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Abstract. With a 5‑year survival rate of only 8%, pancreatic 
ductal adenocarcinoma (PDAC) is the fourth leading cause of 
cancer‑associated mortality worldwide. Unfortunately, even 
following radical surgery, patient outcomes remain poor. 
Emerging as a new class of biomarkers in human cancer, 
microRNAs (miRNAs/miRs) have been reported to have 
various tumor suppressor and oncogenic functions. In the 
present study, miRNA expression profiles of patients with 
PDAC and corresponding clinical data with survival profiles 
were obtained from The Cancer Genome Atlas database. A 
co‑expression network was constructed to detect the modules 
significantly associated with clinical features by weighted gene 
co‑expression network analysis. Gene Ontology and Kyoto 
Encyclopedia of Genes and Genomes pathway enrichment 
analyses were performed on the hub miRNAs in the module 
of interest for functional annotation. A prognosis model 
consisting of hub miRNAs was generated using the R package 
‘rbsurv’ and validated in survival analysis. The expression 
data of 523 miRNAs in 124 patients with PDAC were analyzed 
in a co‑expression network. The turquoise module containing 
131 miRNAs was identified to be associated with pathological 
T  stage (cor=‑0.21; P=0.02). The 39  hub miRNAs of the 
turquoise module were then detected using the ‘network-
Screening’ function in R. These miRNAs were predominantly 
involved in biological processes including ‘regulation of 
transcription’, ‘apoptotic process’, ‘TGF‑β receptor signaling 
pathway’, ‘Ras protein signal transduction’ and significantly 
enriched in ‘cell cycle’, ‘adherens junction’, ‘FoxO’, ‘Hippo’ 
and ‘PI3K‑Akt signaling’ pathways. A prognostic signature 
consisting of four hub miRNAs (miR‑1197, miR‑218‑2, 

miR‑889 and miR‑487a) associated with pathological T stage 
was identified to stratify the patients with early‑stage PDAC 
into high and low risk groups. The signature may serve as a 
potential prognostic biomarker for patients with early‑stage 
PDAC who undergo radical resection.

Introduction

Pancreatic ductal adenocarcinoma (PDAC), which accounts 
for ~80% of all pancreatic tumors, is an aggressive malig-
nancy and the fourth leading cause of cancer‑associated 
mortality worldwide (1,2). With the rising pancreatic cancer 
incidence rates, the American Cancer Society estimates 
that 55,440 new cases will occur in the United States with 
44,330 PDAC‑associated deaths in 2018  (3). Treatment of 
pancreatic cancer consists of surgery, radiotherapy, chemo-
therapy and palliative care. Appropriate treatments are selected 
depending on disease stage. Compared with other treatments, 
surgical resection is the best curative option to significantly 
prolong patient survival (4). Unfortunately, numerous studies 
have reported that prognosis remains poor following radical 
surgical resection, with a median survival of 10‑20 months and 
5‑year survival rates of only 10‑25% in patients who receive 
pancreaticoduodenectomy (5‑11); the survival rates are even 
lower for patients who receive pancreatectomy (12,13). For 
patients who undergo radical resection, gemcitabine‑based 
adjuvant chemotherapy is currently the standard treatment 
following surgery. If the patients exhibit nodal involvement or 
microscopic residual disease following resection, radiotherapy 
is recommended (14). Despite substantial advancements in 
screening, diagnosis and treatment, PDAC has an extremely 
dismal prognosis, with a median survival of 2‑8 months and 
a 5‑year survival rate as low as 8% (15). Using prognostic 
biomarkers to select the most suitable adjuvant therapies for 
patients may improve clinical outcomes and reduce the toxicity 
caused by ineffective therapies.

