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Abstract. Osteoarthritis (OA) is a chronic arthropathy that 
occurs in the middle‑aged and elderly population. The present 
study aimed to identify gene signature differences between 
synovial cells from OA synovial membrane with and without 
inflammation, and to explain the potential mechanisms 
involved. The differentially expressed genes (DEGs) between 
12 synovial membrane with inflammation and 12 synovial 
membrane without inflammation from the dataset GSE46750 
were identified using the Gene Expression Omnibus 2R. The 
DEGs were subjected to enrichment analysis, protein‑protein 
interaction (PPI) analysis and module analysis. The analysis 
results were compared with text‑mining results. A total 
of 174 DEGs were identified. Gene Ontology enrichment 
results demonstrated that functional molecules encoded by 
the DEGs primarily had extracellular location, molecular 
functions predominantly involving ‘chemokine activity’ 
and ‘cytokine activity’, and were associated with biological 
processes, including ‘inflammatory response’ and ‘immune 
response’. The Kyoto Encyclopedia of Genes and Genomes 
results demonstrated that DEGS may function through 
pathways associated with ‘rheumatoid arthritis’, ‘chemokine 
signaling pathway’, ‘complement and coagulation cascades’, 
‘TNF signaling pathway’, ‘intestinal immune networks for 
IgA production’, ‘cytokine‑cytokine receptor interaction’, 
‘allograft rejection’, ‘Toll‑like receptor signaling pathway’ and 
‘antigen processing and presentation’. The top 10 hub genes 
[interleukin (IL)6, IL8, matrix metallopeptidase (MMP)9, 
colony stimulating factor 1 receptor, FOS proto‑oncogene, 

AP1 transcription factor subunit, insulin‑like growth factor 1, 
TYRO protein tyrosine kinase binding protein, MMP3, cluster 
of differentiation (CD)14 and CD163] and four gene modules 
were identified from the PPI network using Cytoscape. In 
addition, text‑mining was used to identify the commonly used 
drugs and their targets for the treatment of OA. It was initially 
verified whether the results of the present study were useful for 
the study of OA treatment targets and pathways. The present 
study provided insight for the molecular mechanisms of OA 
synovitis. The hub genes and associated pathways derived 
from analysis may be targets for OA treatment. IL8 and 
MMP9, which were validated by text‑mining, may be used as 
molecular targets for the OA treatment, while other hub genes 
require further validation.

Introduction

Osteoarthritis (OA) is one of the most common types of 
chronic arthritis in elderly people, and has been identified to 
affect ≥6‑32% people worldwide (1). There are multiple risk 
factors for OA development, including abnormal mechanical 
stress, aging, obesity and genetic factors  (2). Pathological 
features of OA primarily include articular cartilage degenera-
tion, synovial inflammation and atypical bone formation (3). 
In the past, research has primarily focused on cartilage tissue 
and chondrocytes in the study of OA mechanisms and treat-
ment (4,5). With the rapid development of medicine, synovial 
tissue and subchondral bone have additionally been investi-
gated. Previous studies suggested that synovial tissue serves 
an important role in OA (6,7). As part of the joint structure, 
the synovial membrane may produce and regulate synovial 
fluid, maintain joint activity, and be adversely affected in 
joint diseases�������������������������������������������������� �������������������������������������������������(8). Synovial lesions may additionally be identi-
fied in a number of joint diseases, which may serve a role in 
promoting the occurrence and progression of the disease (9). 

Synovitis is an aseptic inflammation that occurs at the 
synovial membrane and is observed in rheumatoid arthritis, 
OA, lupus OA and gout  (10). Synovitis leads to abnormal 
synovial fluid production and absorption, resulting in joint 
effusion, causing pain, swelling and other reactions  (11). 
Previous studies observed synovitis in early OA (12), and 
that the severity of synovitis may be associated with different 
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stages of OA (13). Fernandez‑Madrid et al  (14) suggested 
that OA synovitis is caused by the degeneration of cartilage 
stimulation. However, Felson et al (15) suggested that synovitis 
occurs not only in the early stages of OA; however, even prior 
to imaging. Additionally, the occurrence of synovitis may 
further promote cartilage degeneration, which would in turn 
exacerbate synovitis (11). Synovitis serves an important role 
in the symptoms, progression and development of OA, and is a 
concern for the treatment of OA.

