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Abstract. The guilt by association (GBA) principle has been 
widely used to predict gene functions, and a network‑based 
approach may enhance the confidence and stability of the 
analysis compared with focusing on individual genes. Fetal 
growth restriction (FGR), is the second primary cause of peri-
natal mortality. Therefore, the present study aimed to predict 
the optimal gene functions for FGR using a network‑based 
GBA method. The method was comprised of four parts: 
Identification of differentially‑expressed genes (DEGs) 
between patients with FGR and normal controls based on 
gene expression data; construction of a co‑expression network 
(CEN) dependent on DEGs, using the Spearman correlation 
coefficient algorithm; collection of gene ontology (GO) data 
on the basis of a known confirmed database and DEGs; and 
prediction of optimal gene functions using the GBA algorithm, 
for which the area under the receiver operating characteristic 
curve (AUC) was obtained for each GO term. A total of 
115 DEGs and 109 GO terms were obtained for subsequent 
analysis. All DEGs were mapped to the CEN and formed 
6,555 edges. The results of GBA algorithm demonstrated that 
78 GO terms had a good classification performance with AUC 
>0.5. In particular, the AUC for 5 of the GO terms was >0.7, 
and these were defined as optimal gene functions, including 
defense response, immune system process, response to stress, 
cellular response to chemical stimulus and positive regulation 
of biological process. In conclusion, the results of the present 
study provided insights into the pathological mechanism 
underlying FGR, and provided potential biomarkers for early 
detection and targeted treatment of this disease. However, 
the interactions between the 5 GO terms remain unclear, and 
further studies are required.

Introduction

Fetal growth restriction (FGR), the second primary cause 
of perinatal mortality, is a clinical entity that affects 5‑10% 
of gestations  (1). FGR has multiple heterogeneous causes, 
including maternal, fetal and placental factors (2). Effective 
treatments for FGR have not been proposed, apart from the 
interruption of pregnancy (3). Consequently, early diagnosis 
and prevention is of importance for patients with FGR, which 
may permit the etiological identification and adequate moni-
toring of fetal vitality, minimizing the risks associated with 
prematurity and intrauterine hypoxia  (1,4). Therefore, the 
identification of biological markers for the early diagnosis 
and detection of FGR is required, in order to elucidate the 
molecular mechanism underlying FGR.

At present, numerous diseases have been attributed to 
the differential expression of genes compared with normal 
controls [differentially expressed genes (DEGs)] (5). However, 
genes frequently do not function individually; rather, they 
interact with other genes. A network‑based approach is able to 
extract informative and notable genes via biological molecular 
networks, including the co‑expression network (CEN), rather 
than focusing on individual genes (6,7). Providing that gene 
connections are based on guilt‑determination, predictions of 
their gene functions may be conducted utilizing guilt‑by‑asso-
ciation (GBA) method (8). The GBA is a basic element for 
predicting gene function, and typically uses the interactions 
between any two genes for the purpose of investigation the role 
of novel genes in gene function categories.

Therefore, the present study took Gene Ontology (GO) 
annotations and gene expression data as study objectives, 
and integrated the network approach with the GBA method, 
termed the network‑based gene function inference method, 
for the purpose of predicting the optimal gene functions for 
FGR. These gene functions may be potential biomarkers for 
the early detection and targeted treatment of FGR.

Materials and methods

Network‑based gene function inference method. The 
network‑based gene function inference method was comprised 
of four steps: i) Identifying DEGs between patients with FGR 
and normal controls using Limma based on gene expression 
data; ii) constructing the CEN dependent on DEGs using the 
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Spearman correlation coefficient (SCC); iii) collecting GO 
data for FGR on the basis of a known confirmed database 
and DEGs; and iv) predicting gene functions using the GBA 
algorithm, for which the area under the receiver operating 
characteristic curve (AUC) was calculated for each GO term. 
An AUC of 0.5 represents classification at chance levels, while 
an AUC of 1.0 represents a perfect classification. In the gene 
function prediction literature, AUC >0.7 is considered to be 
optimal (9). Therefore, GO terms with AUC >0.7 were defined 
as optimal gene functions for patients with FGR in the present 
study.

