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Transcriptome sequencing identifies key pathways
and genes involved in gastric adenocarcinoma
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Abstract. The present study aimed to investigate the key
pathways and genes associated with gastric adenocarcinoma
via transcriptome sequencing. Five pairs of gastric adenocarci-
noma tissue and normal tumor-adjacent tissue were harvested.
After sequencing, raw data were processed and differentially
expressed genes (DEGs) between tumor and control groups were
screened, followed by functional enrichment analysis and gene
clustering analysis. The effect of DEGs on patient prognosis was
analyzed on the basis of the survival data from gastric adenocar-
cinoma patients in The Cancer Genome Atlas database. Several
genes were validated through reverse transcription-quantitative
polymerase chain reaction. In total, 1,477 upregulated and
282 downregulated DEGs were screened in tumor groups. These
genes were segregated into four clusters. Genes in cluster 1
were significantly involved in metabolism of xenobiotics by
cytochrome P450, genes in cluster 2 were majorly involved in
apoptosis, tight junction formation, and platelet activation, genes
in cluster 3 were primarily enriched in the p53 signaling pathway
and genes in cluster 4 were significantly enriched in the insulin
resistance pathway. Furthermore, 15 DEGs significantly influ-
enced prognosis, including F2R, CTHRCI1, and RASGRP3. The
expression levels of CYP2B6, MAPKI13, CTHRC, RASGRP3
and PYGM were consistent with our analysis results. In conclu-
sion, pathways for metabolism of xenobiotics via cytochrome
P450, apoptosis, tight junction formation, platelet activation, and
insulin resistance may serve important roles in the progression
of gastric adenocarcinoma. Notably, CTHRCI and RASGRP3
may serve as key prognostic markers.

Introduction

Gastric cancer is the third leading cause of cancer-related
mortality worldwide (1). Adenocarcinoma constitutes the
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majority, approximately 90%, of gastric cancer cases (2).
Adenocarcinoma is a malignant epithelial tumor that invades
the gastric wall, and infiltrates the muscularis mucosae,
submucosa, and muscularis propria. Since early gastric cancer
yields few symptoms, gastric cancer is usually advanced
at diagnosis, which is difficult to cure (3). Advanced-stage
gastric adenocarcinoma has a poor prognosis and the spon-
taneous median survival ranges from 3 to 6 months (4).
Achieving a detailed understanding of the genetics and
molecular pathogenesis of gastric adenocarcinoma may help
improve patient outcomes.

Altered regulation of gene expression programs is impor-
tant for tumors to express different cancer biomarkers (5,6). A
Recent study has achieved considerable progress in identifying
the key molecular mediators of gastric cancer. For instance,
gene changes in Cadherin 1 expression, AT-rich interaction
domain 1A, and ras homolog family member A, as well as
some deregulated pathways including AMPK/HNF4a/Wnt5a
pathways are associated with gastric malignancy and progres-
sion (7-10). Although several genes have been reported, a large
proportion of gastric cancer patients have none of these genes
in their cancer genome. Therefore, further detailed genomic
characterization of gastric cancer patients is required.

Transcriptome sequencing is a rapidly developing approach
to provide an unprecedented global view of the transcriptome,
thereby revealing the entire transcriptional landscape (11,12).
In this study, we used transcriptome sequencing to compare
gene expression changes in five pairs of gastric adenocarci-
noma tissue and normal tumor-adjacent tissue. Transcriptome
sequencing data were then analyzed in silico. The present
study aimed to further explore genetic and biochemical
markers associated with gastric adenocarcinoma.

Materials and methods

Samples. Five pairs of gastric adenocarcinoma tissue and
normal tumor-adjacent tissue were obtained from five gastric
adenocarcinoma patients (Table I). The tissue samples were
snap-frozen and stored in liquid nitrogen. All patients provided
informed consent before the study. In addition, all procedures
in this study were approved by our hospital's protection of
human ethics committee.