With the development of modern biomedicine, increasing 
evidence suggested that the occurrence and development of 
OA may be mediated by a number of genes and signaling 
pathways (16). In order to develop clearer diagnostic criteria 
and more effective treatment options, it is essential to fully 
understand the molecular mechanism of OA. With the aim 
of fully understanding the gene expression alterations in OA, 
previous studies used DNA microarray technology to analyze 
gene expression profiles  (17,18). The results demonstrated 
that molecules encoded by differentially expressed genes 
(DEGs) located in different cell structures and with different 
molecular functions (MF) were associated with different 
biological processes (BP) during their involvement in the 
disease process. The availability of bioinformatics analysis 
based on high‑throughput technology enabled the investiga-
tion of the alterations in mRNA expression and the interaction 
between differential genes in OA, to provide novel insights for 
further in‑depth OA studies.

The Gene Expression Omnibus (GEO) is a database and 
online resource for the gene expression of any species. The 
present study obtained genetic microarray dataset no. GSE46750 
from GEO. The samples in GSE46750 were divided into two 
groups: Synovial cells with and without inflammation in OA. 
The two groups were compared and analyzed to identify the 
DEGs. Functional enrichment analysis, protein‑protein inter-
action (PPI) networks and module analysis were conducted on 
the DEGs. Subsequently, text‑mining of OA treatment drugs 
and their target genes were performed to initially validate 
the results. The results of the present study may enable us to 
recognize the effects of synovial membrane inflammation in 
the development of OA, and to provide certain possible OA 
target molecules for subsequent validation. 

Materials and methods

Gene chip data. GSE46750 gene expression data  (19) was 
obtained from the GEO database (http://www.ncbi.nlm.nih.
gov/geo/), which was expressed on the GPL10558 platform 
[(Illumina HumanHT‑12 V 4.0) Bead chip; Illumina, Inc., San 
Diego, CA, USA]. The GSE46750 dataset samples, which were 
synovial cells, were derived from 12 patients with OA, specifi-
cally from those with synovial membrane with inflammation 
(n=12) and synovial membrane without inflammation (n=12).

Identifying DEGs. The original micro array data was analyzed 
through heat mapping using Morpheus (https://software.
broadinstitute.org/morpheus/) to visually observe gene 
expression. The chip data were divided into an inflammatory 
synovial membrane group and a non‑inflammatory synovial 
membrane group for analysis. GEO2R (https://www.ncbi.nlm.
nih.gov/geo/geo2r/?acc=GSE46750) was used to identify the 

DEGs in OA synovial membrane. The criteria for a DEG was 
|log2 (fold change)|≥1 and P<0.05.

Gene Ontology (GO) enrichment and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway analysis. GO enrich-
ment analysis enables the annotation of cell components (CC), 
MF and BP of DEGs. KEGG (http://www.genome.jp/) is a 
database that includes a KEGG path database for examining 
the path of the gene cluster and associated functions. The 
present study used Database for Annotation, Visualization 
and Integrated Discovery (DAVID 6.8; https://david.ncifcrf.
gov/)  (20) to perform GO enrichment analysis and KEGG 
pathway analysis. P<0.05 was considered to indicate a 
statistically significant difference.

Construction of the PPI network and module analysis. The 
Search Tool for the Retrieval of Interacting Genes/Proteins 
(STRING) database (http://www.string‑db.org/) may be 
searched for associations between known and predicted 
proteins, and is commonly used to predict PPI information in 
molecular biology (21). The DEGs were mapped to STRING, 
and those with interaction scores >0.4 were selected for further 
examination. Cytoscape 3.5.0 (http://www.cytoscape.org/) was 
used to visualize the results from the PPI network. Module 
analysis on the PPI network results was performed using the 
molecular complex detection (MCODE) (22) clustering algo-
rithm that comes with Cytoscape. Module analysis may be 
used to identify more connected gene groups. In addition, the 
module analysis results were further analyzed for function and 
pathway enrichment, and P<0.05 was considered to indicate a 
statistically significant difference.