Identifying DEGs. Gene expression data [GSE24129 (2)] for 
human FGR were downloaded from the Gene Expression 
Omnibus database (www.ncbi.nlm.nih.gov/geo) using the 
accession number. GSE24129 was deposited on an Affymetrix 
Human Gene 1.0 ST Array (Affymetrix; Thermo Fisher 
Scientific, Inc., Waltham, MA, USA), and comprised normo-
tensive pregnancies with or without FGR. The 8 examples with 
FGR were attributed to the case group, whereas 8 cases without 
FGR were denoted as normal controls. In order to control the 
quality of GSE24129, standard pretreatments were performed, 
which included background correction, normalization, probe 
matching and summarization (10‑12). Following conversion 
of pretreated data at the probe level into gene symbols and 
removal of duplications, 14,398 genes were obtained for FGR 
in total.

Subsequently, DEGs between the FGR samples and normal 
controls were identified using the Limma package (13). The 
lmFit function implemented in Limma was utilized to perform 
empirical Bayes statistics and false discovery rate calibration 
of the P‑values on the data (14,15). Only genes which met the 
thresholds of P<0.05 and |log2Fold Change| >2 were defined as 
DEGs across FGR patients and normal controls.

Constructing CEN. Cytoscape is an open source software 
project for integrating biomolecular interactions with 
high‑throughput expression data and other molecular states 
into a unified conceptual network (16). Therefore, the DEGs 
were inputted into the Cytoscape software to visualize the 
CEN. In order to further evaluate the cooperated strength for 
each interaction in the CEN, the SCC method was utilized (17). 
SCC is a measure of the correlation between two variables, 
giving a value between ‑1 and +1 inclusive. If the SCC analysis 
returned a positive value, this indicated a positive linear corre-
lation between two genes; otherwise, a negative correlation 
was indicated. For an interaction between gene i and j, the 
absolute SCC value was denoted as its weight value. The SCC 
was computed as follows:

Where n was the number of samples in the gene expres-
sion data; g(i, k) or g( j, k) was the expression level of gene i 
or j in the sample k under a specific condition; and g(i) or g(j) 
represented the mean expression level of gene i or j.

Recruiting GO annotation data. In the present study, the 
GO annotations were recruited from the GO Consortium 

(geneontology.org)  (18). There were 19,003 terms and 
18,402 genes in total for human beings. Notably, only one 
category (biological process) of GO was selected to be 
the study objective. In subsequent steps, the GO structure 
was diffused, and filtered for GO terms on size ranging 
from 20 to 1,000 genes after excluding those inferred from 
electronic annotation, a range that generally gives stable 
performance (8,9). In addition, to make ensure that the GO 
terms correlated closely to FGR, if a GO term had a number 
of DEGs <20, it was removed. Therefore, only GO terms 
including ≥20 DEGs were reserved. A total of 109 GO terms 
involved in 115 DEGs remained to be used in the following 
analyses.

Predicting gene function. As mentioned above, the GBA 
method was employed to predict the important gene function 
in the progression of FGR. Taking the GO functional annota-
tions, a multi‑functionality score (MFS) was assigned to each 
gene i in the CEN (8):

Where Numinx was the number of genes within GO group 
x, whose weighting had the effect of giving contribution to a 
GO group; and Numoutx was the number of genes outside the 
GO group x in the CEN, whose weighting provided a corre-
sponding weight to genes outside the GO group. Therefore, as 
the only gene outside a large GO group, the score of the only 
gene within a GO group was added to the score of another 
gene. Notably, weighting referred to the impact of measuring 
connectivity in a group through the number of contributions 
of the gene to that GO group. A 3‑fold cross‑validation was 
applied to determine an MFS ranked list score for genes as to 
how well they fitted with the known gene set, and computed 
the AUC values for assessing the classification performances 
between FGR samples and normal controls. To the best 
of our knowledge, AUC has been introduced as a better 
measure for evaluating the predictive ability of machine 
learning in support vector machine (SVM) models compared 
with assessing the clinical classification performance (19). 
Consequently, the AUC values for GO terms were obtained, 
and terms with AUC >0.7 were identified to be optimal gene 
functions.

