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Abstract. Sepsis is a systemic inflammatory response 
syndrome, which is mostly induced by infection in the lungs, 
the abdomen and the urinary tract. The present study is 
aimed to investigate the mechanisms of sepsis. Expression 
profile of E-MTAB-4421 (including leukocytes isolated 
from 207 survived and 58 non-survived patients with sepsis) 
and E-MTAB-4451 (including leukocytes isolated from 
56 survived and 50 non-survived patients with sepsis) were 
downloaded from the European Bioinformatics Institute data-
base. Based on the E‑MTAB‑4421 expression profile, several 
differentially expressed genes (DEGs) were identified and 
performed with hierarchical clustering analysis by the limma 
and pheatmap packages in R. Using the BioGRID database 
and Cytoscape software, a protein-protein interaction (PPI) 
network was constructed for the DEGs. Furthermore, module 
division and module annotation separately were conducted 
by the Mcode and BiNGO plugins in Cytoscape software. 
Additionally, the support vector machine (SVM) classifier 
was constructed by the SVM function of e1071 package 
in R, and then verified using the dataset of E‑MTAB‑4451. A 
total of 384 DEGs were screened in the survival group. The 
PPI network was divided into 4 modules (modules A, B, C 
and D) involving 11 DEGs including microtubule-associated 
protein 1 light chain 3 alpha (MAP1LC3A), protein kinase 
C-alpha (PRKCA), metastasis associated 1 family member 3 
(MTA3), and scribbled planar cell polarity protein (SCRIB). 
SCRIB and PRKCA in module B, as well as MAP1LC3A 
and MTA3 in module D, might function in sepsis through 
PPIs. Functional enrichment demonstrated that MAP1LC3A 

in module D was enriched in autophagy vacuole assembly. 
Finally, the SVM classifier could correctly and effectively 
identify the samples in E-MTAB-4451. In conclusion, DEGs 
such as MAP1LC3A, PRKCA, MTA3 and SCRIB may be 
implicated in the progression of sepsis, and need further and 
more thorough confirmation.

Introduction

As a systemic inflammatory response syndrome (SIRS) 
induced by infection, sepsis is a life-threatening disease (1). 
The most common symptoms of sepsis are fever, confusion, and 
increased breathing and heart rate (2). Sepsis is usually caused 
by infection in the abdomen, the urinary tract and the lungs (3). 
Globally, sepsis accounts for a high mortality every year and 
results in the highest mortality in hospitals (4). Worldwide, the 
estimated incidence of sepsis is 18 million cases each year (5). 
In the United States, sepsis impacts ~3 in 1,000 people (6). 
In addition, severe sepsis results in >200,000 mortality inci-
dences each year (7). Therefore, exploring the mechanisms of 
sepsis and developing novel therapies are necessary.

Callahan and Supinski demonstrated that downregulation 
of genes encoding important glycolytic and electron trans-
port proteins help the development and maintenance of 
abnormalities in cellular energy metabolism in patients with 
sepsis (8). Nuclear factor-erythroid 2-related factor 2, a leucine 
zipper transcription factor that mediates stress response 
and redox balance, determines survival of sepsis patients 
through mounting a proper innate immune response (9,10). 
Hypoxia-inducible factor 1α (HIF-1α) in hypoxic and inflamed 
areas can release T cells that contribute to anti-bacterial 
response; thus, HIF-1α in T cells may be used for therapeutic 
anti-pathogen strategies (11,12). Several studies have reported 
that breast cancer 1, an important regulator of cell survival 
and DNA damage repair, can serve as therapeutic target for 
decreasing multiple-organ failure, systemic inflammation, 
and mortality in experimental sepsis (13-15). Sepsis and 
endotoxemia can cause declining B-cell CLL/lymphoma 2 
(Bcl-2) levels in lymphocytes, and overexpression of lympho-
cyte Bcl‑2 has been proved to improve sepsis survival (16,17). 
In 2016, Davenport et al (18) analyzed the transcriptomic 
response of 265 patients with sepsis in a discovery cohort, 
and screened 3080 differentially expressed genes (DEGs) in 
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sepsis response signature 1 (including 820 upregulated and 
2,260 downregulated genes) with a fold change (FC) >1.5 
and adjusted P<0.05. Using more strict thresholds, the present 
study investigated the DEGs between the survival and the 
non-survival group. In addition, protein-protein interaction 
(PPI) network and module analyses were conducted to identify 
key genes implicated in sepsis. Furthermore, a support vector 
machine (SVM) classifier was constructed and performed to 
further confirm the key genes identified.

