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Abstract. Acute myocardial infarction induces ventricular 
remodeling, which is implicated in dilated heart and heart 
failure. The pathogenical mechanism of myocardium 
remodeling remains to be elucidated. The aim of the present 
study was to identify key genes and networks for myocardium 
remodeling following ischemia-reperfusion (IR). First, 
the mRNA expression data from the National Center for 
Biotechnology Information database were downloaded to 
identify differences in mRNA expression of the IR heart at 
days 2 and 7. Then, weighted gene co-expression network 
analysis, hierarchical clustering, protein-protein interaction 
(PPI) network, Gene Ontology (GO), Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway were used to identify 
key genes and networks for the heart remodeling process 
following IR. A total of 3,321 differentially expressed genes 
were identified during the heart remodeling process. A total 
of 6 modules were identified through gene co-expression 
network analysis. GO and KEGG analysis results suggested 
that each module represented a different biological function 
and was associated with different pathways. Finally, hub genes 
of each module were identified by PPI network construction. 
The present study revealed that heart remodeling following 
IR is a complicated process, involving extracellular matrix 
organization, neural development, apoptosis and energy 
metabolism. The dysregulated genes, including SRC 

proto‑oncogene, non‑receptor tyrosine kinase, discs large 
MAGUK scaffold protein 1, ATP citrate lyase, RAN, member 
RAS oncogene family, tumor protein p53, and polo like 
kinase 2, may be essential for heart remodeling following IR 
and may be used as potential targets for the inhibition of heart 
remodeling following acute myocardial infarction.

Introduction

Although the medical approaches have developed rapidly, 
acute myocardial infarction (AMI) remains a principal cause of 
mortality worldwide (1). AMI induces a complex pathological 
processes including the death of cardiomyocytes, inflamma-
tion, fibrosis and hypertrophic growth of cardiomyocytes, 
which may progress to heart failure (2). Currently, the most 
effective therapies for AMI are vascular reflow to the ischemic 
region by thrombolysis, percutaneous coronary intervention 
and coronary artery bypass surgery (3).

As the ischemic area remains hypoxic, the heart continues 
to lose cardiomyocytes, which decreases its contractile 
function. The condition can be modeled by the permanent 
ligation of coronary artery in rodent animals. When the 
myocardium is reperfused for the reoxygenation of ischemic 
myocardium, the reoxygenation can induce reperfusion injury 
through cell injury pathways, including free radical production, 
mitochondrial injury, activation of pro-apoptotic pathway 
and calcium dysregulation (4). Reoxygenation also induces 
cardiac remodeling by the transdifferentiation of cardiac 
fibroblasts into myofibroblasts (4-6). These side effects of 
reperfusion may increase the risk of mortality (7,8). Therefore, 
a comprehensive understanding of myocardial biology in 
ischemia-reperfusion (IR) is important.

Weighted gene co-expression network analysis (WGCNA) 
has been successfully used in systems biology studies to 
investigate the intrinsic organization of transcriptomes (9). 
This approach provides an effective method to examine the 
gene expression patterns, calculate the adjacency of genes, 
construct gene networks and assess the importance of genes 
within the network (10). It has been applied for construction 
of gene co-expression network modules, the identification 
of hub genes and identifying the connection of diagnostic 
genes and diseases (10-12). However, WGCNA has not been 
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applied to identify the network and hub genes associated with 
IR myocardium from days 2 to 7, to the best of the authors' 
knowledge.

In the present study, the microarray data on IR remodeling 
were downloaded from National Center for Biotechnology 
Information (NCBI) (13) and differentially expressed genes 
(DEGs) identified by pairwise comparison. Subsequently, 
WGCNA was performed to investigate the expression modules 
and key genes for each module. The functional annotation of 
each module revealed the biological associations with dynamic 
features of myocardium from days 2 to 7.

Materials and methods

Analysis of differentially expressed genes. The microarray 
data of rat IR were downloaded from the NCBI Gene 
Expression Omnibus database (accession number: GSE4105) 
and normalized by MAS5 (13). All the samples were divided 
into 4 groups, including day 2 (2d)-sham, 2d-IR, day 7 
(7d)-sham and 7d-IR. DEGs were analyzed between two 
subsequent groups. DEGs between any two consecutive stages 
were determined by the limma 3.34.9 package in R (version 
3.1.1) (14). The threshold of the significance of DEG was set 
as fold change 31.5 and P<0.05. A total of 3,321 DEGs were 
obtained with the cutoff set as P<0.05.

