 12 4.22x10-3 EYA1, HOXC13, SOSTDC1, TDGF1, GBX2, RIPPLY1, VAX2, 
specification process   GRHL3, SP8, GLI1, IHH and ALX1
GO:0044057~regulation of 13 4.55x10-3 CPLX3, TACR3, GRIN1, NLGN1, GRIA4, KISS1R, ABCG5,
system process   TNNT1, GRIA2, RASGRF1, CARTPT, LGI1 and HTR2A
GO:0030182~neuron 16 5.17x10-3 NEUROG2, VAX2, RORB, NRXN1, LMX1A, EN2, SLITRK2,
differentiation   LHFPL5, RASGRF1, TNR, BTG4, GBX2, POU4F1, OLFM3,
   NKX2‑2 and GAP43
GO:0001501~skeletal system 13 5.76x10-3 EYA1, SOST, HOXA13, ENAM, DMP1, MMP8, COL2A1, HOXD1,
development   COL11A1, GLI1, IHH, AHSG and ALX1
GO:0051240~positive regulation of 11 6.39x10-3 ADRB3, KISS1R, TACR3, GRIA2, SLC6A3, CARTPT, GRIA4,
multicellular organismal process   LGI1, HTR2A, AHSG and CRX
GO:0000904~cell morphogenesis 11 6.39x10-3 SLITRK2, LHFPL5, CRYAA, TNR, GBX2, VAX2, NEUROG2,
involved in differentiation   POU4F1, NRXN1, LMX1A and GAP43
GO:0048667~cell morphogenesis 10 7.03x10-3 SLITRK2, LHFPL5, TNR, GBX2, VAX2, NEUROG2, POU4F1,
involved in neuron differentiatio   NRXN1, LMX1A and GAP43
GO:0007601~visual perception 10 8.63x10-3 OPN5, SLC45A2, CRYAA, USH1C, RORB, VAX2, COL2A1,
   COL11A1, NYX and CRX
GO:0050953~sensory perception 10 8.63x10-3 OPN5, SLC45A2, CRYAA, USH1C, RORB, VAX2, COL2A1,
of light stimulus   COL11A1, NYX and CRX

GO, gene ontology.
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ceRNA regulatory network of selected feature genes. The 
ceRNA regulatory network of the selected feature genes 
was constructed (Fig. 8). The network provided valuable 
information for reveal potential RNA regulation mechanism 
in PTC. The upregulated expression of lncRNA HOX tran-
script antisense RNA (HOTAIR), surfactant associated 1, 
pseudogene (SFTA1P), urothelial cancer associated 1 (UCA1) 
or the downregulated expression of Prader-Willi region 
non-protein coding RNA 2 (PWRN2) and DIO3 opposite 
strand/antisense RNA (DIO3OS) result in the downregula-
tion of miR-206 expression, which in turn may subsequently 
lead to the upregulated gene expression of kallikrein-related 
peptidase 10 (KLK10), dachshund family transcription factor 
2 (DACH2), 5-hydroxytryptamine receptor 1D (HTR1D), 
zinc‑finger CCHC‑type containing 16 (ZCCHC16) and tran-
sient receptor potential cation channel subfamily C member 
5 (TRPC5). These five genes were also revealed to be poten-
tially significantly upregulated by the decreased expression 
level of miR-18b, which was induced by the upregulation 
of C16orf18 and the downregulation of MYCN opposite 
strand (MYCNOS), T cell leukemia/lymphoma 6 (TCL6) and 
DIO3OS.

Discussion

Using the RNA-seq data downloaded from TCGA, DE-miRNA, 
DEGs and DE‑lncRNAs in PTC samples were identified. The 
identified factors were subjected to known interaction databases 
to obtain the lncRNA-miRNA and the miRNA-mRNA regula-
tory networks, as well as a comprehensive ceRNA network. By 
conducting BC value calculation and RFE algorithm, 15 feature 
genes were screened. The SVM classifier constructed by these 
15 feature genes revealed an accuracy of 96.05% (486/506) 
for the PTC samples downloaded from TCGA, and high 
accuracy (96.81 and 98.46%) for the PTC samples down-
loaded from GEO. The lncRNA-miRNA-mRNA interaction 
of HOTAIR-miR-206-KLK10 (or HOTAIR-miR-206-DACH2, 
-HTR1D, ‑ZCCHC16 or -TRPC5) is some of the interactions 
in the ceRNA regulatory network of the selected PTC feature 
genes; the five genes aforementioned may also be significantly 
upregulated by a decrease in the expression level of miR-18b. 
It has been reported that miR-18b and miR-206 induce cell 
cycle arrest and inhibit estrogen-induced proliferation, with 
inhibition levels comparable to those achieved by estrogen 
receptor (ER)α small interfering RNA (8). Therefore, it may 
be concluded that miR-18b and miR-206 may serve a similar 
regulatory role for their target genes. In addition, genes in 
the comprehensive ceRNA regulatory network were mainly 
enriched in neuronal development and differentiation related 
functions, and in four pathways.

To date, the functions and roles of lncRNAs in thyroid 
remain to be further explored. HOTAIR is a tumor-related 
lncRNA, and its overexpression is believed to be associated 
with poor prognosis and increased invasiveness in cancer (24). 
The expression status of HOTAIR may be used to predict 
metastasis and mortality in patients with breast tumors and 
hepatocellular carcinoma (25,26). However, the connections 
between HOTAIR and PTC have not been reported previously. 
The inhibition of HOTAIR expression may induce the down-
regulation of neuronal growth-related genes (27); notably, 

feature genes in the comprehensive ceRNA regulatory network 
were related to neuron development functions. Therefore, the 
present study hypothesized that HOTAIR may be involved in 
the development of PTC by interrupting neuronal growth.

Alterations in miRNA expression levels have been identified 
in thyroid tumors, which indicated their involvement in thyroid 
carcinoma. For example, the expression of miR-146b-5p was 
previously revealed to be upregulated, and miR-335 expression 
downregulated in PTC samples (28). There are many reports 
about the roles of miRNA in the diagnosis and prognosis of 
PTC (29-31). miR-206 is a member of the skeletal muscle 
specific miRNA (myomiR) family, which exert important 
roles in the pathogenesis of various types of cancers (32). 
miR‑206 was reported to be significantly deregulated in PTC 
tissues (33). miR-1 is another member in the myomiR family, 
and was revealed to be downregulated in aggressive PTC 
and associated with thyroid cell growth and migration (34). 
miR-1 functions as a tumor suppressor in thyroid carcinoma, 
targeting C-X-C motif chemokine receptor 4, cyclin D2 and 
stromal cell-derived factor 1α (35). Therefore, the present 
study hypothesized that miR-206 may serve similar roles with 
miR-1 in PTC.

KLK10 serves an important role in the tumor micro-
environment, invasion and angiogenesis (36). KLK10 
regulates normal cell growth and probably functions as a 
tumor suppressor (37,38). Expression of KLK10 is increased 
in PTC samples, and there is a specific hypomethylation of 
KLK10 in BRAF-mutated PTC (39).

In conclusion, ceRNA regulatory network is a good way to 
identify the signature RNAs for cancers. HOTAIR, miR-206, 
and KLK10 are potential gene markers for targeting therapy 
and diagnosis of PTC.
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