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Abstract. Atherosclerosis is the primary cause of cardio-
vascular and cerebrovascular diseases. Recent studies have 
revealed that C-X-C motif chemokine ligand 16 (CXCL16), 
microRNA (miR)-146a and miR-146b may have important 
roles in atherosclerotic diseases. However, the associations of 
CXCL16, miR-146a and miR-146b in atherosclerotic diseases 
in vivo remain unclear. Previous studies have demonstrated 
that miR-146a and miR-146b may negatively regulate the 
toll like receptor (TLR4)/nuclear factor (NF)-κB signaling 
pathway to repress the inflammatory response. The present 
study investigated the associations of CXCL16, miR-146a and 
miR-146b in atherosclerotic apolipoprotein E (ApoE)-/- mice 
in vivo. The expression levels of CXCL16, TLR4/NF-κB 
signaling pathway, miR-146a and miR-146b in the control and 
atherosclerotic ApoE-/- mice were investigated via reverse 
transcription-quantitative polymerase chain reaction and 
western blot analysis. The present study demonstrated that the 
expression of CXCL16 was significantly upregulated in athero-
sclerotic ApoE-/- mice compared with control ApoE-/- mice. 
The expression levels of TRL4, interleukin-1 receptor-asso-
ciated kinase 1, tumor necrosis factor receptor associated 
factor 6, NF-κB, tumor necrosis factor-α and interleukin-1β 
were also significantly upregulated in atherosclerotic ApoE‑/‑ 
mice compared with control mice. However, the present study 
revealed that the expression levels of miR-146a and miR-146b 
were significantly downregulated in atherosclerotic ApoE‑/‑ 
mice compared with control ApoE-/- mice. Overall, the results 
of the present study suggested that CXCL16 may regulate the 

TRL4/NF-κB/CXCL16 signaling pathway, and that miR-146a 
and miR-146b may negatively regulate CXCL16 via this 
pathway in atherosclerosis in vivo.

Introduction

Atherosclerosis can lead to vascular stenosis, thrombosis 
and vascular occlusion, which are characterized by chronic 
inflammatory disease and can cause ischemic damage to 
vital organs (1,2). During the development of atherosclerosis, 
numerous inflammatory cells and cytokines are mediated by 
specific receptors, intracellular signal transduction or gene 
transfer modifications, which can affect functional protein 
expression and the development of inflammatory responses (3). 
Adhesion molecules are considered to represent important 
factors in the initiation of inflammatory reactions associated 
with atherosclerosis, and chemokines have important roles in 
linking inflammation and atherosclerosis (4).

The expression levels of the previously discovered C-X-C 
motif chemokine ligand 16 (CXCL16) are significantly 
increased in atherosclerosis, and CXCL16 is involved in 
the occurrence of inflammation and atherosclerosis (5,6). 
CXCL16 is produced by numerous inflammatory cells and 
is preferentially expressed within atherosclerotic plaques, 
including macrophages, vascular endothelial cell and smooth 
muscle cells, and possesses the functions of chemokines, 
adhesion molecules and scavenger receptors (7,8). Previous 
studies have demonstrated that increased serum CXCL16 
levels represent an independent risk factor in ischemic stroke 
with atherosclerosis, and may also represent a novel biomarker 
for the prediction of ischemic stroke incidence (9,10). Studies 
have revealed that CXCL16 expression levels in atherosclerotic 
lesions are markedly increased following induction with bacte-
rial lipopolysaccharide (LPS), endotoxin and nuclear factor 
(NF)-κB, which improves the absorption capacity of oxidized 
low-density lipoprotein and aggravates the development of 
atherosclerosis (11,12).

Toll like receptors (TLRs) have important roles in the 
initiation of inflammatory responses (13). LPS is a common 
inflammatory stimulus of cells, and can be recognized by 
TLR4. Myeloid differentiation factor 88 functions as an 
important link between TLR4 and interleukin-1 receptor 
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associated kinase 1 (IRAK1), which binds with tumor 
necrosis factor receptor-associated factor 6 (TRAF6) and 
subsequently activates downstream NF-κB, which results 
in an increased expression of immune response genes (14). 
The NF-κB pathway is activated by TLR4 and represents 
the main signaling pathway associated with the regulation 
of inflammatory responses, as well as an intermediate link 
in LPS-induced increased CXCL16 expression (15). Thus, 
it can be suggested that NF-κB has an important role in the 
development of inflammation. LPS is recognized by TRL4, 
resulting in NF-κB activation. Activated NF-κB subsequently 
triggers target gene transcription and inflammatory responses 
by inducing CXCL16, tumor necrosis factor (TNF)-α, inter-
leukin (IL)‑6 and other inflammatory factors, which promote 
the formation and progression of atherosclerotic plaques (11). 
Therefore, the inhibition of TRL4/NF-κB/CXCL16 pathway 
and the suppression of inflammatory reactions may represent 
novel therapeutic targets for the treatment of patients with 
atherosclerotic diseases.