As a class of single‑stranded small non‑coding RNAs 
(typically 14‑25 nucleotides), microRNAs (miRNAs/miRs) 
suppress protein translation at the post‑transcriptional level via 
translational inhibition or degradation of their target mRNAs, 
and subsequently affect various biological processes (16‑18). 
miRNA dysregulation has been reported in a range of 
human malignancies, and identified as an important mecha-
nism that regulates cancer‑associated genes and signaling 
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pathways (19‑22). Recently, the vital roles of miRNAs in PDAC 
pathogenesis have been revealed. Certain miRNAs, which 
are potentially oncogenic, are upregulated in PDAC tissues 
compared with normal tissues, including miR‑10b, miR‑17 
and miR‑21, whereas several potentially tumor‑suppressive 
miRNAs, including miR‑26, miR‑34a and miR‑96, are 
downregulated  (23). For example, the putative onco‑miR, 
miR‑155, enhances reactive oxygen species‑induced prolif-
eration by targeting forkhead box O (FoxO)3a and GTPase 
KRas, and also promotes tumor growth via tumor protein 
p53‑inducible nuclear protein 1 in PDAC������������������� ������������������(24,25). The over-
expression of miR‑214 decreases the sensitivity of PDAC 
tumor cells to gemcitabine by inhibiting inhibitor of growth 
family member 4 (26). Furthermore, the association of certain 
aberrantly expressed miRNAs with the clinical outcomes of 
patients with PDAC has been reported in numerous previous 
studies  (27‑30). For example, elevated miR‑21 expression 
levels are significantly correlated with worse overall survival 
and progression‑free survival in patients with PDAC (31). 
Additionally, downregulation of miR‑506 leads to increased 
sphingosine kinase 1 expression, which is also associated with 
shorter survival in patients with PDAC (32).

Based on the potential of miRNAs to be effective 
biomarkers, further in‑depth analysis of the association between 
miRNAs and PDAC prognosis is important. Traditional 
biological research focuses on the specific functions and 
characteristics of individual genes, transcripts and proteins, 
which can only explain part of a biological system. Weighted 
gene co‑expression network analysis (WGCNA) is an effective 
systems biology method used to assign highly co‑expressed 
genes into modules using unsupervised hierarchical clustering 
and assess the association of modules with clinical features, 
allowing the identification of key genes in a module for further 
analysis according to intra‑modular connectivity and gene 
significance (33).

In the present study, WGCNA was used to analyze 
miRNAs to detect the potential key miRNAs associated with 
the prognosis of patients with early‑stage PDAC that under-
went radical resection. These results may produce further 
useful information for the assessment of PDAC prognosis.

Materials and methods

Data collection and processing. miRNA sequencing data and 
clinical information, including survival profiles, of patients 
with PDAC were obtained from The Cancer Genome Atlas 
(TCGA; cancergenome.nih.gov/). Datasets with the following 
criteria were used: i) The histological type was pancreatic 
ductal adenocarcinoma; ii) the pathological stage was stage I 
or II, according to the standard of American Joint Committee 
on Cancer (7th edition) (34); iii) patients underwent radical 
resection, including the Whipple procedure, distal or total 
pancreatectomy; and iv)  survival data were available. 
Consequently, level three miRNAseq data generated using the 
Illumina HiSeq platform (Illumina, Inc., San Diego, CA, USA) 
for 124 patients with PDAC and the corresponding clinical 
data were available for analysis. The variance in expression of 
each miRNA in each sample was calculated and ranked using 
the quartile method. miRNAs with expression variance less 
than the median variance were removed. Subsequently, the 

‘goodSamplesGenes’ function in the R package ‘WGCNA’ 
(R version 3.3.3) was used to remove miRNAs with verbose 
<3 for excessive missing values and identification of outlier 
samples (35). Additionally, the clustering analysis of samples 
was performed using the ‘hclust’ function (method ‘average’) 
in R with an appropriate cut‑off value. Further approval of 
the data and analysis in the present study was not required by 
the TCGA ethics committee. Meanwhile, miRNA sequencing 
data with relevant clinical data were searched on the Gene 
Expression Ominbus (GEO) database (http://www.ncbi.nlm.
nih.gov/geo/) to further validate our results (36).

Weighted gene co‑expression network analysis. Based on the 
filtered miRNA expression data, the scale‑free gene modules 
of co‑expression were constructed by WGCNA  (35). To 
ensure the reliability of the co‑expression network, hierar-
chical clustering was performed based on Euclidean distance 
to detect and remove sample outliers. The Pearson correla-
tion coefficient between all input miRNAs was calculated 
for converting expression data into correlation matrices. 
An adequate soft‑threshold power that met the scale‑free 
topology criterion was selected for transforming the former 
correlation matrix into an adjacency matrix, which was 
subsequently converted into a Topological Overlap Matrix 
(TOM) using the ‘TOMsimilarity’ function in R  (33,37). 
TOM‑based dissimilarity was computed as measure distance, 
and a miRNA clustering tree (dendrogram) and module colors 
were obtained. In the clustering dendrogram, the minimum 
module size and cut height were separately set to 30 and 0.25, 
respectively; thus, modules below these values were merged 
into new modules.

