Association between the HMGB1/TLR4 signaling pathway and the clinicopathological features of ovarian cancer

CAIXIA JIANG1*, XIAOYAN QU1*, HUIHUI KE2, WEI GONG2, RONG CHEN3, WEIHONG YANG3 and ZHONGPING CHENG3

1Department of Gynecology and Obstetrics, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090; 2Department of Gynecology and Obstetrics, Shanghai Pudong Hospital, Fudan University School of Medicine, Shanghai 510070; 3Department of Gynecology and Obstetrics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China

Received January 16, 2018; Accepted June 18, 2018

DOI: 10.3892/mmr.2018.9271

Abstract. In the present study, the expression levels of high-mobility group protein B1 (HMGB1), Toll-like receptor 4 (TLR4), nuclear factor (NF)-κB and tumor necrosis factor (TNF)-α in malignant epithelial ovarian cancer (MEOC) were investigated in regards to several clinicopathological characteristics. A total of 20 patients with MEOC who underwent surgery were recruited in the present study. The mRNA and protein expression of HMGB1, TLR4, NF-κB and TNF-α was determined in patients with MEOC and compared with expression levels in 20 patients diagnosed with benign ovarian cysts (BOC). It was demonstrated that the mRNA and protein expression of HMGB1, TLR4, NF-κB and TNF-α in MEOC was significantly increased, compared with the BOC group (P<0.01). The gene and protein expression of HMGB1, TLR4, NF-κB and TNF-α was significantly increased in the advanced tumor stage and poorly differentiated group (P<0.01). The present study suggested that the HMGB1/TLR4 signaling pathway was overactive in MEOC, and was associated with MEOC tumor cell proliferation, invasion and metastasis. Furthermore, this may have been mediated via NF-κB signaling.

Introduction

Ovarian cancer (OC) is the most lethal malignant tumor type in gynecology and a common cause of cancer-associated mortality in females worldwide. According to the statistics, more than two-thirds of OC cases are diagnosed at an advanced stage, with a five-year survival rate of ~30% (1,2). Despite substantial advances in OC research, the mortality-to-incidence ratio and overall survival rate remains low (3). To gain further insights into the pathogenic mechanisms and to improve the treatment of OC, it is necessary to further explore the molecular biology that characterizes OC cells.

High-mobility group protein B1 (HMGB1) is a highly conserved, non-histone chromatin-binding extracellular nuclear protein. HMGB1 binds chromatin, stabilizes nucleosomes, regulates nuclear transcription and acts as an extracellular signaling molecule (4,5). It is thought that HMGB1 is actively secreted by tumor cells, and passively released from necrotic cells to the tumor microenvironment (6). Recent studies have demonstrated that HMGB1 is closely associated with tumorigenesis, angiogenesis and metastasis in a number of malignancies (3,7,8). Increased expression of HMGB1 has been reported in various tumor types, including ovarian, breast, prostate, colorectal and gastric cancer, and is associated with poor survival (9). In addition, high HMGB1 expression is associated with poor differentiation, a high stage and a positive lymph node status in OC (10). Toll-like receptors (TLRs) are essential components of innate immunity that enhance the function of HMGB1 in cancer, by creating a procancerous environment through inflammation, angiogenesis and cell death (11). As an important damage-associated molecular pattern (DAMP), HMGB1 activation of TLRs expressed on tumor cells initiates pro-inflammatory signaling pathways and mediates the release of cytokines and chemokines from tumor cells. These molecules recruit immune cells that subsequently release additional cytokines, pro-angiogenic mediators and growth factors that facilitate tumor growth (12). However, a limited number of studies have addressed the association between HMGB1/TLR4 signaling and the clinicopathological characteristics of OC. Serous cystadenocarcinoma and endometrioid carcinoma are the most common histological types of epithelial OC. In the present study, 20 patients with epithelial OC were examined and the mRNA and protein expressions of HMGB1, TLR4, NF-κB and TNF-α in patients with epithelial OC were detected. The aim of the present study was to investigate the expression of HMGB1/TLR4 signaling pathway proteins to further elucidate if they were associated with the clinicopathological
characteristics of malignant epithelial ovarian cancer (MEOC), and to further elucidate the mechanisms underlying the develop-
ment and progression of epithelial OC.