Results

DEGs and GO terms. In the present study, a total of 14,398 
genes were obtained from the gene expression data following 
standard preprocessing. Based on these genes, 115 DEGs 
between FGR patients and normal controls were identified 
using the Limma package under the thresholds of P<0.05 and 
|log2FoldChange| >2. As presented in Table I, all DEGs were 
ranked in ascending order of their P‑values and the regula-
tion directions were labeled; 58 were upregulated and 57 were 
downregulated. The most significant 5 DEGs were trans-
membrane protein 136 (P=4.09x10‑5; downregulated), acid 
phosphatase, prostate (P=5.42x10‑5; downregulated), protein 
tyrosine phosphatase, non‑receptor type 3 (P=6.05x10‑5; 
downregulated), thrombospondin 1 (P=7.68x10‑5; upregulated) 
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Table I. Differentially‑expressed genes for fetal growth 
restriction.

Gene	 Direction

TMEM136	 Down
ACPP	 Down
PTPN3	 Down
THBS1	 Up 
KCNK17	 Down
TCN2	 Up 
EDN1	 Up
NNAT	 Up
ZNF429	 Down
TMEM168	 Down
SLA	 Up
F5	 Down
TNNT3	 Up
P3H2	 Down
CATSPERB	 Down
BTNL9	 Up
NAALADL2	 Down
GPER1	 Up
RPS6KA6	 Down
APLN	 Down
PGAP1	 Down
CTGF	 Up
DHCR24	 Down
C1GALT1	 Down
SOD1	 Down
FBN2	 Down
HIST1H1T	 Down
ADGRA3	 Down
SLC41A2	 Down
LOX	 Up
CCDC125	 Down
FAM234B	 Down
SLC20A1	 Down
ACSL1	 Up
PLAC1	 Down
CYR61	 Up
GSTA3	 Down
LGALS9B	 Up
GABRA4	 Down
DFNA5	 Down
QPCT	 Up
DDX60L	 Down
MSL3P1	 Down
ABCG2	 Down
ADGRL3	 Down
ALDH7A1	 Down
AGL	 Down
CD68	 Up
TFDP2	 Down
LEP	 Up
VWF	 Up

Table I. Continued.

Gene	 Direction

ERV3‑1	 Down
CTSV	 Down
C1QA	 Up
BHLHE40	 Up
ZC2HC1A	 Down
FAM26D	 Down
SH3TC2	 Down
TIMP1	 Up
SLC38A9	 Down
LRP2	 Down
DSC3	 Down
TGFBI	 Up
LGR5	 Down
GALNT11	 Down
SEL1L3	 Down
OR4F16	 Down
OR4F21	 Down
LAPTM5	 Up
MET	 Down
DUSP1	 Up
NPR3	 Up
PLA2G2A	 Down
CHI3L1	 Up
CRH	 Up
ERAP2	 Down
C1QB	 Up
EXTL2	 Down
PSMB9	 Up
CXCL9	 Up
CLDN1	 Up
IFI44L	 Up
LGALS13	 Down
HLA‑DQA1	 Up
CXCL10	 Up
TAP1	 Up
BCL6	 Up
GBP5	 Up
FPR3	 Up
HLA‑DQB1	 Up
WNT2	 Down
HTRA1	 Up
KRTAP26‑1	 Up
FSTL3	 Up
SLAMF7	 Up
HLA‑DQA2	 Up
HTRA4	 Up
CGB2	 Up
SLC27A2	 Down
CCL8	 Up
HLA‑DPB1	 Up
ANKRD22	 Up
CGB3	 Up
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and potassium two pore domain channel subfamily K member 
17 (P=1.32x10‑4; downregulated).

In addition, 19,003 GO terms and 18,402 genes associated 
with the biological process category of GO were collected 
from the GO Consortium. By removing terms with gene sizes 
not in the range 20‑1,000 and intersected DEGs <20, 109 GO 
terms including 115 DEGs were reserved. In order to illus-
trate the details of the GO annotations more clearly, a DEG 
enriched in one term was assigned a value of 1; otherwise, 
the value for the DEG in the GO term=0. The results are 
presented in Fig. 1, in which the yellow squares refer to 0 and 
red squares refer to 1.

