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Abstract. The present study aimed to identify potential 
novel biomarkers in synovial tissue obtained from patients 
with Rheumatoid Arthritis (RA) and Osteoarthritis (OA) for 
differential diagnosis. The genome‑wide expression profiling 
datasets of synovial tissues from RA and OA cohorts, 
including GSE55235, GSE55457 and GSE55584 datasets, were 
retrieved and used to identify differentially expressed genes 
(DEGs; P<0.05; false discovery rate <0.05 and Fold Change 
>2) between RA and OA using R software. Gene Ontology 
and Kyoto Encyclopedia of Genes and Genomes pathway 
enrichment analyses of DEGs were performed to determine 
molecular and biochemical pathways associated with the iden-
tified DEGs, and a protein‑protein interaction (PPI) network 
of the DEGs was constructed using Cytoscape software. 
Significant modules in the PPI network and candidate driver 
genes were screened using the Molecular Complex Detection 
Algorithm. Potential biomarkers were evaluated by receiver 
operating characteristic and logistic regression analyses. Large 
numbers of DEGs were detected, including 273, 205 and 179 
DEGs in the GSE55235, GSE55457 and GSE55584 datasets, 
respectively. Among them, 80 DEGs exhibited identical expres-
sion trends in all the three datasets, including 49 upregulated 
and 31 downregulated genes in patients with RA. DEGs in 
patients suffering from RA compared with patients suffering 
from OA were predominantly associated with the primary 

immunodeficiency pathway, including interleukin 7 receptor 
(IL7R) and signal transducer activator of transcription 1 
(STAT1). The sensitivity of IL7R + STAT1 to differentiate RA 
from OA was 93.94% with a specificity of 80.77%. The results 
generated from analyses of the GSE36700 dataset were closely 
associated with results generated from analyses of GSE55235, 
GSE55457 and GSE55584 datasets, which further verified 
the reliability of the aforementioned results. The results of 
the present study suggested that increased expression of IL7R 
and STAT1 in synovial tissue as well as in the primary immu-
nodeficiency may be associated with RA occurrence. These 
identified novel biomarkers may be used to predict disease 
occurrence and clinically differentiate RA from OA.

Introduction

Rheumatoid arthritis (RA) and osteoarthritis (OA) are the two 
most frequent types of degenerative joint diseases and exhibit 
similar etiology (1,2). RA is a complex, chronic inflammatory 
and autoimmune arthritis that typically causes pain, swelling, 
stiffness and loss of function in the joints (1). It has been esti-
mated that RA affects 0.5‑1% of the adult population worldwide 
with 20‑50 novel cases per 100,000 people occurring annu-
ally, which most frequently occurs in women aged >40 years 

old (3,4). RA has become one of the most common causes of 
reduced productivity and disability in affected patients and 
may additionally pose a substantial financial burden on the 
family of the patient as well as society (5). RA manifests as 
osteoporosis around the joint and joint space narrowing in 
the knees of patients (6). The bone anatomy degeneration and 
cystic degeneration of the bone joint surface may additionally 
occur with bone defects (7). During RA, the intercondylar 
fossa is enlarged and the tibial plateau sinks (8,9). Patients 
with late‑stage RA may suffer from articular surface sclerosis, 
joint subluxation or joint stiffness (10). Furthermore, OA, the 
most prevalent form of arthritis worldwide, is a multi‑gene 
and multi‑factorial disease, and is characterized by cartilage 
degeneration and subchondral bone alterations, involving 
synovial tissue and articular cartilage (10‑12). OA may reduce 
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the quality of life for patients and eventually lead to disability 
due to pain. The joint most commonly affected by OA is the 
knee (8). Similar to RA, OA additionally has an increased 
occurrence rate in older adults, particularly in women.

In routine clinical practice, the diagnostic criteria 
for RA and OA are outlined by the American College of 
Rheumatology (Atlanta, USA). RA and OA exhibit overlap-
ping symptoms, making differential diagnosis particularly 
challenging. In addition, differentiation between RA and 
OA is difficult in late‑stage cases, primarily because disease 
progression frequently begins prior to the onset of symptoms. 
Therefore, accurate diagnosis of RA and OA may significantly 
improve the clinical outcomes and prognosis for affected 
patients. However, the mechanisms underlying the initiation 
and progression of RA and OA remain unclear. Previously, 
important genes and diagnostic markers that interact with each 
other and with environmental and stochastic factors have been 
identified in the two diseases (13). However, these markers may 
not entirely elucidate the complex pathogenesis of RA and OA.