RNA isolation, library preparation, and sequencing.
Total RNAs were isolated from tumor and paired normal
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tumor-adjacent tissues using TRIzol reagent (Invitrogen;
Thermo Fisher Scientific, Inc., Waltham, MA, USA). RNA
integrity was detected using the RNA Nano 6000 Assay kit
(Agilent Technologies, Inc., Santa Clara, CA, USA). RNA
concentration and purity were assessed using Qubit®RNA Assay
kit in Qubit®2.0 Flurometer (Thermo Fisher Scientific, Inc.), and
NanoPhotometer® spectrophotometer (Implen, Inc., Westlake
Village, CA), respectively. nRNA was then purified using oligo
(dT) magnetic beads, and the high-quality mRNA were pooled
to generate a cDNA library, using the NEBNext® Ultra™ RNA
Library Prep kit for Illumina®. Briefly, mRNA was fragmented
into small pieces, followed with first-strand cDNA synthesis
with random hexamer-primers. Thereafter, double-stranded
cDNA was synthesized and purified with AMPure XP beads.
Purified double stranded cDNA was then subjected to end
repair, dA tailing, and adaptor ligation. After size selection
using AMPure XP beads, cDNA libraries were constructed and
sequenced using the [llumina HiSeq 4000 platform.

The data are deposited at National Center for Biotechnology
Information (NCBI) Sequence Read Archive (SRA) database
(accession no. SRP119102).

Raw read quality control and reference genome alignment.
Raw reads were quality-filtered to obtain clear data via
removal of adaptor sequences, ambiguous or low-quality reads
and reads with more than 5% N, using Fastx toolkit version
0.0.13 and Prinseq-lite version 0.20.4 (13). The clear reads
were aligned with the human reference genome GRCh38
using Tophat (version 2.0.8, http://htseq.readthedocs.io/) (14).
The default parameters were the following: read-mismatches,
2; read-gap-length, 2; and min-anchor, 8. Thereafter, the
clear reads were annotated using HTseq (version 0.6.1,
http://www-huber.embl.de/HTSeq) (15) on the basis of the
GRCh38 gene annotation information in gene code.

Identification of differentially expressed genes (DEGs)
analysis. The mRNA read counts were transformed
into log-counts per million (logCPM) using edger
(version 3.4, http://www.bioconductor.org/packages/release/
bioc/html/edgeR.html) in R (16,17). Genes with low
expression values were excluded. The obtained genes were
normalized using trimmed mean of M-values (TMM) algo-
rithm. Thereafter, the normalized data were transformed
into a gene expression matrix, using the voom method (18)
in limma (version 3.32.5, http://bioconductor.org/packages/
release/bioc/html/limma.html) package (19). DEGs were
determined using empirical Bayes linear model and the
P-value for the expression of all genes was obtained. A
P-value <0.05 andllog, (fold-change)l=1 were set as the
cut-off values. The heatmap of DEGs was clustered using
pheatmap (version 1.0.8, https://cran.r-project.org/web/pack-
ages/pheatmap) package in R (20).

Functional and pathway enrichment analyses. We used
clusterProfiler (version 3.4.4, https://bioconductor.org/pack-
ages/release/bioc/html/clusterProfiler.html) to implement
Gene Ontology (GO) (21) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) (22) analyses for up- and down-regulated
DEGs. The Benjamini and Hochberg (BH) method-adjusted
P-value <0.05 was used as cut-off criteria.
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Table I. Characteristics of patients.

Height Weight
Samples Sex Age (cm) (kg) Stage
Gl Male 64 170 55 TINOMO
G2 Female 78 149 60 T2N2M1
G3 Male 63 172 65 T4aN2MO
G4 Female 84 155 55 TINOMO
G5 Male 74 171 65 TINOMO

Table II. Primers used in qPCR.