Construction of gene co‑expression networks. To study the 
functional organization of the rat IR heart, DEGs between 
any two consecutive stages were selected and weighted 
co-expression network analysis performed by using the 
WGCNA R package (15). First, missing values and outlier 
samples were checked by an unsupervised hierarchical 
clustering analysis. Then, a weighted adjacency matrix was 
created and the soft threshold power (β) set at 10 to analyze 
scale-free topology. The power β determines the co-expression 
similarity for the adjacency matrix. The power 10 was chosen, 
for which the scale‑free topology fitting index R2 and mean 
connectivity may reach a plateau (Fig. 1). It suggested that 
β=10 was the minimum value for the scale-free topology crite-
rion. Modules were identified by the following parameters: 
‘power =10, minModuleSize =30, mergeCutHeight =0.25’. A 
total of 6 modules containing all the DEGs were identified. 
Genes of each module are demonstrated in the topological 
overlap heatmap (Fig. 2).

Modules were labeled using different colors and shown as 
a hierarchical clustering dendrogram. The weighted network 
was visualized using a heatmap plot. Gene expression patterns 
of DEGs in each module were analyzed by hierarchical 
clustering analysis.

Gene Ontology (GO) and pathway analysis. To identify the 
biological process and signaling pathways in each module, 
GO (16) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) (17) pathways were enriched by David online tools 
(david.ncifcrf.gov) (18,19). The threshold of significant enrich-
ment was set as P<0.05.

Protein‑protein interaction (PPI) network analysis. To 
determine the interaction between DEGs in each module, 
they were mapped to Search Tool for the Retrieval of 

Interacting Genes (STRING; version 10.5), an online tool 
for evaluating protein-protein interaction (20). Interactions 
with a combined score >0.4 were considered significant. The 
protein-protein networks were constructed by Cytoscape soft-
ware (version 3.2.0; http://www.cytoscape.org/) (21). Modules 
of protein‑protein interaction were identified by Molecular 
Complex Detection (MCODE; version 1.5) (22) with the 
following cutoff: Nodes of cluster >4, Score of MCODE >3.

Results

Functional annotation of DEGs in each module. Significantly 
enriched biological process and KEGG pathways in each 

Figure 1. Different soft-thresholding powers (b) were analyzed for (A) the 
topology scale‑free fitting and (B) mean connectivity as a function of the 
power evaluated from ischemia reperfusion myocardium data.

Figure 2. Heatmap of the gene coexpression network. The heatmap descriped 
adjacencies among genes in the analysis. A single gene correspond to each 
row and column of the heatmap. Low adjacencies are indicated by yellow 
colour and higher adjacencies are indicated by progressively red colour. The 
genes in the analysis were clustered in modules labeled by a color code (blue, 
yellow, brown, green and turquoise), which are shown by squares under gene 
dendrogram along the diagonal. 



MOLECULAR MEDICINE REPORTS  18:  1955-1962,  2018 1957

module are shown in Fig. 3. Different modules represented 
distinct gene expression patterns following IR. The blue 
module denoted the DEGs enriched between 7d-IR and 
other groups (Fig. 3A). ‘Extracellular matrix organization’, 
‘wound healing’, ‘angiogenesis’, ‘canonical Wnt signaling’ 
and ‘PI3K‑AKT signaling’ were significantly enriched in this 
module (Figs. 4A and 5A). In the brown module, DEGs were 
enriched between IR and sham group (Fig. 3B). ‘Regulation 
of cell proliferation’, ‘regulation of cell shape’, ‘intergrin 
mediated signaling pathway’, ‘endocytosis’, ‘Fc gamma 
R-mediated phagocytosis’, ‘cardiac contraction’, ‘hypertrophic 
cardiomyopathy’, ‘adrenergic signaling’ and ‘sphingolipid 
signaling pathway’ were significantly enriched in this module 
(Figs. 4C and 5C). In the green module, DEGs were enriched 
between 2d-IR and other groups (Fig. 3C). ‘Response to 
organic cyclic compound’, ‘epithelial cell proliferation’, 
‘response to wounding’, and ‘amino acid metabolism’ were 
enriched significantly in this module (Figs. 4D and 5D). In 
the red module, DEGs were enriched between days 2 and 
7 (Fig. 3D). ‘Chromatin remodeling’, ‘neural tube closure’, 
and ‘neural tube formation’ were enriched significantly in 
this module (Fig. 4F). In the turquoise module, the dynamic 

