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Abstract. The present study aimed to verify the presence 
of stem cells with multilineage differentiation potential in 
human lumbar zygapophyseal articular cartilage (LZAC) 
and to compare the chondrogenic potential of cells obtained 
from differentially degenerated articular cartilage samples. 
Surgically obtained human lumbar zygapophyseal joint 
tissues were classified into the normal, mildly degenerated 
and severely degenerated groups, according to their patho-
logical characteristics. Primary chondrocytes from these 
groups were cultured, and stem cells were selected using a 
monoclonal cell culture method. Differences in stem cell 
morphology between the three groups were observed using 
inverted microscopy and phalloidin staining. In addition, stem 
cell chondrogenic potential was determined through induced 
differentiation and cellular staining. Gene and protein expres-
sion levels of the chondrogenic‑specific markers aggrecan, 
collagen type‑II and SRY‑related high‑mobility‑group box 9 
were determined using reverse transcription‑quantitative 
polymerase chain reaction and western blotting. The clono-
genic ability of stem cells in the three groups was determined 
using a clonogenic assay. It was revealed that stem cells with 
multilineage differentiation potential were isolated from 
all three cartilage groups; however, the cells obtained from 
severely degenerated articular cartilage resulted in severe 
fibrosis, whilst those obtained from mildly degenerated 
articular cartilage possessed stronger chondrogenic and 
clonogenic abilities. Taken together, stem cells with multi-
lineage differentiation potential and clonal properties were 

identified in human LZAC, and these characteristics were 
more prominent in mildly degenerated as compared with 
severely degenerated articular cartilage.

Introduction

Lower back pain (LBP) is a common disorder with quick 
recovery observed in the majority of patients. However, the 
rate of LBP recurrence is high and adversely affects the 
quality of life of the patients (1). Studies have indicated that 
LBP can arise following lumbar facet joint osteoarthritis 
(LFJOA), which accounts for 15‑45% of non‑specific LBP 
cases (2). Facet joints are paired zygophyseal joints between 
two consecutive vertebrae. LFJOA is intimately linked to the 
distinct but functionally associated condition of degenerative 
disc disease, which affects structures in the anterior aspect of 
the vertebral column. The prevalence of facet‑mediated pain in 
clinical populations increases with increasing age, suggesting 
that LFJOA may have a particularly important role in older 
adults with spinal pain.

Over the past two decades conceptualization of knee OA 
has shifted away from a predominant focus on cartilage degen-
eration towards a view of OA as a heterogeneous and dynamic 
process of whole‑joint failure resulting from an imbalance 
between the breakdown and repair of joint tissues. However, 
clinical treatment of LFJOA is currently restricted to conser-
vative management, including medicine administration (such 
as nonsteroidal anti‑inflammatory drugs) and physiotherapy. 
Surgical intervention can be introduced when the disorder is 
complicated by lumbar degenerative disease. Direct resection 
of the zygapophyseal joint and bone graft fusion is common; 
however, this approach cannot fully cure LFJOA or restore 
function. An optimal LFJOA treatment should not only elimi-
nate pain and remove the cause of pain, but also restore and 
maintain the normal structure and physiological function of 
the lumbar zygapophyseal joint (LZJ).

The application of stem cells in cartilage tissue repair is 
developing rapidly, providing a potential new therapeutic 
approach for LFJOA (3,4). However, the presence of stem 
cells within the lumbar zygapophyseal articular cartilage 
(LZAC) has yet to be confirmed. The repair and regeneration 
of LFJOA cartilage may be achieved through a single injection 
of lab‑grown LZAC to provide a cell source with multilineage 
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differentiation potential combined with a cell scaffold bioma-
terial and/or cartilage differentiation‑inducing factors.

The present study aimed to investigate mesenchymal stem 
cell (MSC)‑like cells isolated from human LZAC and to 
compare their differentiation potentials in differentially degen-
erated articular cartilage tissues. The findings are expected to 
further the current understanding on stem cell restoration and 
LFJOA therapy.