Long‑term or exaggerated inflammatory responses are 
harmful, and it is therefore important to regulate cellular 
negative feedback loops to suppress or inhibit the inflamma-
tory response (16). Micro (mi)RNAs are small, noncoding 
RNA molecules of 21-24 nucleotides in length that func-
tion as negative regulators to mediate complex biological 
reactions via binding to the 3'-untranslated region (UTR) 
of mRNAs, which subsequently inhibits the translation or 
affects the stability of the target gene (17,18). miR-146a was 
the first miRNA revealed to be associated with the inflam-
matory response, and is rapidly induced by inflammatory 
stimulation (19). Studies have demonstrated that miR-146a 
has an important negative effect on the inflammatory 
response (20-22). miR-146b is an additional member of the 
miR-146 family, only differing from miR-146a by 2 nucleo-
tides at the 3'UTR in its mature sequence (23). It has been 
demonstrated that miR-146a is a NF-κB-dependent gene 
that can activate innate immune signaling pathways (19). 
miR-146a targets adaptor proteins of TRAF6 and IRAK1, 
and subsequently inhibits NF-κB activation, which suggests 
that miR-146a represents a negative feedback mechanism for 
the regulation of the NF-κB pathway in monocytes (24,25). 
It has been previously revealed that miR-146a inhibits the 
expression levels of proteins associated with the NF-κB 
pathway, such as IL-6, IL-8 and TNF-α (19,26). miR-146b is 
an IL‑10 reactive miRNA, which ameliorates inflammatory 
reactions by targeting the TLR4 pathway (23). Associations 
between miR-146b and the TLR4/NF-κB signaling pathway 
remain unclear. One study demonstrated that miR-146b may 
mediate the TLR4 signaling pathway via direct regulation 
of numerous proteins, such as TLR4, IRAK1 and TRAF6; 
rather than via the NF-κB signaling pathway (23). The same 
study also revealed that elevated miR-146b expression may 
lead to a marked reduction in the LPS-dependent production 
of several inflammatory cytokines, such as IL‑6, TNF‑α and 
CXCL10 (23). However, a further study demonstrated that 
miR‑146a and miR‑146b regulate apoptosis and inflamma-
tory cytokines in human dendritic cells via regulation of 
the TRAF6/IRAK1/NF-κB pathway (27). Therefore, it is 
important to investigate the associations between CXCL16, 
the NF-kB pathway, miR-146a and miR-146b.

To the best of the author's knowledge, there are no 
reports regarding the associations of CXCL16, miR-146a and 
miR-146b in atherosclerotic disease in vivo. The present study 
investigated the associations between CXCL16, miR-146a and 
miR146b in atherosclerotic disease in vivo. Atherosclerotic 
mouse models were established, in which a perivascular collar 
was placed around the carotid artery of ApoE-/- mice to form 
atherosclerotic vascular lesions. The results of the present study 
may further the understanding of the mechanisms underlying 
the associations between CXCL16, miR-146a, miR-146b and 
the TLR4/NF-κB signaling pathway during inflammatory 
responses associated with atherosclerosis.

Materials and methods

Mouse experiments. A total of 24 male ApoE-/- C57BL/6J 
mice (8‑week‑old; weight 18‑22 g) were obtained from Beijing 
HFK Bioscience Co., Ltd. (Beijing, China). All mice were 
housed under a 12-h light/dark cycle at a room temperature of 
22˚C and 50‑60% relative humidity. All mice had free access 
to food and water. The study protocol was approved by the 
Animal Ethics Committee of Qingdao University prior to 
experimentation.