pattern of DEGs is shown in Fig. 3E. ‘Fatty acid β-oxidation’, 
‘tricarboxylic acid cycle’, ‘ATP metabolic process’ and 
‘oxidative phosphorylation’ were enriched significantly in this 
module (Figs. 4E and 5E). In the yellow module, DEGs were 
enriched between sham-7 day and other groups (Fig. 3F). ‘Ion 
transmembrane transport’, ‘regulation of body fluid levels’, 
‘adrenergic signaling’ and ‘cGMP-PKG signaling’ pathways 
were significantly enriched (Figs. 4B and 5B).

Identification of the key genes in each module. To elucidate 
the interaction between the hub genes in each module, PPI 
networks of hub genes were constructed using Cytoscape soft-
ware. To explore core modules of protein-protein interactions, 
PPI modules were identified by MCODE.

The protein interacting with maximum number of DEGs 
was defined as the key gene in each module. As shown in 
Fig. 6, the key genes of each module are SRC proto‑oncogene, 
non‑receptor tyrosine kinase (Scr) for the blue module, 
discs large MAGUK scaffold protein 1 (Dlg1) for the yellow 
module, ATP citrate lyase (Acly) for the brown module, RAN, 
member RAS oncogene family (Ran) for the green module, 
tumor protein p53 (TP53) for the turquoise module and polo 

Figure 3. Hierarchical clustering analysis of all differentially expressed genes (DEGs) in each module. Blue color represents downregulation of genes. Red 
indicates upregulation of genes. Different gene expression patterns following IR were shown as different color modules. (A) The blue module enriched the 
DEGs between 7d-IR and other groups. (B) The brown module enriched DEGs between IR and sham group. (C) The green module enriched DEGs between 
2d-IR and other groups. (D) The red module enriched DEGs between days 2 and 7. (E) The turquoise module enriched the dynamic expression of DEGs. 
(F) The yellow module enriched DEGs between sham-7 day and other groups. IR, ischemia reperfusion. 
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like kinase 2 (Plk2) for the red module. The most significant 
cluster of each network was highlighted for yellow color in 
each module.

Discussion

The aim of the present study was to identify the genes and 
networks associated with the heart remodeling process 
following IR. Distinct modules, biological process, KEGG 
pathways and co-expression networks during heart remodeling 
were identified and the results of the present study provided 
insights into the regulation of heart remodeling following IR.

A total of 6 modules were identified by constructing 
co-expression networks. Hierarchical clustering analysis 
revealed that each module represented a different dynamic 
gene expression pattern and a different biological function. The 

blue module represented the specific physiological features 
of the heart following 7 days' IR, associated with ‘canonical 
Wnt signaling’, ‘TGFβ receptor signaling’ and ‘PI3K-AKT 
signaling pathway’. It has been reported that canonical Wnt 
signaling, TGFβ and PI3K-AKT signaling pathways are 
involved in regulation of cardiac fibroblasts growth and extra-
cellular matrix (ECM) remodeling (23-26).

The brown module represented the common physiological 
features of the heart following IR, which are associated with 
phagocytosis. The green module represented the specific 
physiology of the heart after 2 days' IR, associated with 
amino acid metabolism. Apoptosis-associated genes were 
significantly upregulated in the day 2 IR heart, including 
heme oxygenase 1, FOS like 1, AP-1 transcription factor 
subunit and eukaryotic translation elongation factor 1 
epsilon 1. The red module represented the physiological 