Materials and methods

Patient data and inclusion criteria. The present study was 
approved by the Ethics Committee of Yijishan Hospital, 
The First Affiliated Hospital of Wannan Medical College 
(Wuhu, China). A total of 36 LZJ tissue samples were 
obtained during surgery performed on patients with lumbar 
degenerative disease between March 2017 and August 2017. 
The patient age ranged between 27 and 71 years, and the most 
commonly affected surgical segments were L4‑S1. The inclu-
sion criteria were as follows: i) Patients who were clinically 
diagnosed with lumbar spinal stenosis, spondylolisthesis and 
degenerative lumbar scoliosis, exhibited little or no curative 
effects following conservative management and volunteered to 
undergo surgery (5); ii) patients without symptoms of rachit-
erata or spinal cord tumors; iii) the surgery included posterior 
lumbar decompression, bone fusion and vertebral pedicle 
internal fixation. Written informed consent was obtained from 
all enrolled patients. All the subsequent research analyses 
were carried out in accordance with the approved guidelines.

Pathological staining of the LZJ. The collected LZJ samples 
were fixed in 10% formalin for 48 h, cut into 2‑mm slices along 
the coronal plane, decalcified for 1 week, embedded in paraffin 
and sectioned. The 5 mm sections were then dewaxed, dehy-
drated and air‑dried prior to staining with hematoxylin/eosin 
(HE) and Oil Red O (Gibco; Thermo Fisher Scientific, Inc., 
Waltham, MA, USA). Tissue morphology was observed using 
an inverted microscope.

The samples were classified according to the Osteoarthritis 
Cartilage Histopathology Assessment System of the 
Osteoarthritis Research Society International and the clas-
sifying methods detailed by Kim et al (6). Samples with an 
intact articular cartilage surface and tissue structures were 
assigned to the normal group (G0). Samples with discontinui-
ties or fissures on the articular cartilage surface, mild loss of 
mesochondrium and/or chondrocyte responsive hypertrophy 
were included in the mildly degenerated group (G1‑G2). 
Finally, samples with defects or deformations of the articular 
cartilage surface, severe loss of mesochondrium and/or a 
significantly decreased cartilage cell number were assigned to 
the severely degenerated group (G3‑G4).

Cultivation of primary chondrocytes and isolation of stem 
cells. LZJ articular cartilage was isolated from the joint 
surface under sterile conditions, cut into 1‑mm3 sections 
using ophthalmic scissors and digested for 4‑5 h at 37˚C using 
collagenase type‑II (0.25%; Gibco; Thermo Fisher Scientific, 
Inc.). Following digestion, cell suspensions were filtered twice 
through a 200‑mesh stainless steel filter and centrifuged at 
1,000 x g for 5 min at 37˚C to obtain the cell pellet. Subsequent 

to the removal of the supernatant, Dulbecco's modified Eagle's 
medium/Ham's F12 (DMEM/F12; Gibco; Thermo Fisher 
Scientific, Inc.) supplemented with 15% fetal bovine serum 
(FBS; Gibco; Thermo Fisher Scientific, Inc.) was used to 
disperse the pellet by pipetting, and then cells were seeded 
into a 10‑cm culture plate at a density of 100 cells/cm2. Cells 
were incubated at 5% CO2 and 37˚C, and the medium was 
changed every 3 days until monoclonal cells were observed. 
Subsequent experiments demonstrate that the monoclonal 
cells have various properties of stem cells.