Materials and methods

Ethics statement. The present study was approved by the
Institutional Review Board of Yangpu Hospital, Tongji
University School of Medicine (Shanghai, China). All biopsy
specimens were collected, according to the guidelines of the
Declaration of Helsinki. Written informed consent was
obtained from all participants.

Participants. From March 2016 to March 2017, 20 patients
who underwent comprehensive staging operation or tumor
reductive surgery for MEOC at the Gynecological Department
of Yangpu Hospital, Tongji University School of Medicine
were included in the present study. Patients with MEOC were
clinically staged, according to the International Federation
of Gynecology and Obstetrics (FIGO) staging system (13),
and were diagnosed for the first time during the enrollment
period. Tissue samples were collected prior to treatment
including surgery, chemotherapy and radiotherapy. Patients
who underwent surgery for a benign ovarian condition (BOC;
all of them had been identified as serous cystadenoma by
histological examination) within the same time period were
recruited as the control group. All patients enrolled in the
present study had not taken any hormonal therapy in the last
three months, including oral contraceptive pills, progestins,
gonadotropin-releasing hormone agonists or levonorgestrel
intrauterine system. Individuals with other malignant tumors,
cardiovascular, autoimmune, endocrine, metabolic, pelvic
inflammatory or infectious disease were excluded.

Tissue collection. Tissue samples were collected from
patients who underwent surgery for ovarian tumors at the
Gynecological Department of Yangpu Hospital (Shanghai,
China). MEOC tissue samples were collected from areas that
had been macroscopically identified as cancer by pathologists,
and the final diagnosis predominantly depended on histological
examination of the biopsy. Under strict asepsis, fresh MEOC
and BOC tissue specimens were frozen in liquid nitrogen and
stored at -80°C for RNA and protein extraction.

RNA extraction and reverse transcription-quantitative poly-
merase chain reaction (RT-qPCR). Total RNA was extracted
from the frozen tissue samples using TRIZol® reagent
(Invitrogen; Thermo Fisher Scientific, Inc., Waltham, MA,
USA). Complementary DNA was synthesized with RevertAid
First Strand cDNA Synthesis kit (Fermentas; Thermo Fisher
Scientific, Inc.) at 42°C for 1 h and 75°C for 5 min. Primer
sequences specific for HMGB1, TLR4, nuclear factor (NF)-κB
tumor necrosis factor (TNF)-α are presented in Table I.
qPCR was performed using SYBR Green Master mix on an
AB7300 platform (Thermo Fisher Scientific, Inc.). β-actin
was used as an internal control. The PCR thermocycling conditions
were as follows: 94°C for 7 min, followed by 40 cycles of 15 sec
at 94°C and 45 sec at 60°C. ΔCq was defined as the difference
in the cycle threshold between the target gene and internal
control, and ΔΔCq was defined as the difference between the
ΔCq values of the test sample and control. The relative expres-
sion of the target genes was calculated as 2−ΔΔCq (14).

Western blot analysis. Protein was extracted with efficient
radioimmunoprecipitation assay histological/cell lysis fluid
(Beijing Solarbio Science & Technology Co., Ltd., Beijing,
China), and centrifuged at 12,000 x g for 15 min at 4°C. Protein
collection was determined with a bicinchoninic acid protein
assay (Thermo Fisher Scientific, Inc., Waltham, MA, USA) and
stored at -80°C. Total lysates, 15 µl per lane were resolved by 10
or 12% SDS-PAGE, according to the protein molecular weight.
Proteins were blotted onto a nitrocellulose membrane and
blocked at room temperature for 1 h with 5% skim milk powder,
and incubated at 4°C overnight with the following primary antibodies:
HMGB1 (1:300; cat. no. ab77302), TLR4 (1:500; cat.
no. ab22048; both Abcam, Cambridge, MA, USA), NF-κB
p65 (1:1,000, cat. no. 6956s; Cell Signaling Technology, Inc.,
Danvers, MA, USA), TNF-α (1:2,000; cat. no. ab9739; Abcam),
GAPDH (1:2,000, cat. no. 5174; Cell Signaling Technology, Inc.),
diluted in Tris-buffered saline (TBS) containing 1% skimmed
milk. The blots were subsequently washed with TBS, incubated
with horseradish peroxidase (HRP)-labeled goat anti-rabbit
IgG (1:1,000; cat. no. a0208) HRP-labeled donkey anti-goat
IgG (1:1,000; cat. no. a0181) and HRP-labeled goat anti-mouse
IgG (1:1,000; cat. no. a0216) secondary antibodies (Beyotime
Institute of Biotechnology, Haimen, China) at room temperature
for 1 h. Proteins were visualized using an enhanced chemilu-
minescence western blotting system (Bio-Rad Laboratories,
Inc., Hercules, CA, USA). Densitometry was performed using
ImageJ bundled with 64-bit Java 1.8.0_112 (National Institutes
of Health, Bethesda, MD, USA) to quantify protein expression.
GAPDH served as an internal control.