Figure 4. Gene Ontology enrichment analysis of all differentially expressed genes (DEGs) in each module. DEGs in each module were subjected into biological 
process enrichment. Top 10 significantly enriched biological process were shown here (P<0.05) for (A) blue, (B) yellow, (C) brown, (D) green, (E) turquoise, 
and (F) red modules.
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state of the heart between days 2 and 7, which is associated 
with neural development. The turquoise module represented 
the gradual process of heart remodeling which is closely 
associated with fatty acid metabolism. It has been documented 
that during heart remodeling and heart failure, the energy 
metabolism shifts from the fatty acid metabolism to glucose 
metabolism (27). In this module, fatty acid metabolism 
genes including acyl-CoA oxidase 3, pristanoyl, carnitine 

palmitoyltransferase 1B, acyl‑CoA synthetase long chain 
family member 6, hydroxyacyl‑CoA dehydrogenase and 
acyl-CoA dehydrogenase very long chain were gradually and 
significantly downregulated. The yellow module represented 
the specific physiological state of the normal heart at day 7, 
which is closely associated with the cGMP-PKG signaling 
pathway. The cGMP/PKG pathway is known to inhibit cardiac 
structural remodeling (28). All these results suggested heart 

Figure 5. Pathway enrichment of all DEGs in each module. DEGs in each module were performed KEGG enrichment. Significantly enriched KEGGs (P<0.05) 
are shown here for (A) blue, (B) yellow, (C) brown, (D) green and (E) turquoise modules. DEGs, differentially expressed genes; KEGG, Kyoto Encyclopedia 
of Genes and Genomes. 
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remodeling following IR is a complex process, involving ECM, 
neural development, apoptosis and energy metabolism shift.

Hub genes were also identified in each module, including 
Src for the blue module, Dlg1 for the yellow module, Acly 

Figure 6. Protein-protein interaction network of the differentially expressed genes in each module. The nodes indicate proteins. The edges indicate interactions 
between proteins. Highlighted yellow nodes represent molecular complexes identified by molecular complex detection algorithm of cytoscape software. Core 
protein-protein interaction networks were shown here for (A) blue, (B) yellow, (C) brown, (D) green, (E) turquoise, and (F) red modules.
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for the brown module, Ran for the green module, TP53 for 
turquoise module and Plk2 for red module. Src, upregulated 
in the heart 7 days following IR, is a non-receptor tyrosine 
kinase that serves roles in numerous biological process 
including cell adhesion, cell cycle and cell migration (29,30). 
In the heart, Src is activated by AngII and contributes to 
pathophysiology of cardiac remodeling and hypertrophy (23). 
It has been suggested that Src may be a candidate target for 
heart remodeling diseases (31). Dlg1, upregulated in the 
day 7 normal heart, encodes a multi-domain scaffolding 
protein, taking part in skeletogenesis, cytoskeleton organi-
zation and endothelia proliferation (32,33). Although there 
have not been any studies on its function in the heart, to the 
best of the authors' knowledge, it may be a target to improve 
heart function based on its function in other cell types. Acly, 
upregulated in the IR heart, is an ATP citrate lyase which is 
responsible for the synthesis of cytosolic acetyl-CoA (34). 
Acly-mediated dimethyl α-ketoglutarate prevents autophagy 
of heart and reduces heart contractile performance (35). 
Acly may be an adaptive response in the IR heart and may 
be used for the inhibition of autophagy in the heart. Ran, a 
member of RAS superfamily, was upregulated in the day 2 
IR heart. Although there have not been any studies on its 
function in the heart, to the best of the authors' knowledge, 
previous studies have suggested that Ran controls micro-
tubule organization during the apoptotic process (36,37). 
Ran can perform a similar function in cardiomyocytes (38), 
which should to be studied in the future. TP53, gradually 
upregulated in the IR heart, is key for heart disease progres-
sion. A number of studies have suggested that TP53 serves 
an important role in heart remodeling and heart failure, and 
is responsible for suppression of hypoxia inducible factor 
1-induced angiogenesis, apoptosis of cardiomyocytes and 
fatty acid metabolism (39-41). Plk2, upregulated in the 
day 7 heart, is a member of the serine/threonine protein 
kinases. Plk2 mediates antioxidant signaling and is essential 
for preventing p53-dependent necrotic cell death in cancer 
cells and so may possess therapeutic implications for heart 
diseases (42,43).

Taken together, the results of the current study revealed the 
functional modules for heart remodeling following IR using a 
WGCNA method and identified key genes in each module by 
protein-protein interaction network. The results demonstrated that 
heart remodeling following IR is a complex process. A number 
of biological processes and signaling pathways are involved. 
The results of the present study may provide useful targets for 
heart disease treatment.
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