Induced differentiation and cell staining. Primary stem cells 
were seeded into 24‑well plates at a density of 2x104 cells/well 
in 1 ml DMEM/F12 supplemented with 10% FBS. When 
the cells reached 80% confluence, the medium was replaced 
with osteogenic, adipocytic or chondrogenic differentiation 
medium (Gibco; Thermo Fisher Scientific, Inc.). The differ-
entiation media were changed every 3 days. After induction 
for 2‑3  weeks, cells were fixed in 4% paraformaldehyde 
solution at 25˚C for 40 min and washed with PBS. Cells were 
then stained with 500 µl alizarin red S (0.4%), Oil Red O or 
safranin O (Gibco; Thermo Fisher Scientific, Inc.) to identify 
the osteogenic, adipogenic or chondrogenic differentiation, 
respectively. Following incubation at 25˚C for 1 h, the staining 
solutions were removed, and the samples were washed with 
PBS, prior to observation and imaging using an inverted 
phase‑contrast microscope.

Flow cytometry. Isolated primary stem cells were washed 
with PBS, digested in trypsin (0.25%; Gibco; Thermo Fisher 
Scientific, Inc.) and placed into Eppendorf tubes (2  ml). 
Phycoerythrin‑conjugated mouse anti‑human monoclonal 
antibodies against CD14 (eBioscience; Thermo Fisher 
Scientific, Inc.; 11‑0149‑41; 1:50), CD90 (eBioscience; Thermo 
Fisher Scientific, Inc.; 11‑0909‑41; 1:50), CD105 (eBiosci-
ence; Thermo Fisher Scientific, Inc.; 12‑1057‑41; 1:50), CD73 
(eBioscience; Thermo Fisher Scientific, Inc.; 11‑0739‑41; 
1:50), CD45 (eBioscience; Thermo Fisher Scientific, Inc.; 
11‑9459‑41; 1:50), CD34 (eBioscience; Thermo Fisher 
Scientific, Inc.; 11‑0349‑41; 1:50), STRO‑1 (eBioscience; 
Thermo Fisher Scientific, Inc.; 14‑6688‑82; 1:50) and HLA‑DR 
(eBioscience; Thermo Fisher Scientific, Inc. 11‑9956‑42; 1:50) 
were then added. IgG (mouse IgG1 κ isotype control‑FITC, 
eBioscience; Thermo Fisher Scientific, Inc.; 11‑4714‑81; 1:20; 
mouse IgG1 κ isotype control‑PE; eBioscience; Thermo Fisher 
Scientific, Inc.; 12‑4714‑41, 1:100; mouse IgG2b κ isotype 
control‑PerCP‑Cyanine5.5; eBioscience; Thermo Fisher 
Scientific, Inc.; 45‑4732‑80; 1:100) were used as isotype control. 
Subsequent to mixing, the samples were incubated for 30 min 
in the dark 25˚C, washed with PBS, re‑suspended in 500 µl 
PBS and analyzed using flow cytometry (BD Biosciences, 
San Diego, CA, USA). Threshold values were set using nega-
tive cell lines in accordance with the fluorescence intensities 
of isotype controls. Positive expression rates and fluorescence 
intensities against each of the aforementioned monoclonal 
antibodies were detected using duplicate samples.

Cytoskeleton staining. Primary stem cells were seeded 
into 6‑well plates at a density of 2x105 cells/well. The cells 
were fixed in 4% paraformaldehyde at 25˚C for 15 min and 
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permeabilized using 0.3% Triton X‑100 (2 ml/well) for 10 min 
at 37˚C. The cells were then washed with PBS and 100 µl/well 
phalloidin (Gibco; Thermo Fisher Scientific, Inc.) was added 
prior to incubation for 10 min in the dark 25˚C. DAPI (100 µl) 
was subsequently added and the cells were incubated for 
5 min in the dark 25˚C. Following washing in PBS, cytoskel-
etal F‑actin was observed and imaged using laser‑scanning 
confocal microscopy (Zeiss LSM 510‑META laser scanning 
microscope; Carl Zeiss AG, Jena, Germany).

