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Abstract. The present study aimed to investigate the key 
pathways and genes associated with gastric adenocarcinoma 
via transcriptome sequencing. Five pairs of gastric adenocarci-
noma tissue and normal tumor‑adjacent tissue were harvested. 
After sequencing, raw data were processed and differentially 
expressed genes (DEGs) between tumor and control groups were 
screened, followed by functional enrichment analysis and gene 
clustering analysis. The effect of DEGs on patient prognosis was 
analyzed on the basis of the survival data from gastric adenocar-
cinoma patients in The Cancer Genome Atlas database. Several 
genes were validated through reverse transcription‑quantitative 
polymerase chain reaction. In total, 1,477 upregulated and 
282 downregulated DEGs were screened in tumor groups. These 
genes were segregated into four clusters. Genes in cluster 1 
were significantly involved in metabolism of xenobiotics by 
cytochrome P450, genes in cluster 2 were majorly involved in 
apoptosis, tight junction formation, and platelet activation, genes 
in cluster 3 were primarily enriched in the p53 signaling pathway 
and genes in cluster 4 were significantly enriched in the insulin 
resistance pathway. Furthermore, 15 DEGs significantly influ-
enced prognosis, including F2R, CTHRC1, and RASGRP3. The 
expression levels of CYP2B6, MAPK13, CTHRC, RASGRP3 
and PYGM were consistent with our analysis results. In conclu-
sion, pathways for metabolism of xenobiotics via cytochrome 
P450, apoptosis, tight junction formation, platelet activation, and 
insulin resistance may serve important roles in the progression 
of gastric adenocarcinoma. Notably, CTHRC1 and RASGRP3 
may serve as key prognostic markers.

Introduction

Gastric cancer is the third leading cause of cancer‑related 
mortality worldwide  (1). Adenocarcinoma constitutes the 

majority, approximately 90%, of gastric cancer cases  (2). 
Adenocarcinoma is a malignant epithelial tumor that invades 
the gastric wall, and infiltrates the muscularis mucosae, 
submucosa, and muscularis propria. Since early gastric cancer 
yields few symptoms, gastric cancer is usually advanced 
at diagnosis, which is difficult to cure (3). Advanced‑stage 
gastric adenocarcinoma has a poor prognosis and the spon-
taneous median survival ranges from 3 to 6  months  (4). 
Achieving a detailed understanding of the genetics and 
molecular pathogenesis of gastric adenocarcinoma may help 
improve patient outcomes.

Altered regulation of gene expression programs is impor-
tant for tumors to express different cancer biomarkers (5,6). A 
Recent study has achieved considerable progress in identifying 
the key molecular mediators of gastric cancer. For instance, 
gene changes in Cadherin 1 expression, AT‑rich interaction 
domain 1A, and ras homolog family member A, as well as 
some deregulated pathways including AMPK/HNF4a/Wnt5a 
pathways are associated with gastric malignancy and progres-
sion (7‑10). Although several genes have been reported, a large 
proportion of gastric cancer patients have none of these genes 
in their cancer genome. Therefore, further detailed genomic 
characterization of gastric cancer patients is required.

Transcriptome sequencing is a rapidly developing approach 
to provide an unprecedented global view of the transcriptome, 
thereby revealing the entire transcriptional landscape (11,12). 
In this study, we used transcriptome sequencing to compare 
gene expression changes in five pairs of gastric adenocarci-
noma tissue and normal tumor‑adjacent tissue. Transcriptome 
sequencing data were then analyzed in silico. The present 
study aimed to further explore genetic and biochemical 
markers associated with gastric adenocarcinoma.

Materials and methods

Samples. Five pairs of gastric adenocarcinoma tissue and 
normal tumor‑adjacent tissue were obtained from five gastric 
adenocarcinoma patients (Table I). The tissue samples were 
snap‑frozen and stored in liquid nitrogen. All patients provided 
informed consent before the study. In addition, all procedures 
in this study were approved by our hospital's protection of 
human ethics committee.