All mice were randomly divided into two groups (n=12 
per group): A control group and a model group. In the first 
week, all mice were fed with normal food. However, from the 
second week onwards, the ApoE-/- mice in the model group 
were fed a high‑fat diet, which constituted 15% cocoa butter, 
0.25% cholesterol and normal food (28,29). The ApoE‑/‑ mice 
in the control group remained on a diet of normal food. From 
the fifteenth day onwards, each mouse in the model group 
had a perivascular collar placed around the right common 
carotid artery (28-30). Each of the mice in the control group 
underwent sham surgery. A total of 8 weeks post-surgery, all 
mice were sacrificed and the blood and right common carotid 
arteries were collected for the subsequent experiments (28).

Lipid analysis. Levels of total cholesterol (TC), triglycerides 
(TG), high-density lipoprotein cholesterol (HDL-c) and 
low-density lipoprotein cholesterol (LDL-c) were determined 
in the blood gathered from the femoral artery of the mice. The 
lipid levels were measured by an Olympus AU640 automatic 
biochemical analyzer (Olympus Corporation, Tokyo, Japan) at 
the clinical laboratory of The Affiliated Hospital of Qingdao 
University.

Histopathological analysis. The common carotid artery were 
fixed in 10% neutral formalin at 4˚C for 24 h, dehydrated and 
then embedded in paraffin. Continuous transverse paraffin 
sections of 5 µm were obtained. Selective staining was 
performed with hematoxylin and eosin (HE) at 50-µm inter-
vals at 25˚C for 20 min. A pathological image analyzer was 
used to measure the size of the staining patch area. Image-Pro 
Plus 6.0 software (Media Cybernetics, Inc., Rockville, MD, 
USA) was used to determine the proportion of atherosclerotic 
plaque area to the luminal area (31,32).

Reverse transcription‑quantitative polymerase chain reac‑
tion (RT‑qPCR) analysis. Total RNA was extracted from 
the right common carotid arteries using TRIzol® (Thermo 
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Fisher Scientific, Inc., Waltham, MA, USA). The purity 
and concentration of the total RNA were determined using 
a spectrophotometer, and samples exhibiting a range of 
A260/280 between 1.8 and 2.0 were regarded suitable for 
further experimentation. RT-qPCR was used to determine 
the expression levels of miR-146a, miR-146b, TLR4, IRAK1, 
TRAF6, NF-κB, CXCL16, TNF-α and IL-1β. A PrimeScript 
TM miRNA qPCR Starter Kit Ver.2.0 (Takara Bio, Inc., 
Otsu, Japan) was used. Primer sequences used for qPCR of 
miRNAs were: miR-146a-5p: 5'-GCC GTG AGA ACT GAA 
TTC CAT G‑3'; miR‑146b‑5p: 5'‑GAG CTG AGA ACT GAA 
TTC CAT AG‑3'; the internal reference of miR‑146a and 
miR-146b was U6 (Takara Bio, Inc.). The primer sequences 
for U6 was: Forward, 5'-CTC GCT TCG GCA GCA CA-3' and 
reverse, 5'-AAC GCT TCA CGA ATT TGC GT-3'. The primer 
sequences used for qPCR of proteins were: TLR4 forward, 
5'-TCA GAG CCG TTG GTG TAT CTT-3' and reverse, 5'-TGT 
CCT CCC ATT CCA GGT AG‑3'; IRAK1 forward, 5'‑ATA AGG 
CAG GCA ATG TGA GG-3' and reverse, 5'-TCAT ACC CAC 
TGA GCC ATC TC‑3'; TRAF6 forward, 5'‑TCG GAG TGC CGT 
GTA TGT AG-3' and reverse, 5'-CAC CTT CTT CTG GCT TTC 
GT‑3'; NF‑κB forward, 5'-TGG ACG ACT CTT GGG AGA AG-3' 
and reverse, 5'‑CAC AGG CTC ATA CGG TTT CC‑3'; CXCL16 
forward, 5'-CAG GCT CGT CTC CAT CAG T-3' and reverse, 
5'‑GTA GAG GCA AAG GGT CAG CA‑3'; TNF‑α forward, 
5'-TCT GGG CAG GTC TAC TTT GG-3' and reverse, 5'-GGT 
TGA GGG TGT CTG AAG GA‑3'; IL‑1β forward, 5'-CAT CAG 
CAC CTC TCA AGC AG-3' and reverse, 5'-AGT CCA CAT TCA 
GCA CAG GA-3'. The relative expression levels were normal-
ized to the internal reference gene GAPDH. The primer 
sequences of GAPDH were: Forward, 5'-AAC AGC CTC AAG 
ATC ATC AGC AA-3' and reverse, 5'-GAC TGT GGT CAT GAG 
TCC TTC CA-3'.