Primer name Sequences (5'-3")

GAPDH-hF TGACAACTTTGGTATCGTGGAAGG
GAPDH-hR AGGCAGGGATGATGTTCTGGAGAG
CYP2B6-hF TCCAGTCCATTACCGCCAAC
CYP2B6-hR GTAAACTTGCCTGTGTGCCC
MAPKI13-hF CGTCAACAAGACAGCCTGGGA
MAPK13-hR TGAAGACATCCAGGAGCCCAA
F2R-hF CCGCCTGCTTCAGTCTGTG

F2R-hR TGACCGGGGATCTAAGGTGG
CTHRCI1-hF CCGCCAGGTAGGAGCATCAC
CTHRCI1-hR TTTCCCTCAGACATTCCCCCT
RASGRP3-hF TCAGTTTCTGACCTCCTGGCA
RASGRP3-hR TGCATGGAAGAAGCAGTCTGT
PYGM-hF AGAAGAGGCGGGAGAGGAAA
PYGM-hR TGTTTGGGGGAGAAGAAGCC

Gene clustering analysis. On the basis of the gene
expression valuesin cancer and control groups, we applied
clustering analysis for DEGs using ConsensusClusterPlus
(version 1.40.0, https://www.bioconductor.org/packages/
release/bioc/html/ConsensusClusterPlus.html) in R (23). The
clustering method was K-means algorithm with the Euclidean
distance. The number of clusters was identified through
cumulative distribution function (24).

PPI network and pathway analyses of clustering module. Based
on the clustering modules obtained, we utilized the Search
Tool for the Retrieval of Interacting Genes (STRING, Version
10.0, http://www.string-db.org/) (25) database to analyze
protein-protein interactions among DEGs. The Cytoscape
(version 3.4.0, http://www.cytoscape.org/) (26) software was
used to visualize the PPI network. The topological character-
istics of nodes in the network were analyzed using CytoNCA
(version 2.1.6, http://apps.cytoscape.org/apps/cytonca) (27).
Based on the topological propertyscores of nodes, hub
proteins (28) were selected. Additionally, we performed KEGG
pathway enrichment analysis for genes in clustering modules.

Prognostic analysis. The effect of DEGs on patient prognosis
was analyzed using the stomach adenocarcinoma (STAD)
survival data in The Cancer Genome Atlas (TCGA) database.
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Figure 1. Heatmaps of differentially expressed genes between tumor and control samples. Red represents high expression; blue, low expression.

In TCGA database, we downloaded the mRNA-Seq and clin-
ical data. In total, 371 samples displayed both gene expression
values and clinical data, which were selected for prognostic
analysis. Briefly, each DEG was divided into two groups in
accordance with its expression level (relative to the median
of expression value) in patients, followed by analysis using
Kaplan-Meier (KM) survival curves. Significant differences
between high- and low-expression groups were analyzed using
the log-rank test.

Reverse transcription-quantitative polymerase chain reaction
(RT-gPCR) verification of the expression of key genes. The
expression levels of several genes were detected using RT-qPCR
based on the five pairs of gastric adenocarcinoma tissue and
normal tumor-adjacent tissue. Briefly, total RNAs were isolated
using a TRIzol reagent (Invitrogen; Thermo Fisher Scientific,
Inc.). RNA concentration and quality were determined on a
TECAN infinite M100 PRO Biotek microplate reader (Tecan,
San Jose, CA, USA). Then 0.5 ug of the total RNA was used
from cDNA synthesis using the PrimeScript RT Master Mix
(RRO36A; Takara Biotechnology Co., Ltd., Dalian, China).
RT-qPCR was performed using the SYBR-Green kit (4367659;
Thermo Fisher Scientific, Inc.) in the Viia7 Real-Time PCR
System (Applied Biosystems; Thermo Fisher Scientific, Inc.).
The primers used in this study are listed in Table II.

Statistical analysis. Data are presented as mean + standard
deviation. Statistical analysis was performed using SPSS 22.0

(IBM Corp., Armonk, NY, USA). Differences in gene
expression levels among different groups were analyzed by
one-way analysis of variance. The least square difference test was
used for post hoc analyses. P<0.05 was considered significant.

Results

Reference genome alignment. The reads mapped to the human
reference genome (GRCh38). The alignment rates of ten
samples ranged from 76.58% to 82.83% (data not shown).

Analysis of DEGs. In total, 1477 upregulated and 282 down-
regulated DEGs were screened out in tumor groups compared
with the control. Clustering analysis revealed that DEGs could
clearly distinguish between tumor and control groups, as
shown in the heatmap (Fig. 1).