Analysis of association between modules and clinical char‑
acteristics. The association between modules and clinical 
characteristics (age, gender, pathological stage, pathological 
T  stage, pathological N stage, histological grade, type of 
surgery performed, radical resection, number of lymph 
nodes, radiation therapy, targeted molecular therapy, history 
of alcohol consumption and smoking history) were estimated 
by Pearson's correlation tests for the phenotype (clinical char-
acteristics) and module eigengene. P<0.05 was considered to 
indicate statistical significance (38). The association of indi-
vidual miRNAs with clinical characteristics was quantified by 
Gene Significance (GS), while the correlation of the miRNA 
expression profile with module eigengenes was weighted by 
Module Membership (MM) (39).

Identification of hub miRNAs and functional annotation. 
Hub miRNAs are highly connected intra‑modular miRNAs 
that determine the characteristics of the module to a certain 
extent (40,41). The module eigengene function was used for 
calculating the eigengene, which represents the whole module 
miRNA expression level. Subsequently, the ‘signedKME’ 
function was used to calculate the distance between a gene 
and a module eigengene. Screening based on GS and MM 
was used to detect the hub miRNAs in specified modules. The 
corrected miRNAs with q‑weighted P<0.01 were selected as 
hub miRNAs (35). For visualizing the network that consists of 
the hub miRNAs in the turquoise module, Cytoscape software 
(version 3.6.1; https://cytoscape.org) was used, which is an 
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open source software platform used primarily for visualiza-
tion of biological pathways and molecular interactions (42).

For interpreting the biological function of the hub miRNAs, 
target genes were predicted using miRWalk 2.0 (zmf.umm.
uni‑heidelberg.de/apps/zmf/mirwalk2/index.html), miRDB 
(www.mirdb.org), TargetScanHuman 7.2 (www.targetscan.
org/vert_71/), miRanda (34.236.212.39/microrna/home.do), 
miRTarBase 7.0 (mirtarbase.mbc.nctu.edu.tw/php/index.php) 
and PicTar (pictar.mdc‑berlin.de)  (43‑48). Genes common 
to four of these six databases were selected as target genes 
and used in further analysis. The list of target genes was 
then uploaded to the Database For Annotation, Visualization 
And Integrated Discovery (DAVID) bioinformatics resource 
(version 6.8; https://david.ncifcrf.gov) for Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis (49).

Prognostic model construction and survival analysis. After 
dichotomizing the data around the median expression of each 
hub miRNAs, the R packages ‘survival’ and ‘survminer’ 
(package version 0.4.2) (https://cran.r‑project.org/web/pack-
ages/survminer/index.html) were used for the single hub 
miRNA survival analysis and constructing the survival curves. 
Subsequently, the ‘rbsurv’ function in R was applied to develop 
models that utilized the partial likelihood of the Cox model 
to select survival‑associated miRNAs by employing forward 
selection, generating a series of gene models. One of these 
models, which was validated to have significant importance 
for survival analysis via the ‘ggsurvplot’ function contained 
in the ‘survminer’ package, was the optimal model (50,51). 
Meanwhile, the expression of the miRNAs for each sample 
in this model was visualized with the ‘pheatmap’ package in 
R (https://cran.r‑project.org/web/packages/pheatmap/index.
html) (52). For all the survival analysis, overall survival (OS) 
was determined as survival endpoints, the hazard ratio (HR) 
was calculated via a Cox regression model and Kaplan‑Meier 
curves were compared by the log‑rank test. P<0.05 was 
considered to indicate a statistically significant difference.