Reverse transcription‑quantitative polymerase chain reaction 
(RT‑qPCR). RNA was extracted from the induced cells 
using TRIzol® reagent (Invitrogen; Thermo Fisher Scientific, 
Inc.). The quantity and quality of isolated RNA were evalu-
ated using absorbance at wavelengths of 260 and 280 nm. 
Reverse‑transcribed into cDNA using a RevertAid™ First 
Strand cDNA Synthesis kit (Thermo Fisher Scientific, Inc.) 
according to the manufacturer's protocol of the kit. Next, 
qPCR was performed using a QuantiTect SYBR Green 
PCR kit (Thermo Fisher Scientific, Inc.), according to the 
manufacturer's protocol, and the mRNA levels of aggrecan 
(ACAN), collagen type‑II (COL‑II) and SRY‑related 
high‑mobility‑group box 9 (SOX9) were measured in each 
group. The conditions of real‑time PCR were as follows: 
Denaturation at 95˚C for 10 sec, 40 cycles at 95˚C for 10 sec 
and 60˚C for 30 sec. Dissociation curves revealed no nonspe-
cific amplification. The primers used for qPCR assay are listed 
in Table I. GAPDH was used as an internal reference, and the 
results were analyzed using the 2‑ΔΔCq method (7).

Western blot analysis. Induced cells were collected, 
resuspended in RIPA Lysis buffer (Invitrogen; Thermo 
Fisher Scientific, Inc.) with phenylmethanesulfonyl fluoride 
(PMSF; Thermo Fisher Scientific, Inc.) and lysed on ice. 
The supernatants were collected, and protein concentrations 
were measured using the BCA method. Equal amounts of 
proteins were used in subsequent experiments. A total of 
20 µg protein was loaded per lane using 10% SDS‑PAGE and 
electrotransferred onto nitrocellulose membranes (Beyotime 
Institute of Biotechnology, China), and 5% bovine serum 
albumin (Beyotime Institute of Biotechnology) was used for 
membrane blocking for 1 h at 25˚C. Primary antibodies against 
ACAN (1:1,000; Abcam, Cambridge, UK), COL‑II (1:5,000; 
Abcam), SOX9 (1:5,000; Abcam) and GAPDH (1:5,000; 
Abcam) were incubated with the membrane overnight at 4˚C 
on a shaker. Following washing, the membrane was exposed 
to a secondary antibody diluted at 1:5,000 in blocking reagent 
and incubated for 1  h at room temperature on a shaker. 
Subsequent to further washing in Tris‑buffered saline/20% 
Tween‑20, the membranes were visualized using an enhanced 
chemiluminescence detection system (EMD Millipore, 
Billerica, MA, USA). Immunoreactive bands were quantified 
on autoradiography films in triplicate with using Image  J 
software (version 4.8; National Institutes of Health, Bethesda, 
MD, USA) by normalizing the band intensities to GAPDH.

Colony‑forming assay. Primary stem cells were seeded into 
6‑cm diameter culture dishes at a density of 100 cells/dish (n=3 
per sample). After 7‑10 days of cultivation, cells were fixed in 
4% paraformaldehyde at 25˚C for 20 min, washed with PBS 

and immersed in 0.1% crystal violet staining solution at 25˚C 
for 10 min. Following washing with PBS, the cell colonies 
were counted and imaged.

Statistical analysis. All statistical data are expressed as the 
mean ± standard deviation. Statistical analysis was conducted 
using SPSS version 18.0 software (SPSS, Inc., Chicago, IL, 
USA). Statistically significant differences among the three 
groups were determined using one‑way analysis of variance, 
and χ2 tests were used to compare cell counts between groups. 
P<0.05 was considered to indicate a difference that was 
statistically significant.

Results

Pathological and radiological characteristics of differen‑
tially degenerated LZAC. HE and safranin O staining were 
performed to classify 36 LZJ articular tissues into three 
groups according to the degree of degeneration, as follows: 
i) Normal group (n=5); ii) mildly degenerated group (n=12); 
and iii)  severely degenerated group (n=19). In the normal 
group, the articular cartilage surfaces were smooth, and the 
four‑layered tissue structures were intact. By contrast, the 
articular cartilage surfaces of the mildly degenerated group 
were rough and exhibited longitudinal fissures, while the sepa-
ration lines of the four‑layered structure were unclear. In the 
severely degenerated group, erosion and defects were clearly 
observed, with a thinner cartilaginous layer and evident prolif-
eration of osseous tissue. Furthermore, the boundary between 
the subchondral bone and underlying bone tissues was unclear 
in this group (Fig. 1A and B).