Functional enrichment analysis. Results of functional enrich-
ment analysis are shown in Fig. 2. Upregulated DEGs were
significantly associated with the binding of cell adhesion
molecules, and cysteine-type endopeptidase activity, as well
as the p53 signaling pathway, and TNF signaling pathway.
Downregulated DEGs were significantly associated with the
GO term ‘ion channel binding’, and pathway of ‘Vascular
smooth muscle contraction’.

Gene clustering analysis. Using the consensus cluster algo-
rithm, when k=4, the consensus matrix plot (Fig. 3A) presented
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Figure 2. Gene Ontology functions and Kyoto Encyclopedia of Genes and Genomes pathways enriched with upregualted and downregulated differentially

expressed genes.
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Figure 3. (A) Consensus matrix plots of differentially expressed genes; (B) Empirical cumulative distribution function (DF) plots; (C) Delta area plot.

a clear distribution of high consistency and low consistency
in classification. Moreover, the classification achieved the
maximum stability when k=4 (Fig. 3B). Furthermore, k=4
was the largest k with an appreciable increase in consensus
(Fig. 3C). Therefore, k=4 was considered the optimal clus-
tering number. Based on k=4, four clusters were obtained.
The number of genes in clusters 1-4 was 410 (upregulated),
567 (479 upregulated and 88 downregulated), 591 (588 upreg-
ulated and 3 downregulated), and 191 (downregulated),
respectively.

PPI network and pathway analyses of clustering module. The
genes in the four clusters were subjected to PPI network anal-
ysis. The PPI network of cluster 1 comprised 192 nodes (such
as non-SMC condensin I complex subunit H) and 511 edges

(Fig. 4); cluster 2,440 nodes (such as mitogen-activated protein
kinase 13 (MAPKI3)) and 1,745 edges (Fig. 5); cluster 3,
385 nodes and 1,260 edges (Fig. 6); cluster 4, 40 nodes
[glycogen phosphorylase, muscle associated (PYGM)] and
47 edges (Fig. 7). The top five genes with high degrees
(hub genes) in the four networks are enlisted in Table III.

KEGG pathway enrichment analysis revealed that genes
in cluster 1 were significantly involved in Maturity-onset
diabetes among younger individuals, protein digestion and
absorption, and xenobiotic metabolism via cytochrome P450;
cluster 2, majorly involved in apoptosis, tight junction forma-
tion, and platelet activation; cluster 3, primarily enriched
in the p53 signaling pathway, cell cycle, and TNF signaling
pathway; cluster 4, significantly enriched in insulin resistance
and neuroactive ligand-receptor interactions (Fig. 8).
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Figure 4. The protein-protein interaction network generated on the basis of genes in the cluster 1. The gray round node represents upregualted genes.

Prognostic analysis. A total of 15 DEGs were identified to
significantly influence patient prognosis (Table I'V), including
cystatin SA (CST2), coagulation factor II thrombin receptor
(F2R), Collagen triple helix repeat containing 1 (CTHRCI),
and RAS guanylreleasing protein 3 (RASGRP3). Furthermore,
9 genes were identified in cluster 3.

RT-gPCRverification of the expression of key genes. Expression
levels of CYP2B6, MAPKI3, F2R, CTHRC, RASGRP3, and
PYGM were determined using RT-qPCR. As shown in Fig. 9,
CYP2B6, MAPK13, and CTHRC were significantly upregu-
lated in tumor samples compared with that in control samples
(P<0.05). RASGRP3 was also upregulated in tumor tissue
but the difference was not significant. Additionally, F2R and
PYGM were significantly downregulated in tumor samples
compared with control (P<0.05). Taken together, the expres-
sion levels of CYP2B6, MAPKI13, CTHRC, RASGRP3 and
PYGM were consistent with our analysis results.

Discussion

In total, 1,477 upregulated and 282 downregulated DEGs
were screened out in tumor groups compared with the control.
These genes were segregated into 4 clusters. Genes in cluster 1
were significantly involved metabolism of xenobiotics via
cytochrome P450. Genes in cluster 2 were majorly involved
in apoptosis, tight junction formation, and platelet activation.
Genes in cluster 3 were primarily enriched in the p53 signaling
pathway. Genes in cluster 4 were significantly enriched in the
insulin resistance pathway. Furthermore, 15 DEGs were iden-
tified to significantly influence patient prognosis, including
F2R,CTHRCI, and RASGRP3.

