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Abstract. Angiotensin II (Ang II) is a principal molecule of 
the renin-angiotensin system, which promotes hypertrophy 
and fibrosis. It has been demonstrated that Ang II upregulates 
the expression of cyclophilin A (CypA), which is a potential 
myocardial hypertrophy factor. However, the mechanisms by 
which Ang II induces the expression of CypA in cardiomyocytes 
remain unclear. In the present study, reactive oxygen species 
(ROS) were detected by fluorescence microscopy, and western 
blot analysis and ELISA were used to measure CypA expression. 
It was identified that Ang II enhanced the production of ROS in 
rat cardiomyocytes. ROS, in turn, promoted CypA expression and 
secretion. Notably, the action of Ang II was primarily dependent 
on the angiotensin type 2 receptor (AT2R), not the type 1 receptor. 
These results provided an insight into the role of the AT2R 
signaling pathway in Ang II‑induced myocardial hypertrophy.

Introduction

Cardiac remodeling is associated with pathological altera-
tions to the heart that are caused by myocardial infarction and 
hypertension, primarily via cardiomyocyte and myocardial 

interstitial remodeling (1). Cardiomyocyte remodeling is 
characterized by compensatory hypertrophy, cell apoptosis 
and necrosis. Myocardial interstitial remodeling primarily 
refers to alterations in the extracellular matrix of cardio-
myocytes, including fibroblast proliferation and fibrosis (2,3). 
The renin‑angiotensin system (RAS) has been identified to 
serve an important role in cardiac remodeling. Angiotensin 
II (Ang II) is a principal functional molecule in RAS, which 
is involved in myocardial fibrosis and accelerated myocardial 
remodeling (4‑6).

Cyclophilin A (CypA), which was initially discovered in 
1984, is the primary target molecule of the immunosuppres-
sant cyclosporine A (CsA) (7). CypA is involved in numerous 
biological activities, including protein folding (8,9), inflam-
mation (10-13), immunosuppression (14,15), apoptosis (16-19), 
and viral infection and replication (20,21). A previous study 
conducted by Venkatesan et al (22) demonstrated that CypA 
is able to promote myocardial hypertrophy and exacerbate the 
severity of Ang II‑induced myocardial hypertrophy. In rats, 
CsA effectively blocks or alleviates Ang II‑induced myocardial 
hypertrophy by binding with CypA to form a dimer complex 
and inhibiting Ang II activity by binding to calcineurin (1,22). 
Collectively, these results indicate that CypA is involved in 
Ang II‑induced myocardial hypertrophy.

Reactive oxygen species (ROS) are active oxygen‑containing 
compounds that are generated during biological aerobic 
metabolism. A series of responses, including cell proliferation, 
differentiation, migration, injury, matrix remodeling, apoptosis 
and necrosis, result from ROS production. ROS participate in 
signal transduction processes that control gene expression, 
cell growth and apoptosis (23‑25). Furthermore, increased 
ROS production is considered to be a mechanism underlying 
Ang II‑induced myocardial hypertrophy (26); however, the 
signaling pathways leading to Ang II-induced ROS production 
are not well understood (27).

Ang II is primarily recognized by two principal receptors 
in the cell membrane: Angiotensin type 1 receptor (AT1R) and 
angiotensin type 2 receptor (AT2R). Previously, Satoh et al 
demonstrated that, during the Ang II-induced formation of 
abdominal aortic aneurysm (AAA), CypA synergistically 
elevates ROS production (28). In the present study, the aim 
was to explore the mechanism of Ang II-induced myocardial 
hypertrophy. The results demonstrated that Ang II increased 
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ROS production via the AT2R pathway in rat cardiomyocytes. 
ROS production, in turn, promoted CypA expression and 
secretion. These results suggested that ROS may serve an 
important role in the upregulation of CypA by Ang II.