Cross‑sectional computed tomography scans of the lumbar 
area were also compared among the three groups, and the 
radiological characteristics for each group were in agreement 
with the staining results (Fig. 1C). In addition, no significant 
differences were detected in the clinical data among the three 
patient groups (Table II).

Stem cells from differentially degenerated LZAC display 
MSC‑like characteristics. Subsequent to osteogenic 

Table I. Primer sequences for quantitative polymerase chain 
reaction.

Gene	 Primer sequence (5'‑3')

ACAN	 F: CATTCACCAGTGAGGACCTCGT
	 R: TCACACTGCTCATAGCCTGCTTC
COL‑II	 F: TGAGGGCGCGGTAGAGACCC
	 R: TGCACACAGCTGCCAGCCTC
SOX9	 F: ATCTGAAGAAGGAGAGCGAG
	 R: TCAGAAGTCTCCAGAGCTTG
GAPDH	 F: GCACCGTCAAGGCTGAGAAC
	 R: TGGTGAAGACGCCAGTGGA

ACAN, aggrecan; COL‑II, collagen type‑II; SOX9, SRY‑related 
high‑mobility‑group box 9; F, forward; R, reverse.
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differentiation of isolated stem cells, rock salt gradually 
deposited and formed a plurality of granular calcium nodules. 
Alizarin red staining result indicated all stem cells were 
stained red (Fig. 2A). After adipogenic induction, Oil Red O 
staining results demonstrated that 3 kinds of stem cells were 
all stained red (Fig. 2B). Chondrocyte‑specific aggrecan were 
stained red with safranin O following chondrogenic induc-
tion (Fig. 2C). Flow cytometry analysis further revealed that 
isolated stem cells from all groups were positive for the CD90, 
CD73, STRO‑1 and CD105 surface markers, and negative for 
CD14, CD34, CD45 and HLA‑DR (Fig. 3).

Morphological changes are observed in stem cells from differ‑
entially degenerated LZACs. Primary chondrocytes from the 
normal and mildly degenerated groups were polygonal and 
tightly arranged, while those from the severely degenerated 

group were elongated and loosely arranged. Stem cells isolated 
from monoclones were different to primary chondrocytes; 
more specifically, they were smaller in size and arranged 
in a whirlpool configuration. No evident differences in the 
morphology were observed between the three cell groups 
microscopically. As presented in Fig. 4, phalloidin staining 
revealed that the stem cell cytoskeletons in the normal group 
were spindle‑shaped, while those in the mildly and severely 
degenerated groups were visibly elongated. These results indi-
cated that, compared with normal LZAC, abnormal fibrosis 
was evident in stem cells isolated from mildly and severely 
degenerated LZAC cases.

Chondrogenic ability differs among stem cells isolated from 
differentially degenerated LZAC. RT‑qPCR and western 
blot analysis confirmed that stem cells from the mildly 

Table II. Comparison of clinical characteristics among the three groups (n=36).

Group	 N	 Sex (male/female)	 Age (years)	 Chronic disease (yes/no)

Normal	 5	   3:2	 48.20±12.07	   3:2
Mildly degenerated	 12	   8:4	 53.25±7.71	   6:6
Severely degenerated	 19	 13:6	 55.26±9.69	 10:9
F/χ²		  0.124	 1.126	 0.143
P‑value		  0.940	 0.337	 0.931