Materials and methods

Expression profile data. Expression profiles of E‑MTAB‑4421 
(used for the main analysis) and E-MTAB-4451 (used for the 
validation) were downloaded from the European Molecular 
Biology Laboratory-European Bioinformatics Institute 
database (www.ebi.ac.uk/arrayexpress/experiments), both of 
which were deposited by Davenport et al (18) and sequenced 
on the array of A-MEXP-2210-Illumina HumanHT-12_V4_0_
R1_15002873_B. E-MTAB-4421 included leukocytes isolated 
from 265 patients with sepsis (including 207 survivors and 
58 non-survivors). Additionally, E-MTAB-4451 included 
leukocytes isolated from 106 patients with sepsis (including 
56 survivors and 50 non-survivors). The patients were recruited 
from 29 intensive care units between Feb 1, 2006, and Feb 20, 
2014. Following the admission of the patients, total blood leuco-
cytes were rapidly isolated from whole blood samples (~10 ml) 
using the LeukoLOCK depletion filter technology (Thermo 
Fisher Scientific, Inc., Waltham, MA, USA) (18). The study of 
Davenport et al (18) was approved by national ethics commit-
tees and locally individual participating centers. In addition, 
the patients (aged >18 years) with sepsis caused by commu-
nity-acquired pneumonia provided informed consent forms.

DEG screening. Probes corresponded to gene symbols were 
based on the annotation platform of Illumina HumanHT-12_
V4. In addition, unloaded probes were filtered out. Gene 
expression value was obtained by calculating the mean 
value of the probes corresponded to the gene. Based on 
E-MTAB-4421, the DEGs between the survival group and 
the non-survival group were analyzed by the linear models 
for microarray data using R (limma package; www.r-project.
org/) (19). Genes with |logFC|>1 and P<0.05 were considered 
as DEGs. Using the Pheatmap package (cran.r-project.org/
web/packages/pheatmap/index.html) (20) in R, hierarchical 
clustering analysis was conducted for the DEGs.

PPI network analysis. The Biological General Repository 
for Interaction Datasets database (BioGRID, version 
BIOGRID-ORGANISM-3.4.135; www.thebiogrid.org) (21) 
which includes genetic and physical interactions, was 
utilized to map the identified DEGs into the human PPI 
network. Additionally, the non-DEGs which interacted with 
≥10 DEGs were also expanded into PPI network. The complete 
PPI network was constructed by the Cytoscape software 
(version 2.8; www.cytoscape.org) (22). In the PPI network, 
nodes and edges separately represented proteins and their 
interactions. Furthermore, the degree of a node was equal to 
the number of edges linked with it. Additionally, the Mcode 
(threshold: The degree of each node in module >2) (23) and 

BiNGO plugins (threshold, adjusted P<0.05) (24) in the 
Cytoscape software were applied to perform module division 
and module annotation, respectively.

SVM classifier construction. Based on statistical theory, 
SVMs are effective classifiers, which can be applied 
in two-class classification problems of gene expression 
profiles and achieve high classification accuracy (25). Based 
on the expression values of key genes in the identified 
modules, the SVM function of e1071 package (version 1.6-7; 
cran.r-project.org/web/packages/e1071/index.html) (26) in R 
was used to confirm whether the key genes could distinguish 
between the two groups of samples (parameter: Gamma=0.45, 
cost=5 and cross=10).

Verification and assessment of the efficiency of SVM classifier. 
To verify the SVM classifier, the expression values of the key 
genes were extracted from E-MTAB-4451. In addition, the 
efficiency of SVM classifier was assessed by the sensitivity, 
specificity, and positive‑(PPV) and negative predictive values 
(NPV) and the area under receiver operating characteristic 
curve (AUROC).