Cytochrome P450 enzymes are predominantly hepatic
enzymes involved in drug and xenobiotic metabolism (29).
However, reactive intermediates are formed during the conver-
sion of the parent compound to the hydrophilic conjugated
product that is cleared via excretion. These intermediates could



3678

GALM
ELOVL1
FAHD2B CKB SGPL1

DGKi
I DGKA

AXDC2

RPIA \est2 moce2™®

ASL

IDH1  RETSAT @sSTC BPNT1

LIPA IL2RG

SLC25A20 SLC35A3

DPAGT1
oTT3A AHOYL2

AACsHID ACAA1

UGDH LPINa  FDPS

DDAH1
ETNK1 ALDH3A1

PNP AKRIB10

ASS1 ACBDsL TECR
SYNM pcaTaB SLC25A22  GMPPB AT
PYCR1 CHPT1 | oA
GCNT1

pAqreC19EP

SLC2A1

FUTS SLC35A2

GALNT?7  RBPMS2 DGAT1 CYB5A

GGT1 DNAJB11
=" CIGALT{  CANT1 LEx

FDFT1 VDAC1

PDIAG

TPMT MYRFPRELID3B TACC3

SULT1C2 PDIAS

PIGR PCK2
SLC35C1 HMGA1 ! TOP1
GBF3
TSPAN1 ' caxs pappd\BCA3 ANXA2PDIA3 PRDX1

MLX

STEGALNACT gpcam IVNS1ABP Ol TBXAS1

EFUT4 MAP1B
ANXA3 @SN SMARCDSDSG? by X

TCF3
es L B8\ S o o SAE
ACKR1 NCOA?TEF
AGR2 CENPVCTSA gacExAS
RHBDF2

EDEM2 MOM4

CTSZ

STEGAL1

ATP1B1
BID F2R

LGALS3MT2A ropans
SLC39A4
coorp CTSS

OLFM4
CSTB coe2

ABCC3

ZBTETE
CTSC

TFRC

REG4jpriREM47 groia CTSB
CTSH
CEACAMS DD45B HES1
BEC3 TSPAN13 GADD45E" NFATCA4
TSPANS |1pR3
ALCAM

SLC40A1LCNZ CTSE
CDH1 MmyDss
MANZE1

LAMA3

ADRAZA ITGB4

SPINT2 RUNX1

LAMB3
GDF15  RARG

FAM122B P&
TNFRSF10B  CBorfd4

ITGA1 TFF3
LIMS2 IRF8
ST14 e
SERPINB1

LAD1
ERBEB3
rREx1  FAM109A SNTA1

SGCA  |GFBFS TM4SF1
ITGAS )