Results

Study population and sequencing data. The clinical charac-
teristics with survival profiles of 185 patients with pancreatic 
adenocarcinoma and a miRNA sequencing dataset from 
178  patients were downloaded from TCGA. A total of 
129 patients diagnosed with early‑stage PDAC who underwent 
radical resection met the inclusion criteria of the present study 
(Table I). It should be noted that five patients were removed 
due to detection as sample outliers by clustering analysis prior 
to construction of the co‑expression network in the subsequent 
analysis. Using miRNA sequencing data, 523 miRNAs for 
each sample were filtered into further analysis according to 
the ranked expression variance. Following testing using the 
‘goodSamplesGenes’ function, the expression of these selected 
523 miRNAs in 129 patients with PDAC were implemented 
into hierarchical clustering analysis (Fig. 1A). Consequently, 
five outlier samples whose leaf node height was significantly 
higher than other samples and deviated from the main cluster 
obviously in the dendrogram were identified. To avoid effects 
on the subsequent analysis, a height cut at a certain value ranged 

Table I. Clinical characteristics of patients with pancreatic 
ductal adenocarcinoma (n=124).

Variable	 Number of cases (%)

Age (years)	
  <60	 40 (32.3)
  ≥60 	 84 (67.7)
Sex	
  Female	 55 (44.4)
  Male	 69 (55.6)
Pathological stage	
  I	 10 (8.1)
  II	 114 (91.9)
Pathological T stage	
  T1/T2	 18 (14.5)
  T3	 106 (85.5)
Pathological N stage	
  N0	 28 (22.6)
  N1	 95 (76.6)
  NX	 1 (0.8)
Histological grade	
  1	 16 (12.9)
  2	 71 (57.2)
  3/4	 37 (29.8)
Type of surgery performed 	
  Whipple	 107 (86.3)
  Distal/total pancreatectomy	 17 (13.7)
Residual tumor	
  R0	 72 (58.1)
  R1/R2	 44 (35.5)
  RX	 8 (6.4)
Number of lymph nodes	
  0	 27 (21.8)
  ≥1	 97 (78.2)
Radiation therapy	
  No	 80 (64.5)
  Yes	 34 (27.4)
  NA	 10 (8.1)
Targeted molecular therapy	
  No	 34 (27.4)
  Yes	 61 (49.2)
  NA	 29 (23.4)
Alcohol consumption history	
  No	 46 (37.1)
  Yes	 71 (57.3)
  NA	 7 (5.6)
Tobacco smoking history	
  <3	 63 (50.8)
  ≥3	 38 (30.6)
  NA	 23 (18.6)

NA, not available.
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from about 2.2e+05 to 2.9e+05 was utilized to remove these 
samples automatically. The expression data of 523 miRNAs 
in 124 patients with PDAC was used for construction of the 
co‑expression network.

Co‑expression network analysis. The ‘PickSoftThreshold’ 
function in the WGCNA package was used to estimate the 
suitable soft threshold power, which was set as five (Fig. 1B). 
Three modules were identified by a one‑step network 
construction method using the ‘blockwiseModules’ function 
in R (minModuleSize, 30; mergeCutHeight, 0.25) containing 
blue, turquoise and grey modules. Because module identifica-
tion does not employ prior biological knowledge about the 
miRNA, the biological meaning of each module is initially 
unknown and hence the module were assigned a color label 
(blue, turquoise and grey). Notably, miRNAs that failed to 

be classified into a module were assigned to the grey module 
(Fig. 2A). The number of miRNAs in each module was 131 
in blue, 131 in turquoise and 261 in grey. The co‑expression 
network was visualized as a TOM plot consisting of a hierar-
chical clustering dendrogram and TOM matrix (Fig. 2B).

Association of modules with clinical characteristics. The 
associations of co‑expression network modules with the clin-
ical characteristics of the patients with PDAC are illustrated as 
heatmaps of module‑trait correlation (Fig. 3A). The turquoise 
module was significantly associated with pathological T stage 
(cor=‑0.21; P=0.02) and radiation therapy (cor=‑0.21; P=0.02). 
A scatterplot of GS vs. MM in the turquoise module was 
generated. This analysis revealed a highly significant associa-
tion between the turquoise module and pathological T stage 
(cor=‑0.21; P=0.0012; Fig. 3B); however, radiotherapy was 