Text‑mining. Drugs commonly used for the treatment of 
OA were searched in The Therapeutic Target Database 
(https://db.idrblab.org/ttd/)  (23) with the key word ‘osteo-
arthritis’. The molecular targets of the detected drugs were 
identified in The Drug Gene Interaction database (DGIdb; 
http://dgidb.genome.wustl.edu/). These known molecules that 
may serve a therapeutic role in OA were compared with the 
present results. 

Results

DEGs. Morpheus was used to observe the overall gene expres-
sion of all samples (Fig. 1), and differences in gene expression 
between inflammatory synovial cells (n=12) and non‑inflam-
matory synovial cells (n=12) were identified. A total of 174 
DEGs were identified by GEO2R analysis, of which 145 were 
upregulated and 29 were downregulated (Fig. 2).

GO term enrichment analysis. Fig.  3 presents the results 
of the GO analysis. The majority of the DEGs were deter-
mined to be located in the ‘extracellular region’, the ‘plasma 
membrane’ and the ‘vesicle’. The DEGs were demonstrated to 
exert molecular functions by regulating ‘chemokine activity’, 
‘chemokine receptor binding’, ‘growth factor activity’ and 
other ‘cytokine activity’. Furthermore, the DEGs may regulate 
the OA membrane inflammatory response by involvement in 
the regulation of ‘inflammatory response’, ‘immune response’, 
‘response to lipopolysaccharide’ and ‘chemotaxis’.
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KEGG pathway analysis. The KEGG analysis results (Fig. 4) 
suggested that DEGs, through pathways, including ‘chemokine 
signaling pathway’, ‘complement and coagulation cascades’, 
‘TNF signaling pathway’, ‘intestinal immune network for 
IgA production’, ‘cytokine‑cytokine receptor interaction’, 
‘Toll‑like receptor signaling pathway’ and ‘antigen processing 
and presentation’, serve a role in regulating the synovial 
inflammation of OA.

Analysis of hub genes and modules. Following the analysis 
based on the PPI networks, 122 nodes (DEGs) and 444 edges 
(interactions between DEGs) were identified in Cytoscape 
(Fig. 5). The genes with higher scores were the hub genes, as 
the genes of higher degree may be associated with OA. The 
top 10 hub genes were interleukin (IL)6, IL8, matrix metal-
lopeptidase (MMP)9, colony stimulating factor 1 receptor 
(CSF1R), FOS proto‑oncogene, AP1 transcription factor 
subunit (FOS), insulin‑like growth factor 1 (IGF1), TYRO 
protein tyrosine kinase binding protein (TYROBP), MMP3, 
cluster of differentiation (CD) 14 and CD163. A total of four 
modules were selected through MCODE analysis (Fig. 5). 
Enrichment analysis demonstrated that modules 1 and 2 may 
be associated with ‘cytokine‑cytokine receptor interactions’, 
‘NOD‑like receptor signaling pathways’ and ‘toll‑like receptor 
signaling pathways’ (Table I).

Common therapeutic drugs and their targets. The drugs 
commonly used in the treatment of OA included lumira-
coxib, rofecoxib, guggulsterone, nepafenac, glucosamine, 
diclofenac, valdecoxib, naproxen, tiaprofenic acid, celecoxib, 
tolmetin, etoricoxib, tenoxicam, salsalate and mefenamic 
acid (Fig. 6). The target genes of these drugs were identi-
fied in DGIdb, which included IL8, MMP9, IL10, BCL2 
associated X, apoptosis regulator, cyclin dependent kinase 
inhibitor 1B (Fig. 6).

Figure 1. Heat map of 100 genes from all samples. Red indicates higher gene 
expression and blue indicates lower gene expression.

Figure 2. Volcanic map of all genes. Red dots indicate upregulated genes, 
blue dots indicate downregulated genes and gray dots indicate genes that are 
not regulated.
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Figure 4. Kyoto Encyclopedia of Genes and Genomes pathways in differentially expressed genes between non‑inflammatory synovial cells and inflammatory 
synovial cells in osteoarthritis.