Statistical analysis. All statistical analyses were performed
using SPSS software 16.0 (SPSS, Inc., Chicago, IL, USA).
P<0.05 was considered to indicate a statistically significant
difference. Diagrams were drawn with GraphPad Prism 5
(GraphPad Software, Inc., La Jolla, CA, USA). Data normality
was determined with the kurtosis and skewness measures,
as well as the Shapiro-Wilk test. Normally distributed
data were presented as the mean ± standard deviation, and
intra-group differences were investigated using the Student's
t-test. Non-normally distributed data were presented as the
median (quartiles), and intra-group differences were deter-
mined using the Mann-Whitney U test. Categorical variables
were expressed as the number of cases and percentages (%).
Differences between categorical data were evaluated using the
χ² test or Fisher's exact test. A Pearson's correlation test was
conducted to investigate the association between the expres-
sion levels of HMGB1, TLR4, NF-κB and TNF-α.

Results

General patient data. The sociodemographic and clinical
characteristics of the groups are presented in Table II. There
were no statistically significant differences in age, BMI, fertility
or history of prior surgery between the groups (P>0.05).

Clinicopathological characteristics of patients with MEOC.
The 20 patients with MEOC were pathologically diagnosed,
and included 11 (55.00%) cases of serous cystadenocarcinoma and nine (45.00%) cases of endometrioid carcinoma. According to the FIGO staging system, there were nine (45.00%) cases of early-stage (stage I or II) MEOC and 11 (55.00%) cases of advanced-stage (stage III or IV) MEOC. In addition, according to the degree of differentiation, the tumors were classified into six (30.00%) cases of poorly differentiated MEOC and 14 (70.00%) cases of moderately and well-differentiated MEOC.

HMGB1, TLR4, NF-κB and TNF-α mRNA and protein expression is increased in MEOC. RT-qPCR analysis demonstrated that the mRNA expression of HMGB1, TLR4, NF-κB and TNF-α was significantly increased in the MEOC group, compared with the BOC group (P<0.01). HMGB1, TLR4, NF-κB and TNF-α expression levels are increased in advanced-stage MEOC. In the present study, patients with MEOC were divided into two subgroups according to the tumor stage. The gene expression levels of HMGB1, TLR4, NF-κB and TNF-α in the advanced-stage group were significantly increased, compared with the early-stage group (P<0.01; Fig. 3A). Similar results were obtained at the protein level, demonstrating that the protein expression of HMGB1, TLR4, NF-κB and TNF-α in the advanced-stage group was significantly increased, compared with the early-stage group (P<0.01; Fig. 3B).

HMGB1, TLR4, NF-κB and TNF-α expression levels are increased in MEOC with poor differentiation. In addition,

<table>
<thead>
<tr>
<th>Gene</th>
<th>Primer sequences (5'-3')</th>
<th>Annealing temperature (˚C)</th>
<th>Product size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMGB1</td>
<td>F GTCGGCTCACGCCTGTAATCC</td>
<td>61</td>
<td>230</td>
</tr>
<tr>
<td></td>
<td>R GGCACAATCTCGGCTCAGT</td>
<td>61</td>
<td>230</td>
</tr>
<tr>
<td>TLR4</td>
<td>F CGCCTTCACTTTCTCCTCAC</td>
<td>58</td>
<td>182</td>
</tr>
<tr>
<td></td>
<td>R CATCCTGGCATCTCCAC</td>
<td>58</td>
<td>182</td>
</tr>
<tr>
<td>NF-κB</td>
<td>F GAAAGGCCTCGTCTGAGTG</td>
<td>56</td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>R TGGATCTGCTGCCTCCTC</td>
<td>56</td>
<td>232</td>
</tr>
<tr>
<td>TNF-α</td>
<td>F CCTGGATAGACCCCATCTATC</td>
<td>57</td>
<td>218</td>
</tr>
<tr>
<td></td>
<td>R AGGTTAGGGGCTGCTGAAG</td>
<td>57</td>
<td>218</td>
</tr>
<tr>
<td>β-actin</td>
<td>F CAAGATCATATGCCTCCTGT</td>
<td>56</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>R ATCCACATGCTGGAAGG</td>
<td>56</td>
<td>90</td>
</tr>
</tbody>
</table>