Figure 1. Sample clustering to detect outliers and analysis of network topology for various soft threshold powers. (A) Cluster dendrogram of 129 samples based 
on their Euclidean distance. The red line represents the cut‑off of data filtering in the step of data processing. Five sample outliers were removed. (B) Analysis 
of the scale‑free fit index and the mean connectivity for various soft‑thresholding powers (β). The red line represents the cut‑off value (R2=0.9).
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Figure 2. Clustering dendrogram and heatmap plot of miRNAs. (A) miRNA clustering dendrogram obtained by hierarchical clustering of TOM‑based dissimi-
larity with the corresponding module colors indicated by the color row. Each colored row represents color‑coded module which contains a group of highly 
connected miRNAs. As a result, two co‑expression modules were constructed and shown as blue and turquoise. (B) Heatmap plot of the topological overlap 
matrix. In the heatmap, rows and columns correspond to single miRNAs, light colors represent low topological overlap, while progressively darker orange and 
red colors represent higher topological overlap. Blocks of darker colors along the diagonal represent the modules. The corresponding miRNA dendrogram and 
module assignment are shown on the left and top. TOM, Topological Overlap Matrix; miRNA, microRNA.

Figure 3. Association between module and clinical characteristics. (A) Module trait relationships. Each row corresponds to a module eigengene, column to a 
feature. Each cell contains the corresponding correlation and P‑value. The table is color‑coded by correlation according to the color legend. The correlations 
between ME turquoise with pathological T stage (cor=‑0.21; P=0.02) and radiation therapy (cor=‑0.21; P=0.02) were significant. (B) A scatterplot of Gene 
Significance for pathological T stage vs. Module Membership in the turquoise module. ME, module eigengene; cor, correlation coefficient.
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not significantly associated with the turquoise module in this 
analysis (cor=0.035; P=0.69).

Hub miRNA detection and functional analysis. Cytoscape 
software (version  3.6.1; https://cytoscape.org) was used 
to visualize the miRNAs in the co‑expression network 
turquoise module based on topological overlap of miRNAs 
(Fig.  4A). Nodes represent miRNAs and edges represent 
connectivity. The more edges the node is connected with, 
the higher intra‑module connectivity the node possesses, 
and the more likely it is to be a hub miRNA. Through 
function ‘networkScreening’ based on GS and MM, 39 hub 
miRNAs were identified in the turquoise module (Table II). 
TargetScanHuman, miRWalk, miRDB, miRanda, miRTar-
Base and PicTar were used to identify target genes of the 
miRNAs. Genes common to four of these six databases were 
selected as target genes. Overlapping target genes for each 
miRNA from four web tools were screened out using Venn 
diagrams in order to reduce the false positive rate, such as 

for miR‑140 (Fig. 4B). In total, 404 genes were identified 
as targeted genes of the 39 hub miRNAs in the turquoise 
module.

For further insights into the biological relevance of the 
target genes, GO and KEGG pathway enrichment analysis 
were performed using the data uploaded to DAVID. The 
GO biological process that was most enriched was ‘nega-
tive regulation of transcription from RNA polymerase  II 
promoter’ (GO:0000122; Fig. 5A). The KEGG pathways that 
were most enriched were ‘cell cycle’ (hsa04110), ‘pathways in 
cancer’ (hsa05200), ‘TGF‑β signaling pathway’ (hsa04350), 
‘FoxO signaling pathway’ (hsa04068), ‘mRNA surveillance 
pathway’ (hsa03015), ‘adherens junction’ (hsa04520), ‘Hippo 
signaling pathway’ (hsa04390), ‘PI3K‑Akt signaling pathway’ 
(hsa04151; Fig. 5B).

Prognostic model construction and survival analysis. To 
explore the association of the 39 hub miRNAs with the prog-
nosis of the patients with PDAC and construct a prognostic 

Figure 4. Hub miRNA detection and functional analysis. (A) Visualization of the turquoise module. The turquoise module assigned into 131 miRNAs and 
was visualized by Cytoscape software. The turquoise nodes represent miRNAs, the edges represent the connectivity between two unspecified miRs. (B) Venn 
diagram for miR‑140 targets. The overlapping target genes were predicted using four of six web tools (TargetScanHuman, miRWalk, miRDB, miRanda, 
miRTarBase and PicTar). There were 14 commonly identified genes in the four web tools, which were considered as target genes for miR‑140. miR, microRNA.

Table II. Hub miRs associated with pathological T stage in the turquoise module.