Figure 3. The top 10 biological processes, cellular component and molecular function analysis in differentially expressed genes between non‑inflammatory 
synovial cells and inflammatory synovial cells in osteoarthritis.
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Discussion

At present, factors, including heredity, age and mechanical 
alterations, are involved in the complex pathogenesis of 
OA (24). The pathogenesis remains unclear, and thus, the 
treatment of OA primarily relieves symptoms and no specific 
treatment has been identified. Microarray and sequencing 
technology that provide expression levels of thousands of 
genes in humans, have been widely used to predict the poten-
tial therapeutic targets for diseases. A thorough understanding 
of the molecular mechanisms of OA may provide insight 
for diagnosis and treatment. In the present study, 174 DEGs 
were identified between synovial membrane with and without 
inflammation in OA, among which, 145 genes were upregu-
lated and 29 were downregulated. Synovial inflammation has 
been identified as one of the pathological manifestations of the 
development and progression of OA (25). These DEGs were 
involved in the regulation of synovial inflammation. In the 
present study, an enrichment analysis was conducted to further 
understand the regulatory roles of DEGs in OA. 

The top 10 CC terms of the DEGs demonstrated that they 
are primarily located in the ‘extracellular region’, ‘plasma 
membrane’, ‘vesicles membrane’. The roles of DEGs in MF are 
to activate ‘cytokine activity’, promote ‘chemokine receptor 
binding’, and regulate ‘receptor binding’ and ‘phospholipid 

binding’. The top 10 BP terms involved in DEGs are primarily 
‘inflammatory response’, ‘immune response’ and ‘cell‑cell 
signaling’. The KEGG pathways involved in synovial inflam-
mation development of OA by DEGs include ‘chemokine 
signaling pathway’, ‘complement and coagulation cascades’, 
‘TNF signaling pathway’, ‘cytokine‑cytokine receptor inter-
action’, ‘allograft rejection’, ‘Toll‑like receptor signaling 
pathway’ and ‘antigen processing and presentation’. Previous 
studies suggested that immune responses, including comple-
ment activation, cytokines and immune cell populations are 
involved in the occurrence and development of OA (26‑28). 
Additionally, previous studies suggested that cytokines 
are involved in the pathological process of OA, and cause 
inflammatory reactions and pain (29,30). A previous study 
demonstrated that the occurrence of coagulation cascades in 
the synovium was observed in joint diseases, including OA, 
and the associated molecules were more highly expressed in 
inflammatory arthritis (31). 

PPI networks containing the DEGs were additionally 
constructed, and the top 10 hub genes were IL6, IL8, MMP9, 
CSF1R, FOS, IGF1, TYROBP, MMP3, CD14 and CD163. 
IL6 and IL8 primarily regulate immune responses and 
inflammatory responses (32). Previous studies demonstrated 
that IL6 and IL8 expression levels were increased in OA 
synovial tissues (33,34). The role of MMP9 is primarily to 

Figure 5. Protein‑protein interaction network constructed using Cytoscape. Sizes of dots are proportional to the score. Red dots indicate upregulation, blue dots 
indicate downregulation and gray edges indicate protein interactions.
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Table I. Enriched pathways of modules 1‑3.

A, Module 1		

Pathway	 FDR	 Genes

Cytokine‑cytokine receptor interaction	 2.80x10‑9	 CCL20, CCL8, CSF1R, CXCL1, CXCL16, CXCL2, 
		  CXCL5, CXCL6, PPBP
Rheumatoid arthritis	 2.80x10‑9	 CCL20, CXCL1, CXCL5, CXCL6, FOS, MMP1, MMP3
Chemokine signaling pathway	 3.57x10‑9	 CCL20, CCL8, CXCL1, CXCL16, CXCL2, CXCL5, 
		  CXCL6, PPBP
TNF signaling pathway	 3.57x10‑9	 CCL20, CXCL1, CXCL2, CXCL5, FOS, MMP3, MMP9
Pertussis	 1.35x10‑6	 C1QB, CD14, CXCL5, CXCL6, FOS
Transcriptional misregulation in cancer	 8.55x10‑5	 CD14, CSF1R, IGF1, MMP3, MMP9
Salmonella infection	 0.000131	 CD14, CXCL1, CXCL2, FOS
Legionellosis	 0.00145	 CD14, CXCL1, CXCL2
Pathways in cancer	 0.00145	 CSF1R, FOS, IGF1, MMP1, MMP9
Complement and coagulation cascades	 0.00248	 BDKRB1, C1QB, SERPINE1
Chagas disease (American trypanosomiasis)	 0.00628	 C1QB, FOS, SERPINE1
Toll‑like receptor signaling pathway	 0.00669	 CD14, FOS, SPP1
Osteoclast differentiation	 0.011	 CSF1R, FOS, TYROBP
Bladder cancer	 0.0206	 MMP1, MMP9
NOD‑like receptor signaling pathway	 0.0439	 CXCL1, CXCL2