Therefore, the present study aimed to investigate the 
developmental differences between RA and OA. An updated 
comprehensive analysis was performed to identify the poten-
tial novel biomarkers associated with synovial tissues obtained 
from patients with RA and OA. In the present study, three 
multicenter genome‑wide transcriptomic datasets, including 
33 patients with RA and 26 patients with OA were retrieved 
and analyzed. The present study aimed to investigate the 
different mechanisms underlying the differential pathogenesis 
of RA and OA, and thus improve the diagnosis and treatment 
strategies available for patients suffering from the two diseases 
in clinical practice.

Materials and methods

Microarray dataset source. A systematic search of microarray 
datasets was performed to examine differentially expressed 
genes (DEGs) between RA and OA. The National Center for 
Biotechnology Information's Gene Expression Omnibus (GEO) 
database (http://www.ncbi.nlm.nih.gov/geo/) was utilized 
to retrieve appropriate microarray datasets. The key words 
‘Osteoarthritis’ and ‘Rheumatoid Arthritis’ were used for the 
screening. Datasets were included if they met the following 
inclusion criteria: i) were based on gene expression profiling 
of synovial membrane samples from the same platform. When 
the microarray datasets are obtained from the same platform, 
their homogeneity is usually good. Subsequent to screening 
OA‑associated microarray datasets, the GPL96 platform was 
used at the highest frequency. Therefore, the OA‑associated 
microarray datasets obtained from the GPL96 platform were 
included in the present study; ii)  case (RA)‑control (OA) 
studies; iii) patients with RA were diagnosed and classified 
based on the American College of Rheumatology criteria (14) 
and patients with OA were classified according to the criteria 
of Diagnostic and Therapeutic Criteria Committee of the 
American Rheumatism Association (15); and iv) the number 
of synovial tissue samples in each group of patients with RA 
and OA was ≥6. Three gene expression datasets, GSE55235 
(nRA=10 and nOA=10), GSE55584 (nRA=10 and nOA=6) and 
GSE55457 (nRA=13 and nOA=10) met the inclusion criteria and 
were included in the present study (16).

A further dependent dataset, GSE36700 (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE36700)  (17), 
including microarray data from synovial biopsies of patients 
with RA (n=7) and OA (n=5), was used to validate the results 
obtained from the GSE55235, GSE55584 and GSE55457 
datasets. The GSE36700 dataset was created based on the 
Affymetrix Human Genome U133 Plus 2.0 Array (Affymetrix 
UK Ltd., High Wycombe, UK) and was submitted by Nzeusseu 
Toukap et al (17) March 22, 2012 and updated on Aug 09, 
2018. Patients with RA were diagnosed and classified based on 
the 1987 American College of Rheumatology criteria (14) and 
patients with OA were classified according to X‑ray evidence 
of osteoarthritis (15).

Data preprocessing and dif ferential expression anal‑
ysis. The three databases were created based on the 
Affymetrix Human Genome U133A Array (Affymetrix 
UK Ltd.). A robust multi‑array average algorithm using 
the Affy package ( justMRA; http://ugrad.stat.ubc.
ca/R/library/affy/html/00Index.html) was conducted for 
background adjustment, normalization and summariza-
tion of the three datasets to minimize data inconsistency 
and heterogeneity. The probe sets were converted into 
corresponding gene annotation using R/Bioconductor 
package (version 3.22.4; http://www.bioconductor.org/pack-
ages/release/BiocViews.html#___ChipManufacturer) and 
the Affymetrix Human Genome U133 Plus 2.0 Array. The 
probes with no gene annotation were excluded from the anal-
ysis. The expression values of all probes for a given gene were 
calculated from the average expression value. DEGs [P<0.05; 
false discovery rate (FDR) <0.05] between RA and OA from 
the three datasets were investigated using R software (v3.4.0; 
http://bioconductor.org/biocLite.R). FDR was applied based 
on the Benjamini & Hochberg method (18) and two indepen-
dent sample Student's t‑test was performed to select sets of 
DEGs. To reduce the false positive rate, DEGs of the three 
datasets were identified, and subsequently Venn diagrams 
(Venn 2.1; http://bioinfogp.cnb.csic.es/tools/venny/index.
html) were used to screen the overlapping DEGs of the three 
datasets to improve the stability of the subsequent results.

Biological functions and pathway enrichment analyses. 
To further elucidate the biological functions of DEGs 
between RA and OA, the identified DEGs were subjected 
to Gene Ontology (GO; http://www.geneontology.org/) 
term enrichment and Kyoto Encyclopedia of Genes and 
Genomes (KEGG; https://www.kegg.jp/) pathway analyses 
using Database for Annotation, Visualization and Integrated 
Discovery (DAVID; https://david.ncifcrf.gov/), respec-
tively. Significantly enriched pathways and GO terms 
(P≤0.05; number of enrichment genes ≥2) were identified 
using Cytoscape 3.5.1 software (http://www.softpedia.
com/get/Science‑CAD/Cytoscape.shtml) and GeneClip 
2.0 (http://gsds.cbi.pku.edu.cn/). The identified genes were 
classified into three functional categories, including the 
Biological Process (BP), Molecular Function (MF) and 
Cellular Component (CC). Fisher's exact tests (two‑sided) 
or χ2 tests were performed to categorize the pathway and 
GO terms. The FDR (Benjamini & Hochberg method) (18) 
was applied to obtain the corrected P‑values. Significantly 
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enriched pathways and GO terms (P£0.05; number of 
enrichment genes ≥2) were identified using Cytoscape 3.5.1 
software.

Analysis of pathway networks. The establishment of a 
pathway network of DEGs between RA and OA may help 
to identify important pathways associated with the devel-
opment of RA and OA. Furthermore, pathway network 
analysis may reveal the possible interactions and crosstalk 
among these pathways. Therefore, pathway networks were 
constructed based on the identified DEGs using the ClueGO 
plugin on the Cytoscape platform (http://www.softpedia.
com/get/Science‑CAD/Cytoscape.shtml).

Protein‑protein interaction (PPI) network analysis of 
DEGs. The Search Tool for the Retrieval of Interacting 
Genes/Proteins (STRING) database (http://string‑db.org/) was 
used to analyze the PPI of DEGs, and Cytoscape software was 
used to construct the PPI network. FDR<0.05 was considered 
as the cut‑off criterion. A network was constructed consisting 
of nodes and lines in which each node represents a protein 
and the lines represent direct interactions between proteins. 
The PPI network was constructed based on human data alone. 
The number of nodes that may interact with a given node was 
expressed as the degree of the node. The greater the degree 
values of the included genes, the greater the degree in the 
whole network.

Identification of candidate genes between RA and OA. 
Identification of genes that may affect the development of 
RA and OA within the genome may provide a comprehensive 
understanding of the differences between the pathogenesis 
of RA and OA. Candidate genes that may affect the devel-
opment of RA and OA based on the DEGs were predicted 
using Molecular Complex Detection Algorithm (MCODE) 
in Cytoscape  (19). Furthermore, MCODE cluster analysis 
was performed using Cytocluster 3.5.1 software (20) (Degree 
cutoff=2; Node score cutoff=0.2; K‑core=2; Max Depth=100) 
to identify the most significant MCODE clusters, according 
to clustering scores. The GeneMANIA Cytoscape plugin was 
used to identify and prioritize novel candidate genes involved 
in RA and OA. The establishment of entire PPI networks 
of DEGs between RA and OA were identified based on the 
biological network using the GeneMANIA plugin (21). The 
PPI networks were composed of genes included in the list 
of 80 DEGs and predicted candidate genes that may affect 
the development of RA and OA. Following the selection of 
Homo sapiens as the organism, common DEGs were entered 
into the GeneMANIA search bar, and the PPI network was 
constructed. Following this, the whole PPI network was 
filtered using a degree‑filtering approach to include the most 
critical biomarkers in the occurrence of the two diseases using 
Cytoscape 3.5.1 software.

Statistical analysis. The raw expression data of patients 
with RA and OA were obtained from GEO datasets and 
logarithmically transformed. The means of two continuous, 
normally distributed variables were compared by independent 
sample Student's t‑tests. Mann‑Whitney U tests were used to 
compare the means of two groups of variables not normally 

distributed. Receiver Operating Characteristic (ROC) analysis 
was performed to identify a more accurate cut‑off point in 
the gene expression level, which may aid the classification 
of RA and OA. ROC curves were generated by plotting the 
range of sensitivity (true positive fractions) and specificity 
(false positive fractions) pairs for each subject's error rate, with 
case status (RA vs. OA) representing the classifier variable. 
Youden's index was used for capturing the performance of a 
dichotomous diagnostic test. Youden's index=sensitivity + 
specificity ‑1 (22).

The area under the ROC curve (AUC), which provides 
an estimate of the accuracy of the diagnostic test for the 
discrimination between patients with RA and patients with 