Module	 Hub miRNAs	 q‑weighted P‑value

Turquoise	 miR‑376c, miR‑379, miR‑654, miR‑873, miR‑889, miR‑487b, miR‑323, miR‑410,	 <0.01
	 miR‑204, miR‑127, miR‑758, miR‑487a, miR‑432, miR‑154, miR‑381, miR‑431,
	 miR‑376a‑1, miR‑409, miR‑377, miR‑543, miR‑370, miR‑433, miR‑375, miR‑382,
	 miR‑1468, miR‑551b, miR‑539, miR‑129‑1, miR‑1224, miR‑129‑2, miR‑369, 
	 miR‑1179, miR‑496, miR‑212, miR‑1197, miR‑218‑2, miR‑134, miR‑411, miR‑140

The 39 hub miRNAs were detected using the ‘networkScreening function’ in R based on Gene Significance and Module Membership. miR, 
microRNA.
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model, the expression data of hub miRNAs and corresponding 
survival profiles were analyzed in R software using the ‘rbsurv’ 
function. A model consisting of four hub miRNAs (miR‑1197, 

miR‑218‑2, miR‑889 and miR‑487a) associated with patholog-
ical T staging was built and validated by survival analysis. The 
patients with PDAC were successfully stratified into high and 

Figure 5. GO and KEGG analysis. (A) Significantly enriched GO biological processes of target genes. (B) Significantly enriched KEGG pathways of target 
genes. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

Figure 6. Identification of a four‑miR signature. (A) Heatmap of the four‑miRNA signature expression. Patients with early‑stage pancreatic ductal adenocarci-
noma were stratified into low‑ and high‑expression groups by unsupervised hierarchical clustering. Blue represents low expression values and red represents 
high expression values. (B) Survival curve displaying the difference of survival rate between the low‑ and high‑expression groups divided by the expression of 
the four‑miRNA signature. miR, microRNA.
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low signature expression groups using the ‘pheatmap’ function 
(agglomeration method, ward.D2) in R (Fig. 6A). The median 
overall survival was 695 vs. 470 days in the high and low miR 
signature expression groups, respectively (P=0.0074; Fig. 6B). 
The results demonstrated that the higher expression of the 
signature, the longer the OS of the patients with early‑stage 
PDAC who underwent radical resection.

Discussion

As one of the most fatal cancers worldwide, treatment of 
PDAC faces therapeutic challenges due to an increasing 
incidence rate and insufficient diagnosis at the early stage (3). 
Although patients who receive radical resection have a rela-
tively good clinical outcome, <20% of patients are eligible 
for surgery  (53). Furthermore, low sensitivity to adjuvant 
therapy and substantial toxicity are major problems (4,54). 
Identification of reliable biomarkers to screen for patients who 
will benefit from surgery is ongoing (55). Advancements in 
algorithms have allowed the use of systems biology methods 
to explore the mechanisms of tumorigenesis and development 
in depth (56).

In the present study, WGCNA was performed using 
miRNA expression data and corresponding clinical informa-
tion of 124 patients with PDAC. An association between the 
turquoise module and pathological T stage was detected in 
the co‑expression network. The pathological T stage indicates 
whether the adjacent tissues have been invaded by the tumor 
and what the original tumor size was, and was previously 
identified as an independent prognostic factor for patients with 
PDAC who underwent resection in previous studies (57,58); 
however, the mechanisms by which miRNAs affect the patho-
logical T stage remains unknown. In the present study, 39 hub 
miRNAs that represented the features of the turquoise module 
were selected to predict target genes for enrichment analysis. In 
GO enrichment analysis, ‘negative regulation of transcription 
from RNA polymerase II promoter’ was the most significantly 
enriched biological process, while the other enriched processes 
included ‘regulation of transcription’, ‘negative regulation of 
apoptotic process’, ‘TGF‑β receptor signaling pathway’, ‘posi-
tive regulation of endothelial cell proliferation’, ‘cell cycle 
arrest’ and ‘Ras protein signal transduction’.