B, Module 2		

Pathway	 FDR	 Genes

Cytokine‑cytokine receptor interaction	 0.0431	 IL6, IL8, KIT
NOD‑like receptor signaling pathway	 0.0431	 IL6, IL8
Hematopoietic cell lineage	 0.0431	 IL6, KIT
Epithelial cell signaling in Helicobacter pylori infection	 0.0431	 HBEGF, IL8
Salmonella infection	 0.0431	 IL6, IL8
Pertussis	 0.0431	 IL6, IL8
Legionellosis	 0.0431	 IL6, IL8
Malaria	 0.0431	 IL6, IL8
Pathways in cancer	 0.0431	 IL6, IL8, KIT
Rheumatoid arthritis	 0.0431	 IL6, IL8
Toll‑like receptor signaling pathway	 0.0494	 IL6, IL8
Chagas disease (American trypanosomiasis)	 0.0494	 IL6, IL8
Amoebiasis	 0.0494	 IL6, IL8

C, Module 3		

Pathway	 FDR	 Genes

Intestinal immune network for IgA production	 0.00149	 HLA‑DPA1, HLA‑DRA
Type I diabetes mellitus	 0.00149	 HLA‑DPA1, HLA‑DRA
Staphylococcus aureus infection	 0.00149	 HLA‑DPA1, HLA‑DRA
Asthma	 0.00149	 HLA‑DPA1, HLA‑DRA
Autoimmune thyroid disease	 0.00149	 HLA‑DPA1, HLA‑DRA
Allograft rejection	 0.00149	 HLA‑DPA1, HLA‑DRA
Graft‑versus‑host disease	 0.00149	 HLA‑DPA1, HLA‑DRA
Viral myocarditis	 0.00152	 HLA‑DPA1, HLA‑DRA
Inflammatory bowel disease	 0.00172	 HLA‑DPA1, HLA‑DRA
Antigen processing and presentation	 0.00175	 HLA‑DPA1, HLA‑DRA
Leishmaniasis	 0.00175	 HLA‑DPA1, HLA‑DRA
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Table I. Continued.

C, Module 3		

Pathway	 FDR	 Genes

Rheumatoid arthritis	 0.00244	 HLA‑DPA1, HLA‑DRA
Systemic lupus erythematosus	 0.00275	 HLA‑DPA1, HLA‑DRA
Toxoplasmosis	 0.00363	 HLA‑DPA1, HLA‑DRA
Cell adhesion molecules	 0.00499	 HLA‑DPA1, HLA‑DRA
Phagosome	 0.0051	 HLA‑DPA1, HLA‑DRA
Tuberculosis	 0.00645	 HLA‑DPA1, HLA‑DRA
Influenza A	 0.00645	 HLA‑DPA1, HLA‑DRA
Herpes simplex infection	 0.00645	 HLA‑DPA1, HLA‑DRA
Epstein‑Barr virus infection	 0.00722	 HLA‑DPA1, HLA‑DRA
HTLV‑I infection	 0.012	 HLA‑DPA1, HLA‑DRA