Results

DEGs analysis. Compared with the non-survival group, there 
were 384 DEGs in the survival group. Among these DEGs, 

Table I. Top 10 differentially expressed genes with the smallest 
P-values.

Gene  P-value Log fold change

SYNE1 0.000508 -1.09577
DSCR4 0.000603 1.049525
GNB5 0.000691 -1.09117
KIAA1271 0.000875 -1.07996
LOC651643 0.001157 -1.09987
LOC730546 0.001244 -1.09267
KRT24 0.001267 -1.08809
LOC645445 0.001676 1.022562
LOC650261 0.001911 -1.11435
UPF2 0.002267 -1.0723

Figure 1. Heatmap of hierarchical clustering. Red and green colors represent 
high and low values, respectively.
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153 genes were significantly upregulated and 231 genes were 
significantly downregulated (Fig. 1). The top 10 DEGs with 
the smallest P-values are listed in Table I. Additionally, the 
heatmap of hierarchical clustering illustrated that the DEGs 
could distinguish the two groups of samples (Fig. 1).

PPI network analysis. A PPI network was constructed for 
the DEGs, which had 148 nodes and 305 interactions (Fig. 2). 
Based on the Mcode plugin, the PPI network was divided into 
4 modules (module A, B, C and D; Fig. 3). A total of 11 DEGs 
[including microtubule-associated protein 1 light chain 3 alpha 
(MAP1LC3A), protein kinase C-alpha (PRKCA), metastasis 
associated 1 family member 3 (MTA3), and scribbled planar 
cell polarity protein (SCRIB)] were involved in the 4 modules, 
and almost all of them were among the top 21 in the PPI 
network according to degree rank (Table II). In addition, 
SCRIB and PRKCA in module B, as well as MAP1LC3A and 
MTA3 in module D hold interactions with each other. Using 
the BiNGO plugin, functional annotation was conducted for 
the 4 modules. A total of 9, 10, 12 and 5 functional terms were 
enriched for the DEGs in modules A, B, C and D, respectively. 
The main terms included ubiquitin-dependent protein catabolic 

process (module A, P=1.11E-03), histone H3-T6 phosphoryla-
tion (module B, P=9.78E-04), regulation of mitosis (module C, 
P=1.11E-03), and autophagic vacuole assembly (module D, 
P=1.11E-03, which involved MAP1LC3A; Table III).

Figure 2. PPI network constructed for the DEGs. Pink and green nodes separately represent upregulated and downregulated genes, respectively. White nodes 
stand for the non‑DEGs which interacted with ≥10 DEGs and were expanded into the PPI network. PPI, protein‑protein interaction; DEG, differentially 
expressed gene.

Figure 3. Modules A, B, C and D identified from the PPI network. Pink and 
green nodes separately represent upregulated and downregulated genes, 
respectively. White nodes stand for the non‑DEGs which interacted with ≥10 
DEGs and were expanded into PPI network. PPI, protein-protein interaction; 
DEG, differentially expressed gene.
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SVM classifier construction. To confirm whether there was 
a difference in the key genes between the two groups of 
samples, the expression values of the 11 DEGs involved in 
the modules were extracted from E-MTAB-4421. Following 
this, an SVM classifier was constructed and its recognition 

capability to samples was observed. The results of the present 
study demonstrated that the SVM classifier could identify 
the survival samples (207/207; accuracy, 100%) and the 
non-survival samples (49/57; accuracy, 84.5%) with an overall 
accuracy of 96.6% (256/265; Fig. 4A).

Table II. Differentially expressed genes involved in the 4 modules identified from the protein‑protein interaction network.

Gene P-value Log fold change  Degree Degree rank in network Module

DDB1 0.025129 1.015005 15 1 A
EED 0.016585 -1.06699 14 2 A
MAP1LC3A 0.037985 1.014367 7 10 D
TAF15 0.037216 1.007017 7 10 A
ANAPC2 0.010137 1.022059 6 12 C
PRKCA 0.010663 -1.04022 6 12 B
MTA3 0.035314 -1.04998 5 15 D
UPF2 0.002267 -1.0723 5 15 B
PHF20L1 0.030279 -1.15276 4 21 D
SCRIB 0.030139 -1.07045 4 21 B
ANAPC10 0.022623 1.021597 3 43 C

Figure 4. Confusion matrixes of sample identification for (A) E‑MTAB‑4421 and (B) E‑MTAB‑4451 using the SVM classifier. Red and blue indicate high and 
low accuracy, respectively. SVM, support vector machine; DEG, differentially expressed gene.