The proliferation and growth of tumor cells is regulated by 
various factors, including abnormalities in growth promotion 
and inhibitory signaling, increased telomerase activity, reduced 
apoptosis, continuous tumor angiogenesis and self‑renewal 
of cancer stem cells (59). The functions of the majority of 
oncogenes and tumor suppressor genes are associated with the 
cell cycle. Gene mutations may cause dysregulation of the cell 
cycle, resulting in uncontrolled growth via excessive prolifera-
tion and decreased apoptosis (60). In addition, tumor growth 
requires delivery of oxygen and nutrients via blood vessels. 
Vascular endothelial growth factor (VEGF) is secreted by 
tumor cells and acts directly on receptors on the surface of 
endothelial cells to induce their proliferation and activation 
to form new blood vessels (61). Transforming growth factor‑β 
(TGF‑β) is a multifunctional cytokine. In early‑stage pancre-
atic cancer, cell growth is inhibited by activation of TGF‑β 
receptor signaling, which increases Smad3 phosphorylation 
and nuclear translocation; in advanced tumors, the activation 

of TGF‑β signaling can promote tumor vascularization and 
metastasis by targeting VEGFA, and increasing fibrosis in the 
pancreatic tissue (62‑64). Ras‑Raf‑MEK 1‑mitogen activated 
protein kinase signaling, a receptor tyrosine kinase‑mediated 
signaling pathway, serves an important role in the regulation 
of cell proliferation and survival. As an upstream mediator of 
this pathway, abnormal activation of Ras signaling may lead 
to unrestrained cell proliferation, and is associated with poor 
prognosis in PDAC (65).

In KEGG pathway analysis, the most significantly enriched 
pathway was ‘cell cycle’, and other significant cancer‑asso-
ciated pathways included ‘TGF‑β signaling pathway’, ‘FoxO 
signaling pathway’, ‘mRNA surveillance pathway’, ‘adherens 
junction’, ‘Hippo signaling pathway’ and ‘PI3K‑Akt signaling 
pathway’. It is well established that cell cycle disorder can cause 
tumorigenesis (66). Additionally, TGF‑β signaling promotes 
cell proliferation, angiogenesis and the self‑renewal of tumor 
stem cells. FoxOs, as a subfamily of the fork head transcription 
factor family, have confirmed roles in tumor cell differen-
tiation, proliferation, apoptosis, DNA repair and damage, and 
also act as mediators of oxidative stress (67). The translation 
of mRNA transcripts into proteins is an essential part of the 
central dogma of molecular biology. However, fidelity errors 
are occasionally present in the mRNA molecules, which may 
result in errors in the translated protein. The mRNA surveil-
lance pathway is a quality control mechanism that detects and 
degrades abnormal mRNA molecules (68).

Adherens junctions are created by homotypic interactions 
between the extracellular domains of cadherin proteins to 
join epithelial cells together, and alterations in cell adhesion 
through adherens junctions may mediate tumor cell invasion 
and migration in pancreatic cancer (57). Hippo signaling is a 
highly conserved serine/threonine kinase cascade involved in 
the control of cell proliferation and apoptosis to regulate organ 
size (69). Phosphoinositide 3‑kinase (PI3K)‑protein kinase B 
(Akt) signaling, which is one of the most commonly dysregu-
lated signaling pathways in cancer, can be triggered to cause 
continuous activation of Akt, which ultimately inhibits tumor 
cell apoptosis. In PDAC, mechanistic target of rapamycin 
kinase (mTOR), a key kinase downstream of PI3K‑Akt, plays 
key roles in the renewal of cancer stem cells, and resistance to 
radiotherapy or chemotherapy (70).

Based on the current enrichment analysis, 39 hub miRNAs 
in the turquoise module were identified to be enriched in 
the biological processes and pathways involved in tumor 
development and progression, which may be involved in the 
negative correlation detected between miRNA expression and 
pathological T stage.

By utilizing prognostic biomarkers, PDAC patients could 
be divided into different subgroups and received individualized 
adjuvant therapy, which might improve clinical outcomes (71). 
However, a single miRNA is less specific and sensitive than a 
panel of miRNAs (72,73). With data on miRNAs as prognostic 
biomarkers accumulating, inconsistencies among study results 
have arisen. Though factors might ascribe to discrepancies 
of lab protocols, measurement platforms, samples size and 
ethnicity, the credibility of the predictive value of a single 
miRNA is dubious. Besides, focusing on the target protein 
of a single miRNA typically results in researchers over-
looking the pathways involved in complex mechanisms such 
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as drug metabolism and treatment resistance, which could 
be simultaneously affected by certain prognosis‑associated 
miRNAs (74). Furthermore, some studies have proven that it is 
more effective to predict prognosis with a panel than a single 
miRNA by statistical analysis (73,75).