The reaction conditions for miR-146a and miR-146b were: 
Initial denaturation step for 30 sec at 95˚C, denaturing at 
95˚C for 10 sec, annealing and elongation 30 sec at 60˚C for 
45 cycles. The reaction conditions of TRL4, IRAK1, TRAF6, 
NF-kB and CXCL16 were: Initial denaturation step for 30 sec 
at 95˚C, denaturing at 95˚C for 10 sec, annealing 20 sec at 55˚C 
and elongation for 30 sec at 72˚C for 55 cycles. The experi-
ments were repeated under the above experimental conditions 
3 times. The 2-∆∆Cq method was used to compare the relative 
expression results (33).

Western blot analysis. Total protein was extracted from the 
right common carotid artery in each group using a mixture 
of tissue lysate and protease inhibitor (Beijing Solarbio 
Science & Technology Co., Ltd., Beijing, China; 1:100), and 
the bicinchoninic acid method was used to determine total 
protein concentration. Then, 20 µg protein/lane was sepa-
rated via SDS-PAGE at the following percentages: IRAK 
(6%), IL‑1β (12%), TNF‑α (12%), CXCL16 (12%), TRAF6 
(8%), TLR4 (8%) and NF‑κB (8%). The separated proteins 
were subsequently transferred onto a polyvinylidene difluo-
ride membrane (0.2 µm for IL-1β and TNF-α and 0.45 µm 
for the other proteins). The membranes were blocked with 
5% skimmed milk (Beijing Solarbio Science & Technology 
Co., Ltd.) at 4˚C for 2 h. The Primary antibodies against the 
following proteins were used: β‑actin (cat. no. BM0627; 1:200; 
Wuhan Boster Biological Technology, Ltd., Wuhan, China), 

TLR4 (cat. no. ab13867; 1:250; Abcam, Cambridge, UK), 
IRAK1 (cat. no. 4504; 1:1,000; CST Biological Reagents Co., 
Ltd., Shanghai, China), TRAF6 (cat. no. ab33915; 1:6,000; 
Abcam), NF-κB (cat. no. 8242; 1:2,000; CST Biological 
Reagents Co., Ltd.), CXCL16 (cat. no. ab119350; 1:1,000; 
Abcam), TNF-α (cat. no. 3707; 1:1,000; CST Biological 
Reagents Co., Ltd.) and IL-1β (cat. no. 12242; 1:1,000; CST 
Biological Reagents Co., Ltd.). The membranes were washed 
in TBST buffer (Beijing Solarbio Science & Technology Co., 
Ltd.) 4 times for 8 min at a time at 25˚C and then incubated 
at 4˚C for 1 h with Goat anti‑Mouse IgG (cat. no. BA1050; 
1:3,500; Wuhan Boster Biological Technology, Ltd.) and Goat 
anti‑Rabbit IgG (cat. no. 1:1,500; BA1054; Wuhan Boster 
Biological Technology, Ltd.). Protein bands were visualized 
using an ECL kit (Wuhan Boster Biological Technology, Ltd.). 
Fusion FX7 (Vilber Lourmat, Marne-la-Vallée, France) was 
used to acquire images, and the results were analyzed with 
ImageJ version 1.38 (National Institutes of Health, Bethesda, 
MD, USA).

Statistical analysis. All experiments were performed in tripli-
cate and SPSS software version 19.0 (IBM Corp., Armonk, NY, 
USA) was used for statistical analysis. All data are expressed 
as the mean ± standard deviation. Statistically significant 
differences between the two groups were determined using the 
Student's t-test. P<0.05 was considered to indicate a statisti-
cally significant difference.

Results

Body weight and lipid levels of ApoE‑/‑ mice. No signifi-
cant differences in body weight were observed between the 
two groups on the 1 day and 70 day time intervals (P>0.05; 
Table I). Levels of TG, TC and LDL-c in the model group 
were significantly increased compared with the control group 
(P<0.05; Table I); however, no significant differences were 
observed between the model and control groups regarding 
HDL‑c levels (P>0.05; Table I).