RNA isolation, library preparation, and sequencing. 
Total RNAs were isolated from tumor and paired normal 
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tumor‑adjacent tissues using TRIzol reagent (Invitrogen; 
Thermo Fisher Scientific, Inc., Waltham, MA, USA). RNA 
integrity was detected using the RNA Nano 6000 Assay kit 
(Agilent Technologies, Inc., Santa Clara, CA, USA). RNA 
concentration and purity were assessed using Qubit®RNA Assay 
kit in Qubit®2.0 Flurometer (Thermo Fisher Scientific, Inc.), and 
NanoPhotometer® spectrophotometer (Implen, Inc., Westlake 
Village, CA), respectively. mRNA was then purified using oligo 
(dT) magnetic beads, and the high‑quality mRNA were pooled 
to generate a cDNA library, using the NEBNext® Ultra™ RNA 
Library Prep kit for Illumina®. Briefly, mRNA was fragmented 
into small pieces, followed with first‑strand cDNA synthesis 
with random hexamer‑primers. Thereafter, double‑stranded 
cDNA was synthesized and purified with AMPure XP beads. 
Purified double stranded cDNA was then subjected to end 
repair, dA tailing, and adaptor ligation. After size selection 
using AMPure XP beads, cDNA libraries were constructed and 
sequenced using the Illumina HiSeq 4000 platform.

The data are deposited at National Center for Biotechnology 
Information (NCBI) Sequence Read Archive (SRA) database 
(accession no. SRP119102).

Raw read quality control and reference genome alignment. 
Raw reads were quality‑filtered to obtain clear data via 
removal of adaptor sequences, ambiguous or low‑quality reads 
and reads with more than 5% N, using Fastx toolkit version 
0.0.13 and Prinseq‑lite version 0.20.4 (13). The clear reads 
were aligned with the human reference genome GRCh38 
using Tophat (version 2.0.8, http://htseq.readthedocs.io/) (14). 
The default parameters were the following: read‑mismatches, 
2; read‑gap‑length, 2; and min‑anchor, 8. Thereafter, the 
clear reads were annotated using HTseq (version  0.6.1, 
http://www‑huber.embl.de/HTSeq) (15) on the basis of the 
GRCh38 gene annotation information in gene code.

Identification of differentially expressed genes (DEGs) 
analysis. The mRNA read counts were transformed 
into log‑counts per million (logCPM) using edger 
(version 3.4, http://www.bioconductor.org/packages/release/ 
bioc/html/edgeR.html) in R  (16,17). Genes with low 
expression values were excluded. The obtained genes were 
normalized using trimmed mean of M‑values (TMM) algo-
rithm. Thereafter, the normalized data were transformed 
into a gene expression matrix, using the voom method (18) 
in limma (version 3.32.5, http://bioconductor.org/packages/ 
release/bioc/html/limma.html) package  (19). DEGs were 
determined using empirical Bayes linear model and the 
P‑value for the expression of all genes was obtained. A 
P‑value <0.05 and|log2 (fold‑change)|≥1 were set as the 
cut‑off values. The heatmap of DEGs was clustered using 
pheatmap (version 1.0.8, https://cran.r‑project.org/web/pack-
ages/pheatmap) package in R (20).

Functional and pathway enrichment analyses. We used 
clusterProfiler (version 3.4.4, https://bioconductor.org/pack-
ages/release/bioc/html/clusterProfiler.html) to implement 
Gene Ontology (GO) (21) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) (22) analyses for up‑ and down‑regulated 
DEGs. The Benjamini and Hochberg (BH) method‑adjusted 
P‑value <0.05 was used as cut‑off criteria.

Gene clustering analysis. On the basis of the gene 
expression valuesin cancer and control groups, we applied 
clustering analysis for DEGs using ConsensusClusterPlus 
(version 1.40.0, https://www.bioconductor.org/packages/ 
release/bioc/html/ConsensusClusterPlus.html) in R (23). The 
clustering method was K‑means algorithm with the Euclidean 
distance. The number of clusters was identified through 
cumulative distribution function (24).