CEN. For the purpose of further investigating the biological 
activities of DEGs, a CEN with 115 nodes and 6,555 interac-
tions for FGR was visualized using Cytoscape (Fig. 2A), which 
indicated that all DEGs were mapped to the CEN. In particular, 
the topological degree for each node was calculated by the sum 
of the nodes to which it was connected directly, and the degree 
distribution is presented in Fig. 2B. It was observed that the 
degrees for a large number of DEGs (~55%) ranged between 56 
and 60, and the trend was approximately normally‑distributed. 
Specifically, ankyrin repeat domain 22 possessed the highest 
degree of 65. Apart from the number of connections for each 
node, the interaction strength is a parameter that has been used 
to evaluate interactions in the CEN. Consequently, a weight was 
attributed to each edge using SCC analysis (data not shown). 
The heatmap for weights in the CEN is presented in Fig. 2C. In 
the figure, squares represent edges in the CEN. Darker squares 
indicate larger weight values. Notably, a clear linear correla-
tion was revealed among interactions, suggesting that the CEN 
exhibited good network scale properties.

Optimal gene functions. Prediction of gene function was 
performed using the GBA method, based on the integration 
between GO terms and the CEN. For each gene in a GO term, 
the MFS was computed. A high MFS indicated the possi-
bility of a more optimal gene function. Therefore, all genes 
were ranked in descending order of the MFS and 3‑fold 
cross‑validation was performed to calculate the AUC for the 

GO terms, with the aim of classifying patients with FGR and 
normal controls. The AUC distribution among GO terms is 
illustrated in Fig. 3. The AUC for the majority of GO terms 
fell within the range 0.4‑0.7, particularly 0.6‑0.65. When 
AUC was used as a predictor of GO category membership, 
78 GO terms of AUC >0.5 were obtained. It was noted that 
this single ranking of genes gave a mean AUC of 0.57 across 
all GO terms tested. In addition, 5 of the 78 GO terms had 
an AUC >0.7 and were denoted as optimal gene functions 
(Table  II): Defense response (GO:0006952; AUC=0.861), 
immune system process (GO:0002376; AUC=0.789), 
response to stress (GO:0006950; AUC=0.759), cellular 
response to chemical stimulus (GO:0070887; AUC=0.724) 
and positive regulation of biological process (GO:0048518; 
AUC=0.720).

Discussion

Co‑expression analysis dependent on networks has been 
used widely due to its good statistical confidence for indi-
vidual connections, overlap with protein interactions, and 
mathematical convenience (20). In addition, the criterion in a 
CEN is generally divided into two types: Hard thresholding, 
which produces less robust results (21) and soft thresholding. 
Specifically, soft thresholding works well in network anal-
ysis (22) by combining greater sparsity with similarity to the 
original correlation matrix (23), for example in a weighted 
CEN. Pearson's correlation coefficient (PCC) is the most 
widely used measure for co‑expression analysis. SCC is a 
nonparametric (distribution‑free) rank statistical measure of 
a monotone association that is used when the distribution of 
data makes PCC undesirable or misleading (24). Therefore, 
in the present study, SCC was implemented to weight the 
CEN which was constructed dependent on DEGs for FGR, 

Table I. Continued.

Gene	 Direction

CP	 Up
CGB1	 Up
CGB5	 Up
HLA‑DMA	 Up
CGB7	 Up
ALAS2	 Up
AOC1	 Down
FCGR3A	 Up
HLA‑DRA	 Up
LPL	 Up
USP9Y	 Down
LYZ	 Up

Figure 1. Functional annotation of DEGs in GO terms of fetal growth restric-
tion. A total of 115 DEGs and 109 GO terms are presented. Red represents 
DEGs which were enriched in the GO term; yellow indicates that the DEG 
was not enriched in the GO term. DEG, differentially‑expressed gene; GO, 
gene ontology.
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and its weight distribution suggested that the CEN had good 
scale network properties. There were 115 nodes and 6,555 
interactions in the CEN, which was prepared for subsequent 
analysis.