Pathological analysis of common carotid artery tissues 
obtained from ApoE‑/‑ mice. H&E staining results revealed 
that there were no marked pathological symptoms were 
observed in the vascular lumen and intima of ApoE-/- mice 
belonging to the control group (Fig. 1A); however, significant 
plaques and lumen stenosis were observed in ApoE-/- mice 
belonging to the model group (Fig. 1B). In addition, the ratio 
of the lesion volume to the vessel volume was significantly 
increased in the model group compared with the control 
group (P<0.01; Fig. 1C). Therefore, the results demonstrated 
that ApoE‑/‑ mice in the model group exhibited significantly 
increased formation of atherosclerotic plaques compared with 
ApoE-/- mice in the control group. 

Expression levels of CXCL16 and proteins associated with the 
TRL4/NF‑κB signaling pathway are increased in atheroscle‑
rotic ApoE‑/‑ mice. The CXCL16 and TRL4/NF-κB signaling 
pathway serve important roles in the inflammatory responses, 
and so their expression in atherosclerotic ApoE-/- mice was 
investigated using RT-qPCR and western blot analysis in the 
present study. The results revealed that the mRNA and protein 
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levels of CXCL16 were significantly upregulated in the model 
group compared with the control group (P<0.01; Fig. 2). The 
results also demonstrated that the mRNA and protein levels 
of TRL4, IRAK1, TRAF6, NF-κB, TNF-α and IL-1β were 
significantly upregulated in the model group compared with 
the control group (P<0.05 and P<0.01; Fig. 2). These results 
revealed that the expression levels of CXCL16 and proteins 
associated with the TRL4/NF-κB signaling pathway were 
significantly upregulated in atherosclerotic ApoE-/- mice 
compared with control ApoE-/- mice.

Expression levels of miR‑146a and miR‑146b are decreased 
in atherosclerotic ApoE‑/‑ mice. To investigate the expression 
levels of miR-146a and miR146b in atherosclerotic disease, 
ApoE‑/‑ mice were fitted with a perivascular collar and admin-
istered a high-fat diet. The expression levels of miR-146a 

and miR-146b were investigated using RT-qPCR. Compared 
with the control group, the expression levels of miR-146a and 
miR‑146b were significantly suppressed in the ApoE‑/‑ mice 
belonging to the model group compared with ApoE-/- mice 
belonging to the control group (P<0.05 and P<0.01; Fig. 3).

Discussion

In the present study, a perivascular collar was placed around 
the carotid artery of ApoE-/- mice to induce atherosclerotic 
pathological changes, as previously described (29,30,34). The 
results of the present study revealed a significant formation of 
atherosclerotic plaques in the carotid artery of atherosclerotic 
ApoE-/- mice compared with the control ApoE-/- mice. Recent 
studies have demonstrated that CXCL16 expression is signifi-
cantly increased in patients suffering from acute ischemic 

Figure 1. Pathological analysis of common carotid artery tissues obtained from ApoE-/- mice. (A) No pathological symptoms were observed in the vascular 
lumen of tissues obtained from ApoE-/- mice in the control group were observed, and the tunicae intima vasorum remained smooth and was not destroyed 
(magnification, x400; n=6). (B) In ApoE‑/‑ mice belonging to the model group, the vascular intimal integrity was revealed to be damaged and thickened, a 
large quantity of foam cells and inflammatory cells under the damaged endometrium was observed and the vascular lumen was markedly narrowed (arrowed; 
magnification, x400; n=6). scale bars=50 µm. (C) The ratio of lesion volume to vessel volume was significantly increased in the model group compared with 
the control group. *P<0.01 vs. control group. ApoE-/-, apolipoprotein E-knockout.

Table I. Body weight and lipid levels of ApoE-/- mice.

 Body weight at the Body weight at the  TG LDL-c HDL-c
 1 day time interval (g) 70 day time interval (g) TC (mmol/l) (mmol/l) (mmol/l) (mmol/l)

Control group 19.20±1.30 27.75±1.89 13.06±1.72 2.19±0.11 1.03±0.12 1.77±0.37
Model group 21.00±1.00 28.67±0.58 24.72±2.30a 2.73±0.23a 4.62±0.14a 1.34±0.18
P-value  0.066 0.073  0.002 0.022 <0.0001 0.105