PPI network and pathway analyses of clustering module. Based 
on the clustering modules obtained, we utilized the Search 
Tool for the Retrieval of Interacting Genes (STRING, Version 
10.0, http://www.string‑db.org/)  (25) database to analyze 
protein‑protein interactions among DEGs. The Cytoscape 
(version 3.4.0, http://www.cytoscape.org/) (26) software was 
used to visualize the PPI network. The topological character-
istics of nodes in the network were analyzed using CytoNCA 
(version 2.1.6, http://apps.cytoscape.org/apps/cytonca)  (27). 
Based on the topological propertyscores of nodes, hub 
proteins (28) were selected. Additionally, we performed KEGG 
pathway enrichment analysis for genes in clustering modules.

Prognostic analysis. The effect of DEGs on patient prognosis 
was analyzed using the stomach adenocarcinoma (STAD) 
survival data in The Cancer Genome Atlas (TCGA) database. 

Table I. Characteristics of patients.

			   Height	 Weight
Samples	 Sex	 Age	 (cm)	 (kg)	 Stage

G1	 Male	 64	 170	 55	 T1N0M0
G2	 Female	 78	 149	 60	 T2N2M1
G3	 Male	 63	 172	 65	 T4aN2M0
G4	 Female	 84	 155	 55	 T1N0M0
G5	 Male	 74	 171	 65	 T1N0M0

Table II. Primers used in qPCR.

Primer name	 Sequences (5'‑3')

GAPDH‑hF	 TGACAACTTTGGTATCGTGGAAGG
GAPDH‑hR	 AGGCAGGGATGATGTTCTGGAGAG
CYP2B6‑hF	 TCCAGTCCATTACCGCCAAC
CYP2B6‑hR	 GTAAACTTGCCTGTGTGCCC
MAPK13‑hF	 CGTCAACAAGACAGCCTGGGA
MAPK13‑hR	 TGAAGACATCCAGGAGCCCAA
F2R‑hF	 CCGCCTGCTTCAGTCTGTG
F2R‑hR	 TGACCGGGGATCTAAGGTGG
CTHRC1‑hF	 CCGCCAGGTAGGAGCATCAC
CTHRC1‑hR	 TTTCCCTCAGACATTCCCCCT
RASGRP3‑hF	 TCAGTTTCTGACCTCCTGGCA
RASGRP3‑hR	 TGCATGGAAGAAGCAGTCTGT
PYGM‑hF	 AGAAGAGGCGGGAGAGGAAA
PYGM‑hR	 TGTTTGGGGGAGAAGAAGCC
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In TCGA database, we downloaded the mRNA‑Seq and clin-
ical data. In total, 371 samples displayed both gene expression 
values and clinical data, which were selected for prognostic 
analysis. Briefly, each DEG was divided into two groups in 
accordance with its expression level (relative to the median 
of expression value) in patients, followed by analysis using 
Kaplan‑Meier (KM) survival curves. Significant differences 
between high‑ and low‑expression groups were analyzed using 
the log‑rank test.

Reverse transcription‑quantitative polymerase chain reaction 
(RT‑qPCR) verification of the expression of key genes. The 
expression levels of several genes were detected using RT‑qPCR 
based on the five pairs of gastric adenocarcinoma tissue and 
normal tumor‑adjacent tissue. Briefly, total RNAs were isolated 
using a TRIzol reagent (Invitrogen; Thermo Fisher Scientific, 
Inc.). RNA concentration and quality were determined on a 
TECAN infinite M100 PRO Biotek microplate reader (Tecan, 
San Jose, CA, USA). Then 0.5 µg of the total RNA was used 
from cDNA synthesis using the PrimeScript RT Master Mix 
(RR036A; Takara Biotechnology Co., Ltd., Dalian, China). 
RT‑qPCR was performed using the SYBR‑Green kit (4367659; 
Thermo Fisher Scientific, Inc.) in the Viia7 Real‑Time PCR 
System (Applied Biosystems; Thermo Fisher Scientific, Inc.). 
The primers used in this study are listed in Table II.

Statistical analysis. Data are presented as mean ± standard 
deviation. Statistical analysis was performed using SPSS 22.0 

(IBM Corp., Armonk, NY, USA). Differences in gene 
expression levels among different groups were analyzed by 
one‑way analysis of variance. The least square difference test was 
used for post hoc analyses. P<0.05 was considered significant.