BAIAP2L1RGMB CTNND1

PARVB  pLAUR

CD55

BAGALTS
Criiops

DDOST

NIPSNAP1
PCDH1

N PLINAFBP1 KPNA2
FOLR
2EN02 HTATIP2 PSMD14
FBXO046

TMEMBTET N2

LC25A4
T™PG LPIN2 o oot bPps

GPX3 ACACB
CALRRUVBLT PGD

SYNPO2
o SUMF25xs ABCE1 GNL3

IMPAZ LYPLA
GFPT1

IQGAP2
KCNMAT k1 Fs5

HDAC1 NCAM1
F'3D e MYH14

TRPM4
LGR4LYN
SRC
xppi HDGFEsprra  KONNT Anpep

BAK1 CASPT

FOXQ1 FosB

DAP PGM5  MT1X
clTAERBB2 PPP1RIB

LRRCES

ELF3
ADAMB

ARHGEF16

MSTIR
GPRC5A

ZHANG et al: PATHWAYS AND GENES ASSOCIATED WITH GASTRIC ADENOCARCINOMA

EPSSEL1

SPINT1

MRPL17

SMPD3 SERINC2

CLINT{ PLBD1 CZorf40

SLC5AG MRPL3

SPNS2 DKC1
AIFMZ DDX80

Uck2
MTHED2
APMAPLL INg PITPNM1 HSPI7BIL . TMCO1 - RAB1A

TSPYL2
CMPK1 DCAF13 £iga EXOSCS LRP11

TVP23B sTx3 KIFCZ2

X FRKCI DDX27
NOB1

GALERNPEP
PSMB10

SHMT2
COPB2

SIRT7
PAICS sy ATPTAT

EPB4IL1
AR COPB1 ATP1B3

CMBL
COPGTHNRNPAESDA
FRAT2DPM1 SEC24D
SRSF¢

ARFAARPUNC130sROOM
1 PKN3
ARLsIP1 TRAP1  PSD ACTG2
SEL1L3
CEs2 FGFR4 VPS37B DPTACTRZ piBRs
o FBXL19L DaBHDﬁ AP1S1 MISP
TSKU!
SEC23BRIB2 CECRSpim3
LIMK1 MYL12A
ALS2CL ety EPSBL2
. HGS TUBM&APEDARFM
PRK DEZR PDUME)NCK RABEﬁiHaBGRLZCAPNS

CYP251 DHCR7
MXRAS KCNK5 RPSKA4

AATK METAP1

MYLE
Mvoie

SNRPG

FAMB3E
CAB39L

CLDN15

TRARBDC42EP1

ERN2 \iyos LLGL2  CNNIMK2

H3F3A
FLN TOMM34
TPM3 sRITMETMNENOTE oo TWE P
SR TACR2

FKBP11
CAPN15 maPK1EPPIR13L

RREPY,p  EVPL
EPHA2

PAK4

ZA1
SIPAIL3
MECOM APPL2

A DUSP4 ZNF513

EFNB1 NCS1
PP ARHGAP10

TFG pTky CAPNS

KALRN

FLNA PDZD4  cyciqq
CASP4 EML4

MEM33
SMTN AR
ARHGDIA

DTX4 KCTDS

SLCOAR1
TiE2 ACVR1B

Figure 5. The protein-protein interaction network generated on the basis of genes in the cluster 2. The gray round node represents upregulated genes and white

diamonds indicate downregulated genes.

cause genotoxicity and affect the checkpoint-signaling and
stress-signaling pathways to cause aberrant cell growth and
alter the cell cycle, thereby leading to tumor initiation (30).
Interestingly, some cytochrome P450 family genes are correlated
with the progression of gastric adenocarcinoma (31). The present
study shows that three differentially expressed cytochrome P450
family genes (CYP2B6, CYP2C9, and CYP3A4) of cluster 1 were
significantly enriched in xenobiotic metabolism via cytochrome
P450 (hsa00980), suggesting that these DEGs may be involved in
the development of gastric adenocarcinoma through xenobiotic
metabolism via the cytochrome P450 pathway.

DEGs in cluster 2 were significantly enriched in apoptosis
(hsa04210) and tight junction formation (hsa04530). These two
pathways are associated with gastric tumorigenesis (32,33).
Additionally, platelet activation (hsa04611) was also a significant

pathway among genes of cluster 2, which was enriched by
MAPK]I3 (a hub gene) and F2R (prognosis associated gene).
MAPKI3 encodes the p38d isoform, which plays a role in the
tumor initiation (34). Platelets are multifaceted cells, and circu-
lating platelets can influence various pathophysiologic events (35).
Platelets exacerbate tumor progression and metastasis (36,37).
In 1968, Gasic et al (38) reported that thrombocytopenic mice
are protected against metastasis, supporting the relevance of
platelets in cancer progression. Together, pathways of apop-
tosis, tight junction formation, and platelet activation, as well
as MAPKI3 and F2R may play important roles in gastric
adenocarcinoma. Nevertheless, the F2R expression detected in
RT-qPCR was inconsistent with the analysis results. Therefore,
further study are needed to investigate the role of F2R in gastric
adenocarcinoma. Prognostic analysis revealed that most of the
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Figure 6. The protein-protein interaction network generated on the basis of genes in the cluster 3. The gray round node represents upregulated genes and white

diamonds indicate downregulated genes.
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Figure 7. The protein-protein interaction network generated on the basis of
genes in the cluster 4. The white diamond node represents downregulated
genes.