Figure 1. (A) Hematoxylin & eosin and (B) safranin O and Fast Green staining revealed severe depletion of proteoglycans, fibrillation, and structural and 
morphological changes in mildly degenerated (G1‑G2) and severely degenerated (G3‑G4) lumbar zygapophyseal articular cartilage, compared with normal 
cartilage (G0). (C) Cross‑sectional computed tomography images of lumbar areas revealed similar pathological and radiological characteristics. CT, computed 
tomography.
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degenerated group had enhanced chondrogenic potential, 
whereas those from the severely degenerated group had 

reduced chondrogenic potential, compared with cells from 
the normal group. The chondrogenic differentiational genes 

Figure 3. Stem cells from all groups were: (A) Positive for the typical MSC marker proteins CD73, CD90, CD105 and STRO‑1; and (B) negative for surface 
marker expression, including hematopoietic progenitor cell marker CD34, leukocyte common antigen CD45, the immune marker CD14, and HLA‑DR. Blue 
graphs indicated isotype controls, red graphs indicated positive cells. MSC, mesenchymal stem cell; CD, cluster of differentiation.

Figure 2. (A) Osteogenic, (B) adipogenic and (C) chondrogenic differentiation, examined by alizarin red S, Oil Red O and safranin O staining. Stem cells 
from human lumbar zygapophyseal articular cartilage in the three differentially degenerated groups had same differentiation potential to three lineages with 
14‑21 days of induction. Original magnification: x100.
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and proteins (ACAN, COL‑II and SOX9) of 3 kinds of stem 
cells were analyzed respectively, and the results demonstrated 
that the expression of the 3 genes and proteins by the mildly 
degenerated group was stronger than the other two cells. And 
the 3 genes and proteins expression of the normal group was 
the second highest and that of the severely degenerated group 
was worse (Fig. 5). These results indicated that, although stem 
cells with multilineage differentiation potential existed in 
LZAC at different degrees of degeneration, stem cells from 
mildly degenerated LZAC exhibited a stronger chondrogenic 
potential.

Stem cell clonal formation varies in differentially degener‑
ated LZAC. Stem cells isolated from all three groups were 
observed to form colonies; however, the colony number was 
significantly lower in the severely degenerated group. No 
significant difference was observed between the normal and 
mildly degenerated groups with respect to colony formation 
(Fig. 6). These results indicated that stem cells from normal 
and mildly degenerated LZAC possess good clonal forma-
tion ability.

Discussion

Osteoarthritis is characterized by an imbalance between the 
dynamic processes of cartilaginous tissue decomposition and 
repair (8). Similarly, the main pathogenic manifestations of 
LFJOA include abrasion of the arthrodial cartilage, respon-
sive hypertrophy of the subchondral bone and osteophyte 
formation in the joint verge (9,10). Histological evaluation of 
osteoarthritis has confirmed increased levels of chondrocyte 
apoptosis, loss of proteoglycans secreted by chondrocytes and 
a denser arrangement of chondrocytes in degenerated carti-
laginous tissues (11).

Cartilaginous tissue has no blood vessels or nerves, and 
is composed of 5% chondrocytes and 95% mesochondrium; 
thus, it has a poor self‑repairing and regenerative capacity (12). 
Regenerative medicine has become a focal point, allowing 
regenerating of defective cartilaginous tissues using autologous 
chondrocytes (13‑15). However, the application of chondro-
cytes in repair strategies has a number of limitations, including 
the limited availability of adult chondrocytes. Chondrocytes 
are terminally differentiated cells with an extremely weak 

Figure 4. Microscopy results in the (A) normal, (B) mildly degenerated and (C) severely degenerated groups. Microscopy revealed regular cell morphology 
in the normal group. Stem cells isolated from the mildly degenerated group were elongated, although the morphology of primary chondrocytes was normal. 
Primary chondrocytes and stem cells from the severely degenerated group were visibly fiberized. Original magnification: x40.
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proliferative capacity, and dedifferentiation often occurs during 
in vitro cultivation. Furthermore, the chondrogenic potential 
of chondrocytes is lost in vitro, making it difficult to obtain 
a large number of normally functioning chondrocytes from a 
small number of adult chondrocytes (16‑18). Additionally, the 
extraction efficiency of primary chondrocytes from cartilagi-
nous tissues is low (19).