Results

Reference genome alignment. The reads mapped to the human 
reference genome (GRCh38). The alignment rates of ten 
samples ranged from 76.58% to 82.83% (data not shown).

Analysis of DEGs. In total, 1477 upregulated and 282 down-
regulated DEGs were screened out in tumor groups compared 
with the control. Clustering analysis revealed that DEGs could 
clearly distinguish between tumor and control groups, as 
shown in the heatmap (Fig. 1).

Functional enrichment analysis. Results of functional enrich-
ment analysis are shown in Fig. 2. Upregulated DEGs were 
significantly associated with the binding of cell adhesion 
molecules, and cysteine‑type endopeptidase activity, as well 
as the p53 signaling pathway, and TNF signaling pathway. 
Downregulated DEGs were significantly associated with the 
GO term ‘ion channel binding’, and pathway of ‘Vascular 
smooth muscle contraction’.

Gene clustering analysis. Using the consensus cluster algo-
rithm, when k=4, the consensus matrix plot (Fig. 3A) presented 

Figure 1. Heatmaps of differentially expressed genes between tumor and control samples. Red represents high expression; blue, low expression.
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a clear distribution of high consistency and low consistency 
in classification. Moreover, the classification achieved the 
maximum stability when k=4 (Fig. 3B). Furthermore, k=4 
was the largest k with an appreciable increase in consensus 
(Fig. 3C). Therefore, k=4 was considered the optimal clus-
tering number. Based on k=4, four clusters were obtained. 
The number of genes in clusters 1‑4 was 410 (upregulated), 
567 (479 upregulated and 88 downregulated), 591 (588 upreg-
ulated and 3 downregulated), and 191 (downregulated), 
respectively.

PPI network and pathway analyses of clustering module. The 
genes in the four clusters were subjected to PPI network anal-
ysis. The PPI network of cluster 1 comprised 192 nodes (such 
as non‑SMC condensin I complex subunit H) and 511 edges 

(Fig. 4); cluster 2, 440 nodes (such as mitogen‑activated protein 
kinase 13 (MAPK13)) and 1,745  edges (Fig.  5); cluster  3, 
385  nodes and 1,260  edges (Fig.  6); cluster 4, 40  nodes 
[glycogen phosphorylase, muscle associated (PYGM)] and 
47  edges (Fig.  7). The top five genes with high degrees 
(hub genes) in the four networks are enlisted in Table III.

KEGG pathway enrichment analysis revealed that genes 
in cluster 1 were significantly involved in Maturity‑onset 
diabetes among younger individuals, protein digestion and 
absorption, and xenobiotic metabolism via cytochrome P450; 
cluster 2, majorly involved in apoptosis, tight junction forma-
tion, and platelet activation; cluster  3, primarily enriched 
in the p53 signaling pathway, cell cycle, and TNF signaling 
pathway; cluster 4, significantly enriched in insulin resistance 
and neuroactive ligand‑receptor interactions (Fig. 8).

Figure 3. (A) Consensus matrix plots of differentially expressed genes; (B) Empirical cumulative distribution function (DF) plots; (C) Delta area plot.

Figure 2. Gene Ontology functions and Kyoto Encyclopedia of Genes and Genomes pathways enriched with upregualted and downregulated differentially 
expressed genes.
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Prognostic analysis. A total of 15 DEGs were identified to 
significantly influence patient prognosis (Table IV), including 
cystatin SA (CST2), coagulation factor II thrombin receptor 
(F2R), Collagen triple helix repeat containing 1 (CTHRC1), 
and RAS guanylreleasing protein 3 (RASGRP3). Furthermore, 
9 genes were identified in cluster 3.