F, forward; R, reverse; HMGB1, high mobility group box chromosomal protein 1; TLR4, toll-like receptor 4; NF-κB, nuclear factor of κB; TNF-α, tumor necrosis factor-α.

Table II. General patient data.

<table>
<thead>
<tr>
<th>Patient characteristics</th>
<th>MEOC (n=20)</th>
<th>BOC (n=20)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y (range)</td>
<td>57.85±9.60 (38-76)</td>
<td>53.95±12.62 (22-70)</td>
<td>0.278</td>
</tr>
<tr>
<td>BMI, kg/m² (range)</td>
<td>23.07±3.04 (18.82-28.74)</td>
<td>22.21±2.87 (18.14-27.24)</td>
<td>0.363</td>
</tr>
<tr>
<td>Median parity (lower quartile, upper quartile)</td>
<td>1 (1, 1)</td>
<td>1 (1, 1.75)</td>
<td>0.768</td>
</tr>
<tr>
<td>Median abortion (lower quartile, upper quartile)</td>
<td>1.5 (1, 2)</td>
<td>1 (1, 2)</td>
<td>0.489</td>
</tr>
<tr>
<td>Previous abdominal surgery (%)</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>General surgery</td>
<td>4 (20)</td>
<td>4 (20)</td>
<td>1.000</td>
</tr>
<tr>
<td>Gynecological surgery</td>
<td>7 (35)</td>
<td>6 (30)</td>
<td>1.000</td>
</tr>
</tbody>
</table>

BMI, body mass index; MEOC, malignant epithelial ovarian cancer; BOC, ovarian cysts. Data are presented as the mean ± standard deviation.

*Student's t-test, *Mann-Whitney U test, *χ² test or Fisher's exact test.
patients with MEOC were divided into two subgroups according to the degree of differentiation. As presented in Fig. 4, the gene (Fig. 4A) and protein (Fig. 4B) expression of HMGB1, TLR4, NF-κB and TNF-α in the poorly differentiated group was significantly increased, compared with the moderately and well-differentiated group (P<0.01).

Correlations between the expression levels of HMGB1, TLR4, NF-κB and TNF-α in MEOC group. Data analysis revealed that there was a significant positive correlation between the mRNA and protein expression levels of HMGB1, TLR4, NF-κB and TNF-α in MEOC (P<0.01). The values of r are presented in Tables III and IV.

Discussion

Ovarian cancer is the leading cause of cancer-associated mortality in gynecology worldwide. MEOC is successfully treated in <40% of women, due to the lack of effective screening strategies and the non-specific nature of early signs and symptoms associated with this disease, resulting in an advanced stage diagnosis for the majority of patients (15,16). Tumor recurrence and metastasis are considered the major reasons for poor clinical outcomes and mortality. Therefore, clarification of the mechanism underlying the invasion and metastasis of MEOC will provide further insight into the development and progression of OC (10). Inflammation is an essential element in tumorigenesis. HMGB1 is a key DAMP. DAMPs are molecules released from necrotic cells as intrinsic danger signals, which induce inflammation and trigger innate immunity (17). TLRs trigger an inflammatory response and cell survival in the tumor microenvironment, and TLR4 is known to be a receptor of HMGB1 (12). A number of previous studies have confirmed the tumor-facilitating effect of HMGB1. For example, HMGB1 is increased in ovarian, colorectal, lung and gastric
cancer, indicating that HMGB1 is an important mediator for cancer transformation, proliferation and invasion (7,8,10). Furthermore, it has recently been demonstrated that activation of TLR4/NF-κB signaling by DAMPs may contribute to an inflammatory microenvironment that drives a more aggressive phenotype with poorer clinical outcomes in patients with MEOC (11,18).