Figure 5. Receiver operating characteristic curves for (A) E-MTAB-4421 and (B) E-MTAB-4451. DEG, differentially expressed genes; AUROC, area under 
receiver operating characteristic curve.
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Table III. Functions enriched for the genes involved in the 4 modules.

Module Adjusted P-value Gene number Description Gene symbol

Module A 2.07E-02 2 GO:6511~ubiquitin-dependent protein catabolic process CUL4A, DDB1
 2.07E‑02 2 GO:19941~modification‑dependent protein catabolic process CUL4A, DDB1
 2.07E-02 2 GO:6281~DNA repair CUL4A, DDB1
 2.07E-02 2 GO:44257~cellular protein catabolic process CUL4A, DDB1
 2.93E-02 1 GO:718~nucleotide-excision repair, DNA damage removal DDB1
 3.40E-02 2 GO:33554~cellular response to stress CUL4A, DDB1
 4.43E-02 2 GO:6508~proteolysis CUL4A, DDB1
 4.58E-02 2 GO:44248~cellular catabolic process CUL4A, DDB1
 4.58E-02 2 GO:51704~multi-organism process CUL4A, DDB1
Module B 4.33E-02 1 GO:35408~histone H3-T6 phosphorylation PRKCA
 4.33E-02 1 GO:35405~histone-threonine phosphorylation PRKCA
 4.33E-02 1 GO:46325~negative regulation of glucose import PRKCA
 4.33E-02 1 GO:51965~positive regulation of synaptogenesis PRKCA
 4.33E-02 2 GO:42330~taxis PRKCA, SCRIB
 4.33E-02 2 GO:6935~chemotaxis PRKCA, SCRIB
 4.33E-02 1 GO:32863~activation of Rac GTPase activity SCRIB
 4.33E-02 1 GO:60561~apoptosis involved in morphogenesis SCRIB
 4.33E-02 1 GO:1921~positive regulation of receptor recycling SCRIB
 4.33E-02 1 GO:35089~establishment of apical/basal cell polarity SCRIB
Module C 2.52E-02 1 GO:7088~regulation of mitosis ANAPC10
 2.52E-02 1 GO:51783~regulation of nuclear division ANAPC10
 2.19E-03 1 GO:8054~cyclin catabolic process ANAPC2
 7.21E-03 1 GO:45773~positive regulation of axon extension ANAPC2
 8.55E-03 1 GO:48814~regulation of dendrite morphogenesis ANAPC2
 9.45E-03 1 GO:48639~positive regulation of developmental growth ANAPC2
 3.37E-02 1 GO:10720~positive regulation of cell development ANAPC2
 3.38E-02 1 GO:45927~positive regulation of growth ANAPC2
 4.13E-02 1 GO:10975~regulation of neuron projection development ANAPC2
 4.89E-02 1 GO:31344~regulation of cell projection organization ANAPC2
 9.69E-03 2 GO:51726~regulation of cell cycle ANAPC2,
    ANAPC10
 1.33E-02 2 GO:51128~regulation of cellular component organization ANAPC2,
    ANAPC10
Module D 3.15E-02 1 GO:45~autophagic vacuole assembly MAP1LC3A
 3.15E-02 1 GO:16236~macroautophagy MAP1LC3A
 4.65E-02 1 GO:6914~autophagy MAP1LC3A
 4.65E-02 1 GO:9267~cellular response to starvation MAP1LC3A
 4.65E-02 1 GO:7033~vacuole organization MAP1LC3A

GO, gene ontology.

Table IV. Efficiency of SVM classifier for E‑MTAB‑4421 and E‑MTAB‑4451 according to sensitivity, specificity, PPV, NPV and 
AUROC.

Datasets Number of samples Accuracy Sensitivity Specificity PPV NPV AUROC

E-MTAB-4421 265 0.966 1 0.845 0.963 1 0.948
E-MTAB-4451 106 0.906 0.946 0.86 0.883 0.935 0.947

PPV, positive predictive value; NPV, negative predictive value; AUROC, area under receiver operating characteristic curve; SVM, support 
vector machine.
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Verification and assessment of the efficiency of the SVM 
classifier. E-MTAB-4451 was also downloaded from the 
EMBL-EBI database, which included leukocytes isolated from 
56 survivors and 50 non-survivors. The expression values for 
the 11 DEGs were extracted from E-MTAB-4451 to further 
verify the SVM classifier. As a result, the SVM classifier could 
correctly identify 53 survival samples (53/56; accuracy, 94.6%) 
and 43 non-survival samples (43/50; accuracy, 86%) with an 
overall accuracy of 90.57% (96/106; Fig. 4B). Additionally, 
the efficiency of SVM classifier was high according to 
sensitivity, specificity, PPV, NPV and AUROC curve (Table IV 
and Fig. 5).

Discussion

In this study, a total of 384 DEGs (including 153 upregulated and 
231 downregulated genes) were screened in the survival group. 
The PPI network constructed for the DEGs was divided into 4 
modules, and they involved 11 DEGs (including MAP1LC3A, 
PRKCA, MTA3 and SCRIB). Additionally, a SVM classifier 
was constructed to investigate whether these 11 DEGs could 
distinguish between the two groups of samples, confirming 
that it could well recognize the survival from the non-survival 
samples with an overall accuracy of 96.6%. Subsequently, the 
expression profile of E‑MTAB‑4451 was applied to verify the 
SVM classifier. The results illustrated that the SVM classifier 
could effectively identify the 53 survival and the 43 non-survival 
samples with an overall accuracy of 90.57%.

SCRIB, which is overexpressed in endothelial cells and 
is essential for planar cell polarity and serves as a novel 
proinflammatory regulator in endothelial cells (27). Altman 
and Kong (28) demonstrated that protein kinase C proteins 
(PKCs) serve essential roles in human immune disorders, and 
can be used as therapeutic targets in several immune disorders 
including autoimmune diseases. For instance, PRKCA is the 
nonredundant and physiological PKC isotype in signaling 
pathways that are required for T cell-dependent interferon-γ 
production and IgG2a/2b antibody responses (29). Deficiency 
of PRKCB leads to defective B cell responses since B cells 
with PRKCB deficiency cannot activate the nuclear factor 
(NF)-κB signaling pathway for B cell receptor (BCR), indi-
cating that PRKCB has a critical role in BCR survival and 
may act as an important target for the treatment of B-lineage 
malignancies (30). In module B, SCRIB and PRKCA could 
interact with each other, indicating that they might hold roles 
in the progression of sepsis through this interaction.

The results of functional enrichment indicated that 
MAP1LC3A in module D was enriched in the autophagic 
vacuole assembly. Deficiency of autophagy-associated 
protein MAP1LC3B regulates the development of interleukin 
(IL)-17a-dependent lung pathology in the process of respiratory 
viral infection through endoplasmic reticulum stress-associated 
IL-1 (31). MTA3 is involved in the B lymphocyte transcrip-
tional program and is a component in the Mi2/nucleosome 
remodeling and deacetylase (Mi2/NuRD) transcriptional 
corepressor complex (32,33). In B cells, the complex can 
interact with the middle domain of Bcl-6 via MTA3 and nega-
tively regulate several genes, including PR domain containing 
1 with zinc finger domain through histone deacetylation 
activity (34,35). Exogenous expression of MTA3-dependent 

Bcl-6 in a plasma cell line results in reprogramming of cell 
fate, reactivation of the transcriptional program of B cell, 
suppression of the transcripts that are specific in plasma cells, 
and expression of surface markers of B lymphocyte cells (35). 
In module D, MAP1LC3A and MTA3 had interaction with 
each other, suggesting that MAP1LC3A and MTA3 might also 
function in the pathogenesis of sepsis via interaction.

In conclusion, based on the bioinformatics analysis of 
E‑MTAB‑4421, 384 DEGs were identified in the survival group. 
In addition, MAP1LC3A, PRKCA, MTA3 and SCRIB might 
act in the progression of sepsis. However, further experimental 
investigation is required for these predictive results.
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