RT‑qPCR verification of the expression of key genes. Expression 
levels of CYP2B6, MAPK13, F2R, CTHRC, RASGRP3, and 
PYGM were determined using RT‑qPCR. As shown in Fig. 9, 
CYP2B6, MAPK13, and CTHRC were significantly upregu-
lated in tumor samples compared with that in control samples 
(P<0.05). RASGRP3 was also upregulated in tumor tissue 
but the difference was not significant. Additionally, F2R and 
PYGM were significantly downregulated in tumor samples 
compared with control (P<0.05). Taken together, the expres-
sion levels of CYP2B6, MAPK13, CTHRC, RASGRP3 and 
PYGM were consistent with our analysis results.

Discussion

In total, 1,477 upregulated and 282 downregulated DEGs 
were screened out in tumor groups compared with the control. 
These genes were segregated into 4 clusters. Genes in cluster 1 
were significantly involved metabolism of xenobiotics via 
cytochrome P450. Genes in cluster 2 were majorly involved 
in apoptosis, tight junction formation, and platelet activation. 
Genes in cluster 3 were primarily enriched in the p53 signaling 
pathway. Genes in cluster 4 were significantly enriched in the 
insulin resistance pathway. Furthermore, 15 DEGs were iden-
tified to significantly influence patient prognosis, including 
F2R, CTHRC1, and RASGRP3.

Cytochrome P450 enzymes are predominantly hepatic 
enzymes involved in drug and xenobiotic metabolism  (29). 
However, reactive intermediates are formed during the conver-
sion of the parent compound to the hydrophilic conjugated 
product that is cleared via excretion. These intermediates could 

Figure 4. The protein‑protein interaction network generated on the basis of genes in the cluster 1. The gray round node represents upregualted genes.
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cause genotoxicity and affect the checkpoint‑signaling and 
stress‑signaling pathways to cause aberrant cell growth and 
alter the cell cycle, thereby leading to tumor initiation (30). 
Interestingly, some cytochrome P450 family genes are correlated 
with the progression of gastric adenocarcinoma (31). The present 
study shows that three differentially expressed cytochrome P450 
family genes (CYP2B6, CYP2C9, and CYP3A4) of cluster 1 were 
significantly enriched in xenobiotic metabolism via cytochrome 
P450 (hsa00980), suggesting that these DEGs may be involved in 
the development of gastric adenocarcinoma through xenobiotic 
metabolism via the cytochrome P450 pathway.

DEGs in cluster 2 were significantly enriched in apoptosis 
(hsa04210) and tight junction formation (hsa04530). These two 
pathways are associated with gastric tumorigenesis  (32,33). 
Additionally, platelet activation (hsa04611) was also a significant 

pathway among genes of cluster 2, which was enriched by 
MAPK13 (a hub gene) and F2R (prognosis associated gene). 
MAPK13 encodes the p38d isoform, which plays a role in the 
tumor initiation (34). Platelets are multifaceted cells, and circu-
lating platelets can influence various pathophysiologic events (35). 
Platelets exacerbate tumor progression and metastasis (36,37). 
In 1968, Gasic et al (38) reported that thrombocytopenic mice 
are protected against metastasis, supporting the relevance of 
platelets in cancer progression. Together, pathways of apop-
tosis, tight junction formation, and platelet activation, as well 
as MAPK13 and F2R may play important roles in gastric 
adenocarcinoma. Nevertheless, the F2R expression detected in 
RT‑qPCR was inconsistent with the analysis results. Therefore, 
further study are needed to investigate the role of F2R in gastric 
adenocarcinoma. Prognostic analysis revealed that most of the 

Figure 5. The protein‑protein interaction network generated on the basis of genes in the cluster 2. The gray round node represents upregulated genes and white 
diamonds indicate downregulated genes.
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obtained prognosis‑associated genes were present in cluster 3, 
including CTHRC1 and RASGRP3. CTHRC1 was first identified 
during screening of differentially expressed sequences between 
balloon‑injured and normal rat arteries (39). It is overexpressed in 
several types of malignant tumors, including gastric cancer (40). 
Tang et al (41) reported that CTHRC1 plays key functional roles 
in cancer progression by increasing cancer cell invasion and 
metastasis. RASGRP3 is a member of the RASGRP family 
that was initially reported to be present in the screen of genes 
whose overexpression induce fibroblast transformation (42). The 
involvement of the RasGRP family in cancer progression and 
development is proving to be extensive (43,44). RASGRP3 could 
mediate the activation of the Ras signaling pathway, which plays 
a key role in carcinogenesis (45). Considering the critical roles 
of CTHRC1 and RASGRP3 in carcinogenesis and the present 
results, we considered the two genes as important prognostic 
markers in gastric adenocarcinoma.