Wang et al (3) performed a meta-analysis that revealed that HMGB1 levels in the tissue and serum of patients with OC are significantly higher compared with those detected in benign tumor and normal ovarian samples. The effect of HMGB1 on cancer types may be mediated by multiple surface receptors, including TLRs (3). In the present study, the mRNA expression levels of HMGB1, TLR4, NF-κB and TNF-α were determined in 20 patients with MEOC and compared with the expression in 20 patients with BOC. It was demonstrated that the mRNA expression of HMGB1 in MEOC was significantly increased compared with the BOC group. The same result was obtained at the protein expression level, which was consistent with a previous study (3), suggesting that HMGB1 may serve a pivotal role in the development of OC. Furthermore, the expression levels of TLR4, a HMGB1 receptor, in addition to the expression of downstream effectors NF-κB and TNF-α, were significantly increased in the MEOC group, compared with in the BOC group. These results indicated that the HMGB1/TLR4 signaling pathway may be implicated in the development of the tumor-associated inflammatory microenvironment, which subsequently may serve a pivotal role in MEOC carcinogenesis and clinical outcomes.

HMGB1 has recently been identified to be overexpressed in malignant OC, and associated with poor clinicopathological features and prognosis (8). Chen et al (10) reported that knockdown of HMGB1 suppresses OC cell proliferation and inhibits cell migration and invasion, which is accompanied by decreased cyclin D1, proliferating cell nuclear antigen, matrix metalloproteinase (MMP)2 and MMP9 mRNA expression and enzymatic activity. In order to elucidate whether the HMGB1/TLR4 signaling pathway was associated with the clinicopathological characteristics of MEOC, the expression levels of HMGB1, TLR4, NF-κB and TNF-α at different tumor stages and differentiation grades were evaluated. The results revealed that the gene and protein expression levels of HMGB1, TLR4, NF-κB and TNF-α in the advanced-stage and poorly differentiated groups were significantly higher compared with those in the early-stage and well/moderately differentiated group, respectively, indicating that the HMGB1/TLR4 signaling pathway was associated with the tumor stage and degree of tumor cell differentiation in MEOC. In addition, the correlation between the expression of HMGB1, TLR4, NF-κB and TNF-α in MEOC group was evaluated and
it was demonstrated that all the parameters were positively correlated with each other. It is known that the HMGB1/TLR4 signaling pathway regulates cell proliferation and survival, and creates a tumor microenvironment that facilitates tumor growth by inducing immune cell expansion and integrating inflammatory responses (19). Considering these previous findings and those obtained from the present study, it was therefore concluded that increased HMGB1/TLR4 in the inflammatory immune signaling system may be involved in MEOC tumor stage and differentiation. Furthermore, this may have been mediated via the downstream NF-κB signaling pathway.

However, there are certain limitations in the present study. First, as a result of the ethical and experimental limitations, only 20 patients with BOC were recruited as the control group, with no comparison to normal ovarian tissue. Secondly, patient data during hospitalization only were obtained for analysis, which did not contain information concerning postoperative recurrence and disease-free survival. In addition, cytology associated experiments were not conducted in the present study. Therefore, further studies with larger sample sizes are required to avoid these limitations and verify the findings of the present study.

In conclusion, it was demonstrated that components involved in the HMGB1/TLR4 signaling pathway and its downstream effectors were overexpressed and associated with MEOC tumor stage and differentiation. This may have been mediated via the NF-κB signaling pathway. These findings further elucidated the mechanisms underlying the development and progression of MEOC.

Acknowledgements

Not applicable.

Funding

The present study was supported by the Fundamental Research Funds for the Central Universities (grant no. 1516219014).

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Authors’ contributions

HK, RC and WG conceived and designed the experiments. CJ performed the experiments, created the figures and wrote the manuscript. XQ and WY contributed to statistical analysis and revision of the manuscript. HK participated in sample collection. ZC made substantial contributions to the conception and design of the study, revised the manuscript critically for important intellectual content and gave final approval of the version to be published. All authors reviewed the manuscript and contributed to patient management. All authors read and approved the final version of the manuscript.

Ethics approval and consent to participate

The present study was approved by the Institutional Review Board of Yangpu Hospital, Tongji University School of Medicine. All biopsy specimens were collected, according to the guidelines of the Declaration of Helsinki. Written informed consent was obtained from all participants.

Patient consent for publication

Written informed consent was obtained from all participants.

Competing interests

The authors declare that they have no competing interests.

References