Research in this field is currently focusing on the repair of 
bone and cartilage using stem cells. Studies have demonstrated 
that cells with differentiation capacities exist in both normal 
and degenerated cartilage (20,21). Clinical tests have verified 
that implanting or injecting MSCs can promote cartilage 
formation in articulatio genus defect areas (22). Although 
MSC isolation from the endplate and LZAC remains under 

investigation, the future application of these stem cells within 
spinal fusion surgery and for degenerative disc disease is 
promising (23‑26).

In the present study, the monoclonal cell culture method 
was used to prove the existence of stem cells with clonal ability 
and multidifferentiation potential in human LZAC. As part of 
the LZA microenvironment, these cells have vital roles in the 
initiation and progression of degenerative spinal diseases, and 
thus may be a more desirable cell source for tissue repair.

Although stem cells with self‑renewal and multilineage 
differentiation capacities have been found to exist in both 
normal and degenerated articular cartilage, their full potential 
for application in tissue repair remains unclear. A number of 
previous studies have suggested that stem cells only exist on 

Figure 5. mRNA and protein expression levels of ACAN, COL‑II and SOX9 were higher in the mildly degenerated group following chondrogenic induction, as 
determined by (A) reverse transcription‑quantitative polymerase chain reaction analysis and (B) western blot analysis. *P<0.05 and **P<0.01. ACAN, aggrecan; 
COL‑II, collagen type‑II; SOX9, SRY‑related high‑mobility‑group box 9.
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surfaces where the cartilage is rapidly growing and developing, 
while others propose that stem cells are more prevalent at 
the boundary area of cartilage injury (27,28). These studies 
indicate, to a certain extent, that stem cells are necessary 
for the supplementation and maintenance of mesochondrial 
components. Conversely, the differentiation of stem cells also 
depends on the extracellular microenvironment (29). In the 
present study, although stem cells with induced differentiation 
and clonogenic abilities were isolated from differentially 
degenerated LZAC, their chondrogenic differentiation and 
clonogenic abilities differed significantly among the groups.

Cytoskeleton staining revealed fibrosis in the stem 
cells isolated from mildly and severely degenerated LZAC, 
indicating that the mesochondrial environment altered the 
characteristics of these cells to some extent (30,31). Subsequent 
experiments suggested that stem cells isolated from mildly 
degenerated LZAC exhibited enhanced chondrogenic differ-
entiation and clonogenic abilities compared with those from 
normal LZAC. Furthermore, stem cells from severely degen-
erated LZAC exhibited reduced chondrogenic differentiation 
and clonogenic abilities.

The present study successfully isolated stem cells from 
differentially degenerated LZAC using a monoclonal cell 
culture method, and compared the chondrogenic and clono-
genic characteristics in the different groups. However, there 
are certain limitations: i) The osteogenic and adipogenic 
differentiation capacities of stem cells require further investi-
gation, as do their surface marker profiles, in comparison with 
the well‑characterized bone marrow‑derived MSCs; and ii) 

although the differentiation potential of stem cells from carti-
lage tissue is affected by multiple factors, induction models 
based on nutrition, mechanics and inflammation were not 
established or investigated in the present study.

As the stem cells were obtained from differentially degen-
erated LZAC tissues, it is hypothesized that the stem cells from 
mildly degenerated articular cartilages are in a ‘transitional’ 
state, and that their increased differentiation and clonal abili-
ties are likely to be transiently enforced due to external stimuli. 
During the aggravation of cartilage tissue degeneration, stem 
cells gradually lose their normal functionality. These findings 
are important for specific clinical treatment of differentially 
degenerated cartilage in the future.

In conclusion, stem cells with multilineage differentia-
tion potential and clonal properties were identified in human 
LZAC, and these characteristics were more prominent in 
mildly degenerated, compared with severely degenerated, 
articular cartilage.
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