Previously, various methods have been produced to expand 
the scale of the GBA to indirect connections, including 
weighting indirect connections by local topology, network 
propagation and topological overlap (23,25,26). The majority of 
these methods refer to improvement over GBA between direct 
connections, although they tend to perform comparably and 

only slightly better than direct GBA (27). The present study 
integrated the GBA method with CEN‑associated analysis to 
further explore direct and indirect optimal gene functions for 
FGR, based on GO annotations and gene expression data. A 
network based‑GBA or extended‑GBA approach may facilitate 
the exhaustive examination of issues (due to being less subject 
to fine‑tuning) compared with simple GBA. In the present study, 
an MFS was assigned to each gene enriched in the GO term. 
Ranking genes by AUC based on MFS was demonstrated to be 
a means of obtaining good performance from a gene function 
prediction algorithm, which validated the feasibility and confi-
dence of the network‑based GBA method. The results of the 
present study demonstrated that 78 GO terms had a good classi-
fication performance with an AUC >0.5; 5 of the GO terms had 
an AUC >0.7 and were defined as optimal gene functions, which 
included defense response, immune system process, response 
to stress, cellular response to chemical stimulus and positive 
regulation of biological process.

Specifically, defense response refers to reactions triggered 
in response to the presence of a foreign body or the occurrence 
of an injury, and results in restriction of damage to the organism 
attacked or prevention/recovery from the infection caused by 
the attack (28). Therefore, it is reasonable to infer that altera-
tions of defense response caused by certain unexplained and 
unknown reasons in pregnancy may lead to the occurrence of 
FGR. In addition, immune system process includes any process 
involved in the development or functioning of the immune 
system, and is an organismal system which produces calibrated 
responses to potential internal or invasive threats (29). The 
immune system is a host defense system comprising a number 
of biological structures and processes within an organism that 
protect against disease, and disorders of the immune system 

Figure 3. Gene function prediction performance using guilt by association 
analysis. The red line represents the threshold for optimal GO (AUC=0.7); 
the grey line indicates a GO performance considered to be good (AUC=0.5); 
the orange line represents the mean of all AUCs. AUC, area under the receiver 
operating characteristic curve; GO, gene ontology.

Figure 2. Co‑expression network for fetal growth restriction. (A) Diagram of the co‑expression network. Nodes represent DEGs; edges represent interactions. 
(B) Node degree distribution of DEGs mapped to the co‑expression network. (C) Weight distribution of edges in the co‑expression network. The horizontal and 
vertical axes were DEGs mapped to the network, and the heatmap clarified the weight distribution for each edge. An apparent linear association was revealed. 
DEG, differentially‑expression gene.
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Table II. GO terms with AUC >0.5.