obtained prognosis-associated genes were present in cluster 3,
including CTHRCI and RASGRP3. CTHRCI was first identified
during screening of differentially expressed sequences between
balloon-injured and normal rat arteries (39). It is overexpressed in
several types of malignant tumors, including gastric cancer (40).
Tang et al (41) reported that CTHRCI plays key functional roles
in cancer progression by increasing cancer cell invasion and
metastasis. RASGRP3 is a member of the RASGRP family
that was initially reported to be present in the screen of genes
whose overexpression induce fibroblast transformation (42). The
involvement of the RasGRP family in cancer progression and
development is proving to be extensive (43,44). RASGRP3 could
mediate the activation of the Ras signaling pathway, which plays
a key role in carcinogenesis (45). Considering the critical roles
of CTHRCI and RASGRP3 in carcinogenesis and the present
results, we considered the two genes as important prognostic
markers in gastric adenocarcinoma.

PYGM, a hub gene in the PPI network of cluster 4, was
involved in the insulin resistance pathway (hsa04931). Insulin
resistance is a pathological condition characterized by a
decline in the efficiency of insulin signaling for the regula-
tion of blood sugar (46). Insulin is a potent mitogenic agent,
which can inhibit apoptosis and promote cell proliferation (47).
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Table III. Top five differentially expressed genes with high degrees (hub genes) in four networks.

Cluster Node number Up DEGs Down DEGs Edge number Degree top 5 gene

Cluster 1 192 192 0 511 NCAPH, CDX1, DLGAP5, NCAPG,MNX1
Cluster 2 440 375 65 1,745 GGT1,MAPKI13,ENO2, TRAP1, DUSP4
Cluster 3 385 384 1 1,260 AURKA, CDH17,MYBL2, CDC6, CFTR
Cluster 4 40 0 47 47 GHR, PYGM, CSF3, STX1B, FAM149A

Table IV. Differentially expressed genes that significantly affect patient prognosis.

Names p High.median Low.median Regulated Cluster
CST2 0.042178 22.17 46.22 Up 1
CTSV 0.03481 25.59 57.39 Up 1
MATN3 0.000184 21.98 68.99 Up 1
SYT12 0.040832 25.59 46.22 Up 1
F2R 0.013663 25.59 55.39 Up 2
AADAC 0.047637 25.69 55.39 Up 3
AGT 0.025573 26.02 55.39 Up 3
TMEM?243 0.031481 22.17 55.39 Up 3
CTHRC1 0.001409 23.39 59.49 Up 3
F5 0.001542 2142 55.39 Up 3
KYNU 0.011683 25.03 5949 Up 3
MSC 0.028155 25.16 46.22 Up 3
RASGRP3 0.035342 25.59 4251 Up 3
SLC7A7 0.025332 22.17 4251 Up 3
ADPRHLI1 0.043589 4251 26.08 Down 4

p, represents statistical significance analyzed via a log-rank test; High.median, represents median survival time in the high expression group;
Low.median, represents median survival time in the low expression group; Regulated, represents variations in the expression level trends of
genes (Tumor vs. Control).
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Figure 8. Kyoto Encyclopedia of Genes and Genomes pathways enriched by genes in the four clusters.
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Figure 9. Relative expression levels of CTHRC1, CYP2B6, F2R, MAPK 13, PYGM and RASGRP3 in gastric adenocarcinoma tissue and normal tumor-adjacent
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Trevisan et al (48) reported that the variables related to an
increase in insulin resistance are related to an increased risk
of death from colorectal cancer. Furthermore, Mu et al (49)
reported that insulin resistance was a risk factor for endometrial
cancer. Therefore, we speculated that PYGM may be implicated
in gastric adenocarcinoma via the insulin resistance pathway.

In conclusion, the present study suggested that pathways of
xenobiotic metabolism via cytochrome P450, apoptosis, tight
junction formation, platelet activation, and insulin resistance as
well as the enriched genes including CYP2B6, MAPK13, and
PYGM may play important roles in the progression of gastric
adenocarcinoma. Furthermore, CTHRCI and RASGRP3 may
serve as key prognostic markers for gastric adenocarcinoma
patients.
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