PYGM, a hub gene in the PPI network of cluster 4, was 
involved in the insulin resistance pathway (hsa04931). Insulin 
resistance is a pathological condition characterized by a 
decline in the efficiency of insulin signaling for the regula-
tion of blood sugar (46). Insulin is a potent mitogenic agent, 
which can inhibit apoptosis and promote cell proliferation (47). 

Figure 7. The protein‑protein interaction network generated on the basis of 
genes in the cluster 4. The white diamond node represents downregulated 
genes.

Figure 6. The protein‑protein interaction network generated on the basis of genes in the cluster 3. The gray round node represents upregulated genes and white 
diamonds indicate downregulated genes.
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Table IV. Differentially expressed genes that significantly affect patient prognosis.

Names	 p	 High.median	 Low.median	 Regulated	 Cluster

CST2	 0.042178	 22.17	 46.22	 Up	 1
CTSV	 0.03481	 25.59	 57.39	 Up	 1
MATN3	 0.000184	 21.98	 68.99	 Up	 1
SYT12	 0.040832	 25.59	 46.22	 Up	 1
F2R	 0.013663	 25.59	 55.39	 Up	 2
AADAC	 0.047637	 25.69	 55.39	 Up	 3
AGT	 0.025573	 26.02	 55.39	 Up	 3
TMEM243	 0.031481	 22.17	 55.39	 Up	 3
CTHRC1	 0.001409	 23.39	 59.49	 Up	 3
F5	 0.001542	 21.42	 55.39	 Up	 3
KYNU	 0.011683	 25.03	 59.49	 Up	 3
MSC	 0.028155	 25.16	 46.22	 Up	 3
RASGRP3	 0.035342	 25.59	 42.51	 Up	 3
SLC7A7	 0.025332	 22.17	 42.51	 Up	 3
ADPRHL1	 0.043589	 42.51	 26.08	 Down	 4

p, represents statistical significance analyzed via a log‑rank test; High.median, represents median survival time in the high expression group; 
Low.median, represents median survival time in the low expression group; Regulated, represents variations in the expression level trends of 
genes (Tumor vs. Control). 

Table III. Top five differentially expressed genes with high degrees (hub genes) in four networks.

Cluster	 Node number	 Up DEGs	 Down DEGs	 Edge number	 Degree top 5 gene

Cluster 1	 192	 192	 0	 511	 NCAPH, CDX1, DLGAP5, NCAPG, MNX1
Cluster 2	 440	 375	 65	 1,745	 GGT1, MAPK13, ENO2, TRAP1, DUSP4
Cluster 3	 385	 384	 1	 1,260	 AURKA, CDH17, MYBL2, CDC6, CFTR
Cluster 4	 40	 0	 47	 47	 GHR, PYGM, CSF3, STX1B, FAM149A

Figure 8. Kyoto Encyclopedia of Genes and Genomes pathways enriched by genes in the four clusters.
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Trevisan et al  (48) reported that the variables related to an 
increase in insulin resistance are related to an increased risk 
of death from colorectal cancer. Furthermore, Mu et al (49) 
reported that insulin resistance was a risk factor for endometrial 
cancer. Therefore, we speculated that PYGM may be implicated 
in gastric adenocarcinoma via the insulin resistance pathway.

In conclusion, the present study suggested that pathways of 
xenobiotic metabolism via cytochrome P450, apoptosis, tight 
junction formation, platelet activation, and insulin resistance as 
well as the enriched genes including CYP2B6, MAPK13, and 
PYGM may play important roles in the progression of gastric 
adenocarcinoma. Furthermore, CTHRC1 and RASGRP3 may 
serve as key prognostic markers for gastric adenocarcinoma 
patients.
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