Ranking	 ID	 GO term	 AUC

  1	 GO:0006952	 Defense response	 0.861
  2	 GO:0002376	 Immune system process	 0.789
  3	 GO:0006950	 Response to stress	 0.759
  4	 GO:0070887	 Cellular response to chemical stimulus	 0.724
  5	 GO:0048518	 Positive regulation of biological process	 0.720
  6	 GO:0044459	 Plasma membrane part	 0.688
  7	 GO:0005615	 Extracellular space	 0.687
  8	 GO:0010033	 Response to organic substance	 0.685
  9	 GO:0048522	 Positive regulation of cellular process	 0.681
10	 GO:0048583	 Regulation of response to stimulus	 0.681
11	 GO:0050896	 Response to stimulus	 0.679
12	 GO:0048584	 Positive regulation of response to stimulus	 0.678
13	 GO:0044237	 Cellular metabolic process	 0.676
14	 GO:0065009	 Regulation of molecular function	 0.675
15	 GO:0007166	 Cell surface receptor linked signal transduction	 0.671
16	 GO:0044249	 Cellular biosynthetic process	 0.666
17	 GO:0042221	 Response to chemical	 0.652
18	 GO:0050794	 Regulation of cellular process	 0.647
19	 GO:0005488	 Binding	 0.646
20	 GO:0032991	 Macromolecular complex	 0.644
21	 GO:0043169	 Cation binding	 0.643
22	 GO:0048523	 Negative regulation of cellular process	 0.640
23	 GO:1901576	 Organic substance biosynthetic process	 0.638
24	 GO:0080090	 Regulation of primary metabolic process	 0.633
25	 GO:0044421	 Extracellular region part	 0.633
26	 GO:0031988	 Membrane‑bounded vesicle	 0.633
27	 GO:0031224	 Intrinsic component of membrane	 0.632
28	 GO:0065007	 Biological regulation	 0.632
29	 GO:0044700	 Single organism signaling	 0.630
30	 GO:0065010	 Extracellular membrane‑bounded organelle	 0.630
31	 GO:0048519	 Negative regulation of biological process	 0.627
32	 GO:0051716	 Cellular response to stimulus	 0.627
33	 GO:0005886	 Plasma membrane	 0.626
34	 GO:0005576	 Extracellular region	 0.625
35	 GO:0003824	 Catalytic activity	 0.623
36	 GO:0048869	 Cellular developmental process	 0.623
37	 GO:0005783	 Endoplasmic reticulum	 0.622
38	 GO:0031982	 Vesicle	 0.622
39	 GO:0044260	 Cellular macromolecule metabolic process	 0.621
40	 GO:0007154	 Cell communication	 0.619
41	 GO:1903561	 Extracellular vesicle	 0.614
42	 GO:0023051	 Regulation of signaling	 0.610
43	 GO:0031323	 Regulation of cellular metabolic process	 0.608
44	 GO:0060255	 Regulation of macromolecule metabolic process	 0.607
45	 GO:0023052	 Signaling	 0.606
46	 GO:0009058	 Biosynthetic process	 0.605
47	 GO:0043234	 Protein complex	 0.603
48	 GO:0044425	 Membrane part	 0.603
49	 GO:0071840	 Cellular component organization or biogenesis	 0.601
50	 GO:0043230	 Extracellular organelle	 0.600
51	 GO:0043226	 Organelle	 0.599
52	 GO:0051171	 Regulation of nitrogen compound metabolic process	 0.592
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may lead to autoimmune diseases, inflammatory diseases and 
cancer (30). It had been demonstrated that cytokines drive 
the innate immune response, and they are logical candidates 
for the disruption of fetal brain development (31). Therefore, 
immune system process was observed to be correlated to the 
progression of FGR. Regarding cellular response to chemical 
stimulus, this gene function comprises any process that 
results in a change in state or activity of a cell (e.g. movement, 
secretion, enzyme production or gene expression) as a result 
of a chemical stimulus (32). Therefore, pregnant women are 
recommended to be alert to the possibility of chemical stimuli 
within their food and water intake.

In conclusion, the present study identified 5 optimal gene 
functions in the process of FGR. The present findings may 
provide insights into the pathological mechanism underlying 
FGR, and provide potential biomarkers for the early detection 
and targeted treatment of this disease. However, the potential 
interactions between the 5 GO terms remain to be elucidated 
in future studies.
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Table II. Continued.

Ranking	 ID	 GO term	 AUC

53	 GO:0043227	 Membrane‑bound organelle	 0.592
54	 GO:0005515	 Protein binding	 0.590
55	 GO:0008152	 Metabolic process	 0.589
56	 GO:0044765	 Single‑organism transport	 0.576
57	 GO:0043167	 Ion binding	 0.573
58	 GO:0065008	 Regulation of biological quality	 0.573
59	 GO:0043229	 Intracellular organelle	 0.567
60	 GO:0016021	 Integral component of membrane	 0.558
61	 GO:0006810	 Transport	 0.558
62	 GO:0051179	 Localization	 0.555
63	 GO:0050789	 Regulation of biological process	 0.550
64	 GO:0009966	 Regulation of signal transduction	 0.548
65	 GO:0008150	 Biological process	 0.546
66	 GO:0005623	 Cell	 0.544
67	 GO:0071944	 Cell periphery	 0.536
68	 GO:0019222	 Regulation of metabolic process	 0.535
69	 GO:0043170	 Macromolecule metabolic process	 0.534
70	 GO:0051234	 Establishment of localization	 0.532
71	 GO:0007165	 Signal transduction	 0.527
72	 GO:1901360	 Organic cyclic compound metabolic process	 0.514
73	 GO:0031090	 Organelle membrane	 0.512
74	 GO:0016043	 Cellular component organization	 0.511
75	 GO:0044710	 Single‑organism metabolic process	 0.511
76	 GO:0019538	 Protein metabolic process	 0.510
77	 GO:0034641	 Cellular nitrogen compound metabolic process	 0.509
78	 GO:0010646	 Regulation of cell communication	 0.507 

GO, gene ontology; AUC, area under the receiver operating characteristic curve.
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