aP<0.05 vs. control group. TC, total cholesterol; TG, triglycerides; LDL‑c, low‑density lipoprotein cholesterol; HDL‑c, high‑density lipopro-
tein cholesterol. 
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stroke, and that enhanced CXCL16 levels may represent a 
biomarker for ischemic stroke incidence prediction (9,10). The 
present study demonstrated that the mRNA and protein levels 
of CXCL16 were significantly upregulated in the model group 
exhibiting atherosclerotic plaques. Previous research has 
demonstrated that the level of CXCL16 increases in atheroscle-
rotic ApoE-/- mice and may represent a potential atherogenic 
biomarker (35). In studies of coronary heart disease (CHD), a 
high level of CXCL16 has been revealed to be associated with 
the severity of acute coronary syndrome, and may represent a 
potential biomarker for epidemiological and clinical applica-
tion in CHD (36,37). Laugsand et al (38) demonstrated that 
CXCL16 is closely associated with the risk of myocardial 
infarction and may aid in assessing cardiovascular risk. These 
studies have revealed that CXCL16 is involved in atheroscle-
rotic disease. However, the pathophysiological role of CXCL16 
in atherosclerotic diseases in vivo remains unclear.

Furthermore, the present study demonstrated that the 
expression of NF-κB, TNF-α and IL-1β were significantly 
increased in atherosclerotic ApoE-/- mice compared with 
control ApoE-/- mice. NF-κB is activated by TLR4, which is 
associated with inflammation (39,40). TNF‑α and IL-1β are 
located downstream of the NF-κB pathway and are activated 
by NF-κB (41,42). In an in vitro study, simulated cardiac 

ischemia/reperfusion injury in human umbilical vein endothe-
lial cells enhanced levels of CXCL16, TNF-α and intercellular 
adhesion molecule-1 (ICAM-1), thus suggesting that NF-κB 
aggravates the inflammatory response via the upregulation of 
CXCL16, TNF-α and ICAM-1 (42). Lehrke et al (43) demon-
strated that CXCL16 expression is significantly upregulated 
following stimulation with LPS and downregulated following 
treatment with NF-κB-targeting anti-inflammatory drugs 
in vivo. In addition, CXCL16 expression is significantly down-
regulated following treatment with the NF-κB inhibitor, SN50. 
However, Lehrke et al (43) also revealed that following activa-
tion of NF-κB, CXCL16 expression is significantly upregulated 
by overexpression of activated IκB kinase in vitro. In addi-
tion, Izquierdo et al (44) demonstrated that TNF-like weak 
inducer of apoptosis upregulated CXCL16 expression in vivo 
and in vitro via activation of the NF-κB transcription factor; 
however, expression of CXCL16 was revealed to be downregu-
lated via inhibition of NF-κB activation, which demonstrated 
that the expression of CXCL16 is NF-κB-dependent. The 
present study demonstrated that the expression levels of NF-κB 
and CXCL16 were significantly increased in atherosclerotic 
ApoE-/- mice compared with control ApoE-/- mice, which 
also suggested that CXCL16 may represent a positive feedback 
mechanism to NF-κB in atherosclerotic diseases in vivo. Thus, 

Figure 2. Protein and mRNA expression levels of CXCL16 and proteins associated with the TRL4/NF-κB signaling pathway in ApoE-/- mice. (A) mRNA 
expression levels of CXCL16 and proteins associated with the TRL4/NF-κB signaling pathway in ApoE-/- mice were investigated using reverse transcrip-
tion-quantitative polymerase chain reaction. (B) Western blotting was used to investigate the protein levels of CXCL16 and proteins associated with the 
TRL4/NF-κB signaling pathway in ApoE‑/‑ mice, and (C) quantification of western blotting results was performed. Data are presented as the mean ± standard 
deviation (n=6). *P<0.05 and **P<0.01 vs. control group. mRNA, messenger RNA; NF‑κB, nuclear factor-κB; CXCL16, C‑X‑C motif chemokine ligand 16; 
TLR4, toll like receptor 4; IRAK1, interleukin‑1 receptor associated kinase 1; TRAF6, tumor necrosis factor receptor‑associated factor 6; TNF‑α, tumor 
necrosis factor α; IL‑β, interleukin-β.
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it was demonstrated that the role of CXCL16 in atherosclerotic 
diseases may be closely associated with NF-κB.