FDR, false discovery rate; TNF, tumor necrosis factor; NOD, nucleotide‑binding oligomerization domain; IgA, immunoglobulin A; HTLV‑I, 
human T‑lymphotrophic like virus I; CCL, C‑C motif chemokine ligand; CSF1R, colony stimulating factor 1 receptor; CXCL, C‑X‑C motif 
chemokine ligand; PPBP, pro‑platelet basic protein; FOS, FOS proto‑oncogene, AP‑1 transcription factor subunit; MMP, matrix metallopepti-
dase; C1QB, complement C1q B chain; CD14, CD14 molecule; IGF1, insulin like growth factor 1; BDKRB1, bradykinin receptor 1; SERPINE1, 
serpin family E member 1; SPP1, secrete phosphoprotein 1; TYROBP, TYRO protein tyrosine kinase binding protein; IL, interleukin; KIT, KIT 
proto‑oncogene receptor tyrosine kinase; HBEGF, heparin binding EGF like growth factor; HLA‑DPA1, major histocompatibility complex, 
class II, DP α 1; HLA‑DRA, major histocompatibility complex, class II, DR α. 

Figure 6. Commonly used drugs for the treatment of osteoarthritis and their target genes. The yellow triangles indicate drugs and the blue diamonds indicate 
the target genes.
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degrade and remodel the extracellular matrix, and the role of 
MMP3 is to degrade extracellular matrix proteins (35). The 
results of the present study were consistent with the results 
of previous studies, which demonstrated high expression of 
MMP9 and MMP3 in OA synovial tissues (36,37). CSF1R 
encodes a receptor protein for colony stimulating factor 1, 
which mediates the majority of the biological effects of this 
cytokine (38). A previous study revealed macrophage‑CSF 
and macrophage‑CSF and granulocyte‑CSF are involved in 
the inflammatory response in a rheumatoid arthritis mouse 
model (39). FOS is a nuclear protein transcription factor that 
regulates the growth, division, differentiation, proliferation 
and apoptosis of cells (40). Compared with normal human 
synovial tissues, immunohistochemistry demonstrated 
strong staining of c‑FOS in OA synovial tissues (41). IGF1 
encodes an active protein peptide substance that promotes 
cell growth and is essential for sugar, lipid, protein metabo-
lism and inorganic salt metabolism (42). A previous study 
demonstrated that the IGF1 content in OA synovial fluid 
was twice that in normal fluid and that all forms of IGF1 
were highly concentrated in the cartilage of OA, which 
may affect the progression of the disease by regulating 
the anabolic metabolism of cartilage macromolecules (43). 
TYROBP is involved in immune and inflammatory reac-
tions  (44). A previous study demonstrated that TYROBP 
was more highly expressed in OA synovial tissues compared 
with healthy synovial tissues (45). A previous clinical study 
demonstrated that the expression levels of CD14 and CD163 
in the serum and joint f luid were increased in patients 
with OA, and were directly proportional to the activation 
of macrophages, joint space, osteophytes and the severity 
of pain (46). CD14, as a co‑receptor, was involved in the 
signaling pathway of lipopolysaccharide binding and may 
trigger inflammatory activation of synovial cells by stimu-
lating toll‑like receptors (47). CD163 is a marker for cells 
from the monocyte/macrophage lineage and is also hemo-
globin scavenger receptor, with pro‑ and anti‑inflammatory 
effects (48). Comparing the results of the present study with 
the text‑mining results, IL8 and MMP9 were identified as 
useful therapeutic targets for OA.

Module analysis demonstrated that the development of 
OA synovitis is associated with ‘cytokine‑cytokine receptor 
interactions’, ‘NOD‑like receptor signaling pathway’, 
‘Toll‑like receptor signaling pathway’. Previous studies 
have demonstrated that the occurrence and development of 
OA were associated with a number of cytokines, leading to 
synovial inflammation, cartilage damage and osteophyte 
production (30,49). The present study demonstrated that OA 
synovial inflammation is associated with ‘NOD‑like receptor 
signaling pathway’, ‘Toll‑like receptor signaling pathway’ and 
‘TNF signaling pathway’, and OA progression is additionally 
associated with ‘osteoclast differentiation’.

In the present study, bioinformatics analysis was performed 
to investigate synovial inflammation. The DEGs identification 
and in‑depth analysis may help to identify useful targets and 
pathways in OA pathogenesis. These results may provide 
insight for the study of OA therapeutic targets. A limitation 
of the present study was that the screened genes and pathways 
were not experimentally validated, which may become a focus 
of future studies.
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