To explore the association between the 39 hub miRNAs and 
PDAC prognosis, a predictive model was constructed to iden-
tify a prognostic signature composed of miR‑218‑2, miR‑889, 
miR‑487a and miR‑1197. The previous study by Guan et al (76) 
reported that miR‑218 acts as an inhibitor of tumor angiogen-
esis by targeting rapamycin‑insensitive companion of mTOR, 
an mTOR component, in prostate cancer (76). In a study by 
Zhu et al (77), miR‑218‑5p was demonstrated to suppress the 
cell proliferation and migration of non‑small‑cell lung cancer 
via epidermal growth factor receptor (77). Although miR‑218, 
which is transcribed from two loci located at chromosome 
5q35.1 (miR‑218‑2) and 4p15.31 (miR‑218‑1), has been consid-
ered as an anti‑oncogene in various types of cancer, miR‑218‑2 
has opposing roles in different types of cancer. In glioblas-
toma, miR‑218‑2 promotes cell proliferation, migration and 
invasion by targeting cell division cycle 27 (78); whereas in 
thyroid cancer, co‑expression of miR‑218‑2 with its host gene, 
slit guidance ligand 3, exerts a tumor‑suppressive effect (79). 
Xie et al (80) reported that miR‑889 downregulation by histone 
deacetylase enhances the cytotoxicity of natural killer cells in 
hepatocellular carcinoma. Xu et al (81) observed that miR‑889 
promotes the transformation of esophageal cancer cells from 
the G1 to S phase; furthermore, miR‑889 may induce epithe-
lial‑to‑mesenchymal transition (EMT) via the Akt‑mTOR and 
Wnt pathways (81). In a study of advanced colorectal cancer, 
Molina‑Pinelo et al (82) reported that the reduced expression 
of miR‑889 is significantly associated with improved overall 
survival and progression‑free survival in patients who received 
chemotherapy (82). Chang et al (83) revealed that miR‑487a has 
the ability to promote hepatocellular carcinoma metastasis and 
proliferation by targeting phosphoinositide‑3‑kinase regula-
tory subunit 1 and sprouty‑related EVH1 domain‑containing 2 
mRNA (83). Additionally, miR‑487a was demonstrated to 
induce cell invasion and migration of lung adenocarcinoma by 
regulating migration‑associated genes AXL receptor tyrosine 
kinase and ovo‑like zinc finger 2 (84). In breast cancer cells, 
EMT induced by TGF‑β1 may be restricted by overexpres-
sion of the membrane‑associated guanylate kinase WW 
and PDZ domain‑containing 2 gene, which is regulated by 
miR‑487a����������������������������������������������������� ����������������������������������������������������(85). Only a limited number of studies have investi-
gated miR‑1197 (86,87). The effects of these miRNAs on tumor 
development and progression are inconsistent with each other 
and vary among different types of cancer (78,79). The role of 
each miRNA in biological processes and the expression level 
should be considered when interpreting study results among 
varying cancer types. Thus, comprehensive consideration and 
further study are required.

Certain limitations of the present study should be consid-
ered. As the results were based on single‑data source, Gene 
Expression Omnibus datasets were searched for further 
validation. Unfortunately, no data with full survival profiles 
were available for analysis. Additionally, the conclusions made 
are based on bioinformatics data only, lacking of indepen-
dent external validation with experimental and clinical data. 
Although the accuracy of this bioinformatics method has been 

proven, a realistic assessment of the performance of the panel 
will be warranted in the future.

Despite these limitations, the present study identified 
39 hub miRNAs associated with pathological T stage via 
WGCNA. A four‑miRNA signature associated with patholog-
ical T stage was identified and validated for association with 
the prognosis of PDAC, which may serve as a novel biomarker 
for prognosis prediction and to improve clinical outcome 
in patients with PDAC. The prognostic signature consisted 
of four hub miRNAs (miR‑1197, miR‑218‑2, miR‑889 and 
miR‑487a) associated with pathological T stage, and expres-
sion of the signature miRs was significantly associated with 
survival. These findings suggest that the increased expression 
of the signature in early‑stage PDAC patients who underwent 
radical resection surgery may be an indicator of improved 
overall survival.
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