The present study also revealed that the expression levels 
of TRL4, IRAK1 and TRAF6 were significantly increased in 
atherosclerotic ApoE-/- mice compared with control ApoE-/- 
mice. IRAK1 and TRAF6 are important adapter molecules 
in the TLR4/NF-κB pathway that can be activated by TLR4, 
which subsequently activates the NF-κB pathway (45). TLR4 
can activate NF-κB pathways and increase the expression 
levels of IL-6 and IL-8 (46). Overexpression of TRAF6 and/or 
IRAK1 in mature dendritic cells by lentivirus transduction has 
been revealed to increase the expression level of NF-κB (27). 
The present study demonstrated that the expression levels of 
upstream and downstream factors of the NF-κB signaling 
pathway, such as TLR4, IRAK1, TRAF6, CXCL16, TNF-α 
and IL-1β, were significantly increased in atherosclerotic 
ApoE-/- mice compared with control ApoE-/- mice. These 
results demonstrated that the important role of CXCL16 
in atherosclerosis may be via the TRL4/NF-κB/CXCL16 
pathway.

In recent years, numerous studies have suggested that 
the expression levels of miRNAs are associated with human 
diseases, particularly diseases involving an inflammatory 
response. For example, decreased expression of let-7 in lung 
cancer tissues may promote the expression of Ras, and there-
fore Ras may be involved in the mechanism underlying the 
association between let-7 and lung cancer (47). Furthermore, 
expression of miR-181 has been revealed to be decreased in the 
aortic intima of ApoE-/- mice administered with high fat diets, 
which may promote the formation of atherosclerosis (48). 
Downregulation of miR-149 in osteoarthritism chondrocytes 
has been previously revealed be correlated with increased 
expression of pro‑inflammatory cytokines (49). According to 
numerous previous studies, miRNA networks have important 
roles in the inhibition of inflammatory responses (50-52). 
For example, decreased expression levels of miR-10a and 
miR-181b have been revealed to be associated with inhibition 
of the development of atherosclerosis (51,52).

Numerous studies have demonstrated that miR-146a 
and miR-146b serve critical roles in the inflammatory 

response (53-55). Cheng et al (54) revealed that miR-146a can 
inhibit the NF-κB pathway, which may suppress the inflam-
matory response in vitro. Cheng et al (54) also demonstrated 
that miR-146b may regulate endothelial activation that 
represses the inflammatory response via inhibition of the 
NF-κB pathway activation, which suggested that increased 
expression levels of miR-146a or miR-146b in the vascula-
ture may represent an effective treatment for the inhibition 
of the inflammatory response. Park et al (27) demonstrated 
that miR-146a and miR-146b regulate cell apoptosis and 
cytokine production via TRAF6 and IRAK1, and thus func-
tion as negative feedback mechanisms. Overexpression of 
miR-146a has been revealed to suppress NF-κB activity 
via decreasing IRAK1 and TRAF6 expression levels in the 
myocardium and attenuating the production of inflamma-
tory cytokines, such as TNF-α, IL-1β and ICAM-1 (56). 
Curtale et al (23) demonstrated that miR-146b represents an 
IL-10-dependent regulator of the TLR4 signaling pathway 
that directly targets multiple elements, including IRAK1 
and TRAF6. Furthermore, Curtale et al (23) revealed that 
increased expression of miR-146b markedly suppresses 
levels of proinflammatory cytokines, including CXCL10, 
TNF-α, IL-6 and IL-8 (23). The present study demonstrated 
that the expression levels of miR-146a and miR-146b were 
significantly downregulated in atherosclerotic ApoE‑/‑ mice 
compared with control ApoE‑/‑ mice; however, NF‑κB 
and its downstream products were demonstrated to be 
significantly upregulated in atherosclerotic ApoE‑/‑ mice 
compared with control ApoE-/- mice. This suggested that 
the downregulation of miR-146a and miR-146b expression 
levels may reduce the inhibitory effect on CXCL16 via the 
TLR4/NF-κB signaling pathway.

In conclusion, the present study revealed that the expres-
sion levels of CXCL16 and proteins associated with the 
TLR4/NF-κB signaling pathway were significantly upregu-
lated, and the expression levels of miR-146a and miR146b 
were significantly downregulated, in atherosclerotic ApoE‑/‑ 
mice compared with control ApoE-/- mice in vivo. The results 
of the present study suggested that CXCL16 may be associated 
with the TRL4/NF-κB/CXCL16 signaling pathway, and that 
miR-146a and miR-146b may negatively regulate CXCL16 via 
TLR4/NF-κB/CXCL16 signaling pathway in atherosclerosis 
in vivo. Therefore, enhanced expression of miR-146a and 
miR146b may represent an effective approach for the reduc-
tion or prevention of the inflammatory response in patients 
with atherosclerosis. 
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