Materials and methods

Rat cardiomyocyte culturing. Dulbecco's modified Eagle's 
medium (Thermo Fisher Scientific, Inc., Waltham, MA, USA) 
containing 10% fetal bovine serum (cat. no. FSP500; Shanghai 
ExCell Biology, Inc., Shanghai, China) and F12 factor 
(HyClone; GE Healthcare, Chicago, IL, USA) was used to 
culture H9C2 rat cardiomyocytes, which were provided by the 
State Key Laboratory of Natural Resource Conservation and 
Utilization (Kunming, China) in a 25‑ml filtered cell culture 
flask in an incubator containing 5% CO2 at 37˚C. The cultures 
were observed daily and culture medium was changed every 
2‑3 days. When the cells had reached ~80% confluence, the 
cells were washed three times in PBS and treated with 0.25% 
trypsin (HyClone; GE Healthcare) for digestion and passaging. 
The present study used the second and third passages of H9C2 
cells for experimentation.

ROS detection. H9C2 cells in the logarithmic growth phase 
were seeded at a density of 1x105 cells/well in 12-well plates 
and cultured at 37˚C in 5% CO2. Following cell adhesion, cells 
were subjected to different treatments: i) untreated; ii) 24‑h 
incubation with 0.1 µM Ang II (cat. no. A9290; Beijing 
Solarbio Science & Technology Co., Ltd., Beijing, China); 
iii) 24‑h incubation with 3 mM glutathione ethyl ester (GEE; 
cat. no. 14953; Cayman Chemical Company, Ann Arbor, MI, 
USA) and 0.1 µM Ang II; iv) 24‑h incubation with 0.4 mM 
butyrate (cat. no. B110438; Shanghai Aladdin Bio‑Chem 
Technology Co., Ltd., Shanghai, China); v) pre‑incubation 
with 10 µM Valsartan (cat. no. MB1341‑S; Dalian Meilun 
Biotech Co., Ltd., Dalian, China) for 1 h, followed by 24‑h 
incubation with 0.1 µM Ang II; vi) 1‑h pre‑incubation with 
1 mM PD123319 (cat. no. MB5078; Dalian Meilun Biotech 
Co., Ltd.), followed by 24‑h incubation with 0.1 µM Ang 
II. Subsequently, the H9C2 cells were treated with 50 µM 
BES‑H2O2‑Ac (Wako Pure Chemical Industries, Ltd., Osaka, 
Japan) for 1 h prior to measuring the fluorescence intensity by 
fluorescence microscopy (29,30).

Western blot analysis. H9C2 cells in the logarithmic growth 
phase were used to seed a density of 2x105 cells into each well 
of a 6‑well plate. Following cell adhesion, cells were treated 
as described above. After the 24‑h treatment, the H9C2 
cells were washed with PBS and harvested to extract total 
protein using radioimmunoprecipitation lysis buffer (Beijing 
Solarbio Science & Technology Co., Ltd.). A bicinchoninic 
acid assay was used to quantify total protein concentra-
tion. Total protein (50 µg) was loaded into each lane of an 
SDS‑PAGE gel (10% separation gel, 4% stacking gel), and 
the proteins were separated by electrophoresis at 90 V for 
100 min. Subsequently, proteins were transferred to nitrocel-
lulose membranes at 300 mA for 100 min, and the membranes 
were blocked with 4% skim milk at room temperature for 1 h. 
After washing two times with PBS plus 0.05% Tween‑20 
(PBST; 5 min/wash), the membranes were incubated with 

CypA‑specific antibody, which was a rabbit polyclonal 
antibody generated for CypA, cloned from Microplitis bicol-
oratus hemocytes and expressed in Escherichia coli using the 
pET‑32a‑CypA plasmid (1:2,000; Bioworld Technology, Inc., 
Nanjing, China) and β‑actin‑specific antibody (1:2,000; cat. 
no. BS6007M; Bioworld Technology, Inc.) at 4˚C overnight 
with agitation. After washing with PBST twice, the membranes 
were incubated with Alexa Fluor® 568 Goat Anti‑Rabbit 
Immunoglobulin G (Heavy+Light) secondary antibody 
(1:2,000; cat. no. A0208; Beyotime Institute of Biotechnology, 
Haimen, China) at room temperature for 1 h, followed by 
two washes with PBST for 10 min. The protein bands were 
visualized with enhanced chemiluminescent reagent (Tanon 
Science and Technology Co., Ltd., Shanghai, China) using 
a Tanon 5200 imager (Tanon Science and Technology Co., 
Ltd.). Semi‑quantification of the bands was performed using 
ImageJ software version 1.46r (National Institutes of Health, 
Bethesda, MD, USA), with the intensity values normalized to 
the corresponding β‑actin band.

ELISA measurement of CypA expression in the culture 
medium. H9C2 cells in the logarithmic growth phase were 
used to seed a density of 2x105 cells into each well of a 6-well 
plate. Following cell adhesion, cells were treated as described 
above. The cell culture supernatant was collected in a 1.5‑ml 
sterile centrifuge tube and centrifuged at 800 x g for 20 min 
at room temperature. The supernatant was transferred to a 
new 1.5‑ml centrifuge tube and CypA protein content was 
measured using ELISA (cat. no. HZ‑EL‑R0298c; eBioscience; 
Thermo Fisher Scientific, Inc.), according to the manufac-
turer's protocol.

Statistical analysis. All experiments were repeated three 
times and the data are presented as the means ± standard 
deviation. The green fluorescence signals of ROS were 
randomly collected and analyzed from three fields of vision 
using ImageJ software version 1.46r (National Institutes of 
Health). GraphPad Prism 6 (GraphPad Software, Inc., La Jolla, 
CA, USA) software was used for statistical analysis of all data 
in the present study. Statistical differences between the groups 
were analyzed using one‑way analysis of variance followed 
by Tukey's post hoc test. P<0.05 was considered to indicate a 
statistically significant difference.

Results

Ang II upregulates CypA in rat cardiomyocytes. Untreated 
mock H9C2 cells exhibited relatively low CypA expression 
compared with the cells treated with Ang II. After a 24‑h incu-
bation with 0.1 µM Ang II, H9C2 cells exhibited significantly 
upregulated CypA expression and increased CypA content 
in the supernatant (P<0.05; Fig. 1). These data suggested that 
Ang II may promote the expression and secretion of CypA in 
rat cardiomyocytes.

Ang II upregulates CypA via ROS. After a 24-h treatment 
with 0.1 µM Ang II, ROS production was significantly 
increased in H9C2 cells (P<0.05; Fig. 2A and B). When 
ROS production was inhibited by treatment of H9C2 cells 
with 3 mM of the antioxidant glutathione ethyl ester, the 
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expression of CypA were significantly decreased (P<0.05; 
Fig. 2C and D). These results suggested that Ang II may 
upregulate CypA by enhancing ROS production in rat 
cardiomyocytes.

Increased ROS induce the expression of CypA in rat cardio-
myocytes. Butyrate, an oxidant, promotes ROS production in 
numerous types of cells (31,32). In order to validate the role 
of ROS in upregulating CypA expression, 0.4 mM butyrate 
was added to cells to stimulate ROS production. A ROS 
fluorescence probe (BES‑H2O2‑Ac) was used to evaluate 
ROS production over the course of 1 h under a fluorescence 
microscope. As hypothesized, ROS production was increased 
in H9C2 cells following treatment with 0.4 mM butyrate 
compared with in the control group (P<0.05; Fig. 3A and B). 
Under butyrate stimulation, CypA in H9C2 cells and its 
content in the supernatant were significantly upregulated 

(P<0.05; Fig. 3C‑E). These results indicated that increased 
ROS levels may promote the expression and secretion of CypA 
in rat cardiomyocytes.

Ang II increases ROS production via AT2R. Ang II activates 
at least two pharmacologically distinct receptors, AT1R and 
AT2R. To investigate which receptor is involved in ROS 
production, Valsartan and PD123319, which are antagonists 
of AT1R and AT2R, respectively, were used in the present 
study. H9C2 cells were pre‑incubated with 10 µM Valsartan 
or 1 mM PD123319 for 1 h prior to stimulation with 0.1 µM 
Ang II. The results indicated that PD123319 significantly 
inhibited Ang II‑induced ROS production (P<0.001; Fig. 4A 
and B). Valsartan additionally inhibited Ang II‑induced ROS 
production; however, this effect was not statistically significant 
(P=0.0637; Fig. 4A and B). Notably, PD123319 significantly 
suppressed the CypA expression in H9C2 cells (P<0.05; 

Figure 2. Ang II upregulates CypA via ROS. (A) Representative images and (B) analysis demonstrating that Ang II increased ROS production in cultured 
H9C2 cells. n=3/group. Green fluorescence represents ROS; scale bar, 50 µm. (C) Western blotting and (D) semi‑quantification analysis demonstrated that 
Ang II‑induced CypA expression was inhibited by GEE, a ROS inhibitor. *P<0.05. Ang II, angiotensin II; CypA, cyclophilin A; GEE, glutathione ethyl ester; 
ROS, reactive oxygen species.

Figure 1. Ang II upregulates CypA in rat cardiomyocytes. (A) Western blotting and (B) semi‑quantification analysis demonstrated that CypA expression 
was stimulated by Ang II in cultured H9C2 cells. (C) Ang II increased CypA content in the supernatant of cultured H9C2 cells. n=3/group. *P<0.05. Ang II, 
angiotensin II; CypA, cyclophilin A.
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Fig. 4C and D). Conversely, Valsartan did not significantly 
decrease CypA expression (P=0.823). These results suggested 
that Ang II upregulated CypA by enhancing ROS production 
primarily via the AT2R pathway in rat cardiomyocytes.

Discussion

Accumulating evidence indicates that Ang II serves an 
important role in myocardial fibrosis and hypertrophy, which 

Figure 3. Elevated ROS induce the expression of CypA. (A) Representative images and (B) analysis demonstrating that butyrate promoted ROS production 
in cultured H9C2 cells. n=3/group; scale bar, 50 µm. (C) Western blotting and (D) semi‑quantification analysis of CypA expression in H9C2 cells following 
treatment with butyrate. (E) CypA content analysis in the supernatant of H9C2 cells following treatment with butyrate. *P<0.05. CypA, cyclophilin A; ROS, 
reactive oxygen species.

Figure 4. Ang II enhances ROS production via AT2R. (A) Representative images and (B) analysis of ROS production in Ang II‑induced H9C2 cells pretreated 
with Valsartan (angiotensin receptor 1 antagonist) and PD123319 (AT2R antagonist). Scale bar, 50 µm. PD123319 significantly inhibited Ang II‑induced ROS 
production. n=3/group. (C) Western blotting and (D) semi‑quantification analysis of CypA expression in Ang II‑induced H9C2 cells pretreated with Valsartan 
and PD123319. PD123319 significantly suppressed Ang II‑induced CypA expression in H9C2 cells. n=3/group. *P<0.05, ***P<0.01. Ang II, angiotensin II; AT2R, 
angiotensin receptor 2; CypA, cyclophilin A; ROS, reactive oxygen species.
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are important features in cardiac remodeling (6,27,33). 
Satoh et al (28) demonstrated that CypA serves a key role 
in Ang II‑induced AAA formation using gene knockout 
animal models. AAA formation is a typical manifestation of 
vascular remodeling that is caused by atherosclerosis. These 
results suggested that CypA is likely to serve the same role 
in Ang II‑induced cardiac remodeling; however, the mecha-
nism underlying Ang II-induced CypA expression remains 
unclear. Previously, Seko et al (34) demonstrated that hypoxia 
followed by reoxygenation may promote CypA secretion in 
cultured rat cardiomyocytes. In the present study, it was iden-
tified that Ang II promoted CypA expression and secretion, 
in addition to ROS production in H9C2 cells. These results 
suggested that CypA expression may be associated with ROS 
formation. Notably, when the formation of ROS was inhibited 
by the antioxidants GEE and PD123319, CypA expression 
was downregulated in Ang II‑treated rat cardiomyocytes. 
Furthermore, it was identified that an increase in ROS 
formation induced by butyrate upregulated the expression of 
CypA. These results indicated that Ang II upregulated CypA 
in a ROS‑dependent manner.

The biological activities of Ang II, a primary functional 
molecule of the RAS, are primarily mediated by its two 
G‑protein‑coupled receptors, AT1R and AT2R (35). AT1R is 
documented to mediate the majority of the biological func-
tions of Ang II, whereas the roles of AT2R are considered to 
counterbalance the effects mediated by activation of AT1R. 
Previous studies have demonstrated that long‑term Ang II 
injection causes elevated blood pressure in mice, leading 
to myocardial hypertrophy, fibrosis and activation of 
AT1R (6,36). Ang II promotes cardiomyocyte proliferation 
and growth, collagen formation, extracellular matrix depo-
sition and myocardial fibrosis via AT1R (37). Therefore, 

Ang II is involved in cardiac remodeling through the 
AT1R pathway. However, AT2R expression is upregulated 
in pathological circumstances, including in heart failure, 
experimental cardiac hypertrophy, myocardial infarction 
and vascular injury (38,39). In the present study, it was 
observed that Ang II induced ROS production primarily via 
AT2R, which is consistent with results of Thakur et al (40); 
in their research, Ang II induced ROS production by 
NADPH oxidase 2 in endothelial cells. ROS, in turn, may 
promote CypA expression and secretion. Therefore, it 
may be suggested that AT2R exhibits its function in Ang 
II‑mediated myocardial hypertrophy, at least in part, by 
upregulating CypA expression (Fig. 5).

Cardiac remodeling is associated with the apoptosis and 
necrosis of a large number of cardiomyocytes. In the present 
study, it was revealed that Ang II may promote CypA expres-
sion by stimulating ROS production. Satoh et al (28) suggested 
that CypA may increase ROS production in vascular tissue, and 
Seko et al (34), demonstrated that cultured rat cardiomyocytes 
are able to promote CypA secretion during reoxidation, thus 
indicating that during Ang II stimulation in rat cardiomyocytes 
the following cycle may be exhibited: Ang II binds to AT2R and 
upregulates CypA expression and secretion by promoting ROS 
production, in turn, CypA may increase ROS production. The 
positive association between CypA expression and ROS produc-
tion is consistent with the results of Perrucci et al (41); during the 
course of CypA-promoted angiogenesis, low CypA concentra-
tions promote the proliferation of bone marrow‑derived cluster 
of differentiation (CD)117+ cells, whereas high CypA concentra-
tions stimulate CD117+ cell death. Therefore, it is reasonable 
to speculate that, during Ang II-induced cardiac remodeling, 
the positive association between CypA and ROS may result in 
CypA and ROS accumulation. A continuous increase of these 

Figure 5. Proposed mechanism of how Ang II upregulates CypA. Ang II increased ROS levels via AT2R in cardiomyocytes; increased ROS, in turn, promoted 
CypA expression and secretion. Ang II, angiotensin II; AT2R, angiotensin type 2 receptor; CypA, cyclophilin A; ROS, reactive oxygen species.
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two molecules promotes cell death, thereby accelerating the 
processes of cardiac reconstruction. An in vitro study suggested 
that CypA is an oxidative stress‑inducing factor, whereas in 
vascular smooth muscle cells, ROS activates a vesicle‑containing 
pathway that leads to CypA secretion; this process requires the 
involvement of Rho GTPases (including transforming protein 
RhoA, cell division control protein 42 homolog and Ras‑related 
C3 botulinum toxin substrate 1) (42).

In conclusion, to the best of our knowledge, the present 
study is the first to demonstrate that Ang II may induce CypA 
expression and secretion by enhancing ROS production. In addi-
tion, Ang II promoted ROS formation primarily via the AT2R 
signaling pathway in rat cardiomyocytes. These results provided 
further insight into the role of AT2R signaling in Ang II-induced 
myocardial hypertrophy and may aid in the development of novel 
therapeutic strategies for treatment of cardiovascular disease.
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