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Abstract. Ethanol‑induced diseases of the gastric mucosa are 
the most common and refractory diseases of gastrointestinal 
system in clinic, and are mediated by oxidative stress and 
apoptosis pathways. Theaflavins (TFs) are considered to be 
antioxidants. The present study aimed to determine the molec-
ular mechanism underlying the ability of TFs to attenuate 
ethanol‑induced oxidative stress and apoptosis in GES‑1 gastric 
mucosa epithelial cells. A Cell Counting Kit‑8 (CCK‑8) assay 
was performed to investigate the cell viability of GES‑1 cells 
following administration of ethanol (0.5 mol/l) and subsequent 
treatment with TFs (20, 40 and 80 µg/ml) for specific time 
intervals. A carboxyfluorescein diacetate succinimidyl ester 
assay was used to measure proliferation and further investigate 
the results of the CCK‑8 assay. Flow cytometry was performed 
to measure reactive oxygen species (ROS) levels and the 
apoptosis rates of GES‑1 cells. Furthermore, levels of oxida-
tive stress‑associated factors, including malondialdehyde, 
superoxide dismutase and glutathione, were investigated using 
commercial kits. Reverse transcription‑quantitative poly-
merase chain reaction and western blot assays were performed 
to determine the expression levels of apoptosis‑associated 
factors, as well as the phosphorylation levels of extracellular 
signal‑regulated kinase (ERK), c‑Jun N‑terminal kinase 
(JNK) and p38 kinase (p38). The results of the present study 
demonstrated that treatment with ethanol inhibited GES‑1 
cell proliferation, and enhanced ROS levels and apoptosis 
rates, potentially via downregulation of B‑cell lymphoma‑2 
(Bcl‑2) expression and upregulation of Bcl‑2‑associated X 
and caspase‑3 expression levels, as well as enhancing the 

phosphorylation levels of ERK, JNK and p38. However, treat-
ment with TFs was revealed to attenuate the effects of ethanol 
administration on GES‑1 cells in a dose‑dependent manner. 
In conclusion, TFs may attenuate ethanol‑induced oxidative 
stress and apoptosis in gastric mucosa epithelial cells via 
downregulation of various mitogen‑activated protein kinase 
pathways. 

Introduction

Ethanol‑induced gastric mucosa injury represents one of the 
most refractory and frequently represented disease group 
in clinical settings, including gastritis, gastric ulcers and 
gastric mucosal stress injury (1). Patients with gastric mucosa 
injury commonly suffer from hyperemia, edema, erosion 
and hemorrhage (2). Chronic alcohol consumption is one of 
the most important factors contributing to the high incidence 
and prevalence of gastric mucosa injury (3). Ethanol‑induced 
gastric mucosal injury (acute or chronic), with the imbalance 
of protective and injury‑inducing factors of the mucosa (4), 
maybe attenuated by the regulation of anti‑inflammatory 
and antioxidant pathways  (5,6). Reactive oxygen species 
(ROS) have previously been demonstrated have important 
roles in disease pathogenesis and to be involved in complex 
physiological processes associated with oxidative stress, such 
as cell signaling and apoptosis (7‑9). In clinical and animal 
model studies, chronic alcohol consumption was revealed to 
be associated with suppressed superoxide dismutase (SOD) 
activity, reduced glutathione (GSH) levels and the oxidation 
of GSH/glutathione disulfide (GSSG) redox potentials, as well 
as enhanced levels of the lipid peroxide product, malondialde-
hyde (MDA) (10‑12).

The major bioactive polyphenols of tea (Camellia sinensis) 
are epigallocatechin gallate (EGCG) (13), a member of the 
catechin group of polyphenols found in tea, and theaflavins 
(TFs), which are a polymerized type of catechin (14). Tea poly-
phenols, which are predominantly extracted from green tea, 
have been extensively investigated (15). However, despite the 
beneficial properties of black tea, the polyphenolic compound 
TF derivatives have not been widely studied. Previous studies 
investigating black tea have revealed that it exhibits chemo-
preventive and chemotherapeutic effects (16,17). There are 
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four major TFs in black tea: TF1, TF‑3‑gallate, TF‑3'‑gallate 
and TF‑3, 3'‑digallate (TF3), of which TF3 is the most 
abundant  (18,19). Tea polyphenols serve predominantly as 
antioxidants; and they have also been demonstrated to serve 
as anticancer agents in numerous preclinical and clinical 
studies (20,21). TFs have been reported to attenuate inflam-
matory responses in human gingival fibroblasts as a result of 
antibacterial properties (22), and to suppress the secretion of 
inflammation‑associated factors and enhance the secretion 
of antimicrobial peptides in oral epithelial cells in vitro (23). 
An investigation using animal models with oxidative stress 
revealed that tea polyphenols functioned as antioxidants 
primarily by scavenging ROS and attenuating the suppres-
sion of the activity of antioxidant enzymes, such as SOD 
and GSH (24). Furthermore, TFs have been demonstrated 
to suppress hematopoietic stem cell (HSC) senescence and 
reduce oxidative stress to protect mouse HSCs from radiation 
injury in vivo (25).

In addition to the role of oxidative stress, studies have 
indicated that the underlying molecular mechanisms of 
ethanol‑induced gastric diseases may involve multiple signaling 
pathways, including apoptosis and mitogen‑activated protein 
kinase (MAPK) pathways, such as extracellular signal‑regulated 
kinase (ERK)1, ERK2, c‑Jun N‑terminal kinase (JNK) and p38 
kinase (p38) MAPK pathways (26,27). Apoptosis is induced 
by oxidative stress and the subsequent increases in superoxide 
and hydroxyl radicals, and MAPK pathways have important 
roles in cell proliferation, differentiation and apoptosis. TFs 
have previously been revealed to inhibit H2O2‑ and inflamma-
tion‑induced apoptosis in neural cells (28,29). Furthermore, the 
phosphorylation levels of ERK1/2 and JNK have been previ-
ously demonstrated to be suppressed by EGCG in epidermal 
cells (30) and by both EGCG and green tea polyphenols in lung 
carcinogenesis models (31). 

The aim of the present study was to investigate whether 
TFs may attenuate ethanol‑induced oxidative stress in gastric 
mucosa epithelial cells and to investigate the potential associ-
ated underlying molecular mechanisms, including apoptosis 
and MAPK pathways. The results of the present study indi-
cates that TFs may represent a novel therapeutic agent for 
the treatment of ethanol‑induced injury in gastric mucosa 
epithelial cells, which may provide insight for future studies 
investigating ethanol‑induced gastric diseases.

Materials and methods

Cell culture. TF3 (>90.0%) was purchased from Sigma‑Aldrich 
(Merck KGaA, Darmstadt, Germany) and is approved by the 
Food and Drug Administration (32,33). GES‑1 human gastric 
mucosa epithelial cells were obtained from the American 
Type Culture Collection (Manassas, VA, USA) in order to 
investigate the effects of TF3 on ethanol‑induced injury 
in vitro. For the similar reactions to ethanol with primary 
gastric mucosa epithelial cells, the GES‑1 cell line has been 
widely used in the study of the effects of ethanol on the gastric 
mucosa, and so the GES‑1 cell line was determined to be 
appropriate for use in the present study (34,35). Cells were 
cultured in RPMI 1640 medium (Hyclone; GE Healthcare 
Life Sciences, Logan, UT, USA) with 10% fetal bovine serum 
(Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, USA) 

and 1% penicillin/streptomycin (Invitrogen; Thermo Fisher 
Scientific, Inc.) in a 5% CO2‑containing humidified incubator 
at 37˚C. When cells reached 70% confluence, cell morpholo-
gies were observed under a DMi8 optical microscope (Leica 
Microsystems GmbH, Wetzlar, Germany).

When cells reached 70% confluence, they were divided 
into five groups: EtOH group (treated with 0.5 mol/l ethanol 
for 24 h at room temperature); TF‑1, TF‑2 and TF‑3 groups 
(respectively treated with 20, 40 and 80 µg/ml TF3 for 6 h, 
and then 0.5 mol/l ethanol for 24 h, at room temperature) and 
the Control group (without any treatment). Cell viability and 
proliferation abilities were subsequently investigated to deter-
mine the degree of injury exhibited by GES‑1 cells following 
treatment with ethanol, and whether administration of TF3 
attenuates these effects. 

Cell Counting Kit‑8 (CCK‑8) cell viability assay. The cell 
viability of GES‑1 cells treated with varying concentra-
tions of TF3 (20, 40 and 80 µg/ml) for 6 h prior to ethanol 
(0.5 mol/l) treatment were investigated using the CCK‑8 
assay (Beyotime Institute of Biotechnology, Haimen, China) 
at specific time intervals (0, 6, 12, 24 and 48 h), according to 
the manufacturer's protocol. Briefly, cells (5x103 cells/well) 
were seeded with CCK‑8 reagent (20 µl) in 96‑well plates and 
incubated for 1 h at 37˚C in an atmosphere of 5% CO2. The 
optical density values were analyzed under 450 nm using a 
microplate reader (Bio‑Tek Instruments, Inc., Winooski, VT, 
USA).

Carboxyfluorescein diacetate succinimidyl ester (CFSE) cell 
proliferation assay. The CFSE assay was used to investigate 
the proliferation ability of cells in all groups following treat-
ment with ethanol for 24 h, with or without pretreatment with 
20, 40 and 80 µg/ml TF3 for 6 h. Proliferation was assessed 
based on the even distribution of CFSE fluorescence when 
cell division occurs. The CellTrace CFSE Cell Proliferation 
kit (Invitrogen; Thermo Fisher Scientific, Inc.) was used to 
investigate GES‑1 cell proliferation according to the manu-
facturer's protocol. Cells were mixed with preheated PBS 
(1 ml) in sterile centrifuge tubes to reach a final concentration 
of 1x106 cells/ml. A total of 2 µl CFSE (5 mmol/l) reagent 
was added to the mixture, which was subsequently incubated 
for 10 min at 37˚C. Following culture in 10 ml RPMI 1640 
containing 10% FBS for 5 min on ice in the dark, cells were 
seeded into 24‑well plates (1x105 cells/well) and cultured 
in an incubator containing 5% CO2 at 37˚C for 4 h. Finally, 
cells were investigated using a FACSCalibur flow cytometer 
(BD Biosciences, Franklin Lakes, NJ, USA) and CellQuestTM 
Pro Software version 5.1 (BD Biosciences). 

ROS detection. ROS levels were measured using dichlo-
rofluorescein‑diacetate (DCTH‑DA), an oxygen‑sensitive 
fluorescence probe. Briefly, DCFH‑DA (10  µmol/l) was 
added to EtOH, TF‑1, TF‑2, TF‑3 and Control cell groups 
(1x105 cells/well) in a 6‑well plate. Following incubation for 
30 min at 37˚C in the dark, cells were washed with PBS three 
times to remove excess dye, and were immediately collected 
and analyzed using a FACSCalibur flow cytometer (BD 
Biosciences) and CellQuestTM Pro Software version 5.1 (BD 
Biosciences).
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Detection of oxidative stress‑associated factors. MDA levels, 
SOD activity and the GSH/GSSG ratio in the EtOH, TF‑1, TF‑2, 
TF‑3 and Control cell groups were determined. MDA levels 
were detected by thiobarbituric acid in a Lipid Peroxidation 
MDA assay kit (Beyotime Institute of Biotechnology). SOD 
activities were investigated using Total Superoxide Dismutase 
assay kit with WST‑8 (Beyotime Institute of Biotechnology). 
Additionally, GSH/GSSG redox potentials were determined 
using 2,2‑dithio‑bis‑nitrobenzoic acid in the GSH and GSSG 
assay kit (Beyotime Institute of Biotechnology). All assays 
were performed according to the manufacturer's protocols.

Annexin  V‑fluorescein isothiocyanate (FITC)/propidium 
iodide (PI) apoptosis detection. The apoptosis rates of 
GES‑1 cells were determined using an Annexin V‑FITC/PI 
double‑staining assay, according to the manufacturer's protocol 
(BioVision, Inc., Milpitas, CA, USA). In the present study, cells 
in the EtOH, TF‑1, TF‑2, TF‑3 and Control cell groups, with 
the initial concentration of 1x106 cells/ml, were seeded in a 
96‑well plate. Following this, Annexin V/FITC (40 µg/ml, 
5 µl) and PI (20 µg/ml, 10 µl) were added to the cell suspen-
sion. Following incubation for 15 min at room temperature, 
cells were analyzed using a FACSCalibur flow cytometer. A 
wavelength of 488 nm was used as the exciting light wave-
length, and wavelengths of 515 nm (FITC) and 560 nm (PI) 
were used as detecting light wavelengths. 

Reverse transcription‑quantitative polymerase chain reac‑
tion (RT‑qPCR). Total RNA was extracted using TRIzol 
(Invitrogen; Thermo Fisher Scientific, Inc.) from the EtOH, 
TF‑1, TF‑2, TF‑3 and Control cell groups, and cDNA was 
obtained using a EN‑QuantiTect Reverse Transcription 
(Qiagen GmbH, Hilden, Germany), according to the manufac-
turer's protocols of 37˚C for 10 min, and 85˚C for 15 sec. The 
thermocycling conditions for qPCR were as follows: Initial 
denaturation at 95˚C for 30 sec, followed by 40 cycles of dena-
turation at 95˚C for 5 sec and annealing/extension at 60˚C for 
30 sec. qPCR was performed in an ABI 7300 Thermocycler 
(Applied Biosystems; Thermo Fisher Scientific, Inc.) using 
a SYBR Green Master Mix (Applied Biosystems; Thermo 
Fisher Scientific, Inc.). The 2‑∆∆Cq method used to normalize 
gene expression to the housekeeping gene (GAPDH) (36). The 
primer sequences used for PCR are presented in Table I.

Western blot analysis. Total proteins were extracted from cells 
in EtOH, TF‑1, TF‑2, TF‑3 and Control cell groups. Cells were 
lysed using lysis buffer (50 mM Tris‑Cl, 150 mM NaCl, 0.02% 
NaN2, 100 µg/ml phenylmethanesulfonyl fluoride, 1 µg/ml apro-
tinin, and 1% Triton X‑100), and centrifuged at 12,000 x g for 
30 min at 4˚C. Total protein concentration was determined via 
a BCA assay (Beyotime Institute of Biotechnology). Following 
this, proteins (20 µg/well) were separated via 12% SDS‑PAGE 
and transferred to polyvinylidene fluoride (PVDF) membranes 
(EMD Millipore, Billerica, MA, USA). Following blocking 
using 5% non‑fat dry milk for 1 h at room temperature, the 
membranes were probed using the following rabbit primary 
antibodies overnight at 4˚C: Anti‑caspase‑3 (cat no. ab13847; 
1:500; Abcam, Cambridge, UK), anti‑B‑cell lymphoma‑2 
(Bcl‑2;cat. no. ab59348; 1:1,000; Abcam), anti‑Bcl‑2‑associ-
ated X (Bax; cat. no. ab32503; 1:2,000; Abcam), anti‑GAPDH 

(cat. no. ab9485; 1:2,500; Abcam), anti‑ERK1/2 (cat. no. 4695; 
1:1,000; Cell Signaling Technology, Inc., Danvers, MA, USA), 
anti‑phosphorylated (p)‑ERK1/2 (cat. no.  4370; 1:2,000; 
Cell Signaling Technology, Inc.), anti‑JNK (cat. no. 9252; 
1:1,000; Cell Signaling Technology, Inc.), anti‑p‑JNK (cat. 
no. 4668; 1:1,000; Cell Signaling Technology, Inc.), anti‑p38 
(cat. no. 8690; 1:1,000; Cell Signaling Technology, Inc.) and 
anti‑p‑p38 (cat. no. 4511; 1:1,000; Cell Signaling Technology, 
Inc.). GAPDH was used as the loading control. Following this, 
membranes were probed with horseradish peroxidase‑conju-
gated goat anti‑rabbit IgG H&L (cat. no.  ab6721; 1:5,000; 
Abcam) for 2 h at room temperature. PVDF membranes were 
subsequently exposed to X‑ray film and visualized using an 
enhanced chemiluminescence detection system, GE ECL 
Start (GE Healthcare, Chicago, IL, USA). Lab Works Image 
Acquisition and Analysis software PLUS 4.1 (UVP, LLC, 
Phoenix, AZ, USA) was used to quantify the band intensities. 

Statistical analysis. Data are presented as the mean ± stan-
dard deviation of three independent experiments. Statistical 
analysis was performed using SPSS software (version 22.0; 
IBM Corp., Armonk, NY, USA). Statistical differences were 
determined via one‑way analysis of variance and Dunnett's 
post‑hoc test. P<0.05 was considered to indicate a statistically 
significant difference.

Results

TFs enhance the viability of GES‑1 cells injured by ethanol. 
After 24 h of culture, cell morphologies of GES‑1 gastric 
mucosa epithelial cells were observed by optical microscopy, 
when cells attained 70% confluence. Cells were observed 
regular polygonal or fusiform cell morphologies, and uniform 
interstitials (Fig. 1A). Once the cells had reached 70% conflu-
ence, the CCK‑8 assay was performed to determine the effect 
of the administration of differing concentrations of TFs (20, 
40 and 80 µg/ml) on the cell viability of GES‑1 cells treated 
with 0.5 mol/l ethanol for specific time intervals (0, 6, 12, 24 
and 48 h). The results revealed that the cell viability of the 
EtOH group was significantly suppressed at all time‑points 
compared with the control group (P<0.01; Fig.  1B). 
Furthermore, the results of the CCK‑8 assay revealed that 
TFs enhanced cell viability following treatment with ethanol 
in a dose‑dependent manner compared with the EtOH group 
(P<0.05; Fig. 1B). 

The CFSE assay was performed to further investigate the 
potential TF‑induced promotion of GES‑1 cell proliferation in 
cells treated with ethanol (0.5 mol/l) for 24 h. The results of the 
flow cytometry analysis demonstrated that the cell prolifera-
tion ability (reflected by M1 values) was significantly inhibited 
(decreased M1 values) in the EtOH group compared with the 
control group (P<0.01); however, this effect was significantly 
reversed (increased M1 values) following treatment with TF in 
a dose‑dependent manner (P<0.05; Fig. 1C and D).

TFs attenuate oxidative stress induced by ethanol in GES‑1 
gastric mucosa epithelial cells. As an indicator of oxidative 
stress, ROS levels were detected as a marker of oxidative 
stress. DCTH‑DA fluorescence detection was performed and 
the results revealed that the EtOH group exhibited significantly 
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enhanced ROS levels compared with the control group (P<0.01; 
Fig. 2A and B). Furthermore, treatment with TFs reversed this 
effect in a dose‑dependent manner, compared with the EtOH 
group (P<0.05; Fig. 2A and B). 

In addition, the levels of other common oxidative 
stress‑associated factors, including SOD, GSH and MDA, 
were investigated. The activity of SOD in the EtOH group 
was significantly suppressed compared with the control group 
(P<0.01; Fig.  2C). By contrast, the levels of MDA in the 
EtOH group were significantly increased compared with the 
control group (P<0.01; Fig. 2D). Furthermore, the activity of 
the GSH/GSSG redox potential was significantly suppressed 
in the EtOH group compared with the control group (P<0.01; 
Fig. 2E). However, treatment with TFs reversed the effects 
of ethanol treatment on the levels of ROS, SOD, MDA and 
GSH/GSSG in a dose‑dependent manner (Fig. 2). 

TFs inhibit cell apoptosis in GES‑1 cells injured by ethanol. 
Annexin V‑FITC/PI double‑staining assay and flow cytometry 
were performed to determine the apoptosis rates exhibited 
by the control, EtOH, TF‑1, TF‑2 and TF‑3 cell groups. The 
results demonstrated that the apoptosis rate was significantly 
increased in the EtOH group compared with the control group 
(P<0.01) and that treatment with TFs significantly reversed this 
effect in a dose‑dependent manner (P<0.05; Fig. 3A and B). 

Furthermore, the expression levels of apoptosis‑associated 
factors were investigated by RT‑qPCR and western blot 
analyses. The results demonstrated that the mRNA and 
protein levels of proapoptotic factors (caspase‑3 and Bax) were 
significantly enhanced in the EtOH group compared with the 
control group (P<0.01), while the mRNA and protein levels of 
the anti‑apoptotic protein Bcl‑2 were significantly suppressed 
in the EtOH group compared with control group (P<0.01; 

Figure 1. TFs promote the cell viability of ethanol‑treated GES‑1 gastric mucosa epithelial cells. (A) GES‑1 cells were cultured and cell morphologies were 
observed by optical microscopy (magnification, x100 and x200). (B) A Cell Counting Kit‑8 assay was performed to investigate the effect of 20, 40 and 
80 µg/ml TFs on the cell viability of ethanol‑treated GES‑1 cells at various time intervals. A CFSE assay was subsequently performed to determine the effect 
of TF administration on the cell proliferation of GES‑1 cells treated with ethanol for 12 h. (C) M1 values obtained following the CFSE proliferation assay were 
statistically compared among the groups. (D) Representative flow cytometry graphs following the CFSE assay in different cell groups. ##P<0.01 vs. control 
group; *P<0.05 and **P<0.01 vs. EtOH group. TFs, theaflavins; CFSE, carboxyfluorescein diacetate succinimidyl ester; EtOH group, GES‑1 cells treated with 
0.5 mol/l ethanol only; TF‑1 group, GES‑1 cells treated with 20 µg/ml TFs prior to 0.5 mol/l ethanol treatment; TF‑2, GES‑1 cells treated with 40 µg/ml TFs 
prior to 0.5 mol/l ethanol treatment; TF‑3, GES‑1 cells treated with 80 µg/ml TFs prior to 0.5 mol/l ethanol treatment; OD, optical density.

Table I. Primer sequences used for reverse transcription‑quantitative polymerase chain reaction.

	 Sequence
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Gene	 Forward	 Reverse

GAPDH	 CCATCTTCCAGGAGCGAGAT	 TGCTGATGATCTTGAGGCTG
Caspase‑3	 TGAGCCATGGTGAAGAAGGA	 TCGGCCTCCACTGGTATTTT
Bax	 AACATGGAGCTGCAGAGGAT	 CCAATGTCCAGCCCATGATG
Bcl‑2	 TTCTTTGAGTTCGGTGGGGT	 CTTCAGAGACAGCCAGGAGA

Bcl‑2, B‑cell lymphoma‑2; Bax, Bcl‑2‑associated X.
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Fig. 3C‑E). However, treatment with TFs significantly reversed 
the effects of ethanol administration in a dose‑dependent 
manner (P<0.05; Fig. 3C‑E).

TFs alleviate oxidative stress via MAPK pathways in GES‑1 
cells treated with ethanol. The phosphorylation levels of ERK, 
JNK and p38 were investigated by western blot analyses in 
control, EtOH, TF‑1, TF‑2 and TF‑3 cell groups. The results 
demonstrated that the protein levels of p‑ERK (Fig. 4A and B), 
p‑JNK (Fig. 4C and D) and p‑p38 (Fig. 4E and F) were signifi-
cantly increased in EtOH groups compared with the control 
group (P<0.01). However, treatment with TFs significantly 
attenuated this effect in a dose‑dependent manner compared 
with the EtOH group (P<0.05; Fig. 4). The total levels of ERK, 
JNK and p38 did not exhibit any significant differences between 
the control, EtOH, TF‑1, TF‑2 and TF‑3 cell groups (Fig. 4).

Discussion

It is well established that chronic alcohol consumption is one 
of the most important risk factors for the induction of digestive 

tract diseases (37). Chronic, excessive alcohol consumption 
may lead to the induction of various acute digestive tract 
diseases, including gastritis, gastric ulcers and gastrorrhagia, 
as a result of subsequent gastric mucosa injury, particularly via 
oxidative stress and apoptosis (38,39). Tea polyphenols, which 
are predominantly extracted from green tea, have been widely 
investigated and have been revealed to exhibit antioxidative 
properties  (40,41). TFs, polyphenolic compounds that are 
the major beneficial component of black tea, have also been 
demonstrated to exert antioxidative effects and thus require 
further investigation (42‑44).

In the present study, GES‑1 gastric mucosa epithelial cells 
were used to construct an oxidative stress cell model using 
ethanol treatment to induce injury. The viability of GES‑1 cells 
was significantly suppressed following treatment with ethanol 
(0.5 mol/l) after 6, 12, 24 and 48 h, while the levels of oxida-
tive stress and apoptosis were significantly enhanced following 
treatment with 0.5 mol/l ethanol. However, the results demon-
strated that treatment of GES‑1 cells with TFs attenuated the 
effects of ethanol administration on levels of oxidative stress, 
apoptosis and cell viability in a dose‑dependent manner. 

Figure 2. TFs attenuate oxidative stress induced by ethanol in GES‑1 gastric mucosa epithelial cells. ROS levels were investigated via administration of 
DCTH‑DA to GES‑1 cells following treatment with 0.5 mol/l ethanol. (A) Representative flow cytometry graphs for each cell group following the addition of 
DCTH‑DA. (B) ROS levels were quantified by flow cytometry and statistically compared among the groups. Levels of (C) SOD, (D) MDA and (E) GSH/GSSG 
were determined using commercial kits. ##P<0.01 vs. control group; *P<0.05 and **P<0.01 vs. EtOH group. TFs, theaflavins; ROS, reactive oxygen species; 
DCTH‑DA, dichlorofluorescein‑diacetate; SOD, superoxide dismutase; MDA, malondialdehyde; GSH, glutathione; GSSG, glutathione disulfide; EtOH group, 
GES‑1 cells treated with 0.5 mol/l ethanol only; TF‑1 group, GES‑1 cells treated with 20 µg/ml TFs prior to 0.5 mol/l ethanol treatment; TF‑2, GES‑1 cells 
treated with 40 µg/ml TFs prior to 0.5 mol/l ethanol treatment; TF‑3, GES‑1 cells treated with 80 µg/ml TFs prior to 0.5 mol/l ethanol treatment.
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The underlying molecular mechanisms of this process were 
investigated further by analyzing oxidative stress, apoptosis 
and MAPK pathways that are important for cell proliferation.

ROS are involved in cell oxidative stress mechanisms, 
predominantly via the induction of lipid peroxidation in the 
phospholipid membrane, the production of oxygen radicals and 
the induction of cell apoptosis (26,27). Antioxidant enzymes, 
such as SOD and GSH, eliminate ROS to maintain the 
balance of ROS generation and elimination during cell normal 
metabolism (45,46). Excessive accumulation of ROS leads to 
the destruction of this balance and induces oxidative stress 
and cell apoptosis (28). Consistent with previous research, the 
results of the present study revealed that ROS and MDA levels 
were significantly increased following treatment with ethanol, 
whereas the activities of SOD and GSH antioxidant enzymes 
were significantly decreased following treatment with ethanol. 
Furthermore, the results of the present study demonstrated 
that administration of TFs attenuated the effects of ethanol 
treatment in GES‑1 cells in a dose‑dependent manner. 

Apoptosis, a form of programmed cell death, is impor-
tant for normal cell survival. Bcl‑2 family members and 
caspases are important regulators of mitochondria‑mediated 

apoptosis  (47,48). Bcl‑2 family members, which possess a 
BH homology domain, such as Bcl‑2, Bax and Bcl‑2‑like 1, 
have been previously demonstrated to be regulators of the 
mitochondria membrane potential via competitive level 
variations of antiapoptotic factors (e.g. Bcl‑2) and proapop-
totic factors (e.g. Bax) (29). In addition, such factors modify 
the release of cytochrome c in order to regulate the activation 
of downstream caspase pathways (49). Caspases are a family 
of cysteine‑aspartic proteases. Cell apoptosis in mammals 
is predominantly induced by caspases, some of which func-
tion as apoptosis activators and others function as apoptosis 
executioners (50). Caspase‑3 is the most important executive 
factor in the apoptosis pathway (51). The present study demon-
strated that treatment with TFs downregulated the expression 
levels of Bax and caspase‑3, which were otherwise induced 
by ethanol injury in GES‑1 cells. Furthermore, treatment with 
TFs upregulated the expression levels of Bcl‑2, which were 
suppressed following treatment with ethanol alone. Therefore, 
TFs may protect GES‑1 cells against ethanol injury via the 
regulation of cell apoptosis.

MAPK pathways have important roles in cell proliferation, 
differentiation, apoptosis and inflammation (52,53). Studies 

Figure 3. TFs suppress cell apoptosis in GES‑1 cells treated with ethanol. Annexin V‑FITC/PI double staining followed by flow cytometry was performed to 
measure apoptosis rates in the different cell groups. (A) Representative flow cytometry scatter plots following Annexin V‑FITC/PI double staining, lower right 
+ upper right quadrants were considered to indicate apoptotic cells. (B) Apoptosis rates determined by flow cytometry were statistically compared among 
the groups. (C) Reverse transcription‑quantitative polymerase chain reaction was performed to measure the mRNA levels of apoptosis‑associated factors, 
includingcaspase‑3, Bax and Bcl‑2. (D) Representative western blot bands obtained for the protein expression of caspase‑3, Bax and Bcl‑2 apoptosis‑associated 
factors. (E) Densitometric analysis was performed to quantify and statistically compare the protein levels of caspase‑3, Bax and Bcl‑2 among the different 
cell groups. ##P<0.01 vs. control group; *P<0.05 and **P<0.01 vs. EtOH group. TFs, theaflavins; FITC, fluorescein isiothiocyanate; PI, propidium iodide; Bcl‑2, 
B‑cell lymphoma‑2; Bax, Bcl‑2‑associated X; EtOH group, GES‑1 cells treated with 0.5 mol/l ethanol only; TF‑1 group, GES‑1 cells treated with 20 µg/ml TFs 
prior to 0.5 mol/l ethanol treatment; TF‑2, GES‑1 cells treated with 40 µg/ml TFs prior to 0.5 mol/l ethanol treatment; TF‑3, GES‑1 cells treated with 80 µg/ml 
TFs prior to 0.5 mol/l ethanol treatment.
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have indicated that extracellular signals are transferred 
between cells via the MAPK pathway in order to induce various 
cellular responses (54,55). ERK, JNK and p38 are important 
proteins in MAPK pathways (56). ERK is closely associated 
with cell viability and proliferation, while JNK and p38 are 
involved in apoptotic pathways and are more readily activated 
by stimuli in the extracellular environment, including oxida-
tive stress, ultraviolet irradiation, high temperatures, ischemia 
reperfusion and inflammatory factors (57,58). The results of the 
present study revealed that treatment with ethanol upregulated 
the phosphorylation levels of ERK, JNK and p38, indicating 
the activation of associated MAPK pathways so as to induce 
oxidative stress and apoptosis in GES‑1 cells. Furthermore, 
the results revealed that treatment with TFs protected GES‑1 
cells from ethanol‑induced injury via downregulation of the 
phosphorylation of ERK, JNK and p38. 

In conclusion, the results of the current study indicated that 
TFs may attenuate ethanol‑induced oxidative stress and apop-
tosis in GES‑1 gastric mucosa epithelial cells by increasing 

the function of SOD and GSH in order to reduce ROS and 
MDA levels, regulating the activity of apoptosis pathways, 
such as via the upregulation of Bcl‑2 expression and the 
downregulation of Bax and Caspase‑3 expression levels, and 
by suppressing the activation of ERK, JNK and p38 MAPK 
pathways. The results of the present study indicate that TFs, 
a type of national and health‑benefitting properties, may 
represent a novel therapeutic agent for the treatment and/or 
prevention of diseases resulting from ethanol‑induced gastric 
mucosa injury. However, the effect of TFs on gastric mucosa 
injury in a clinical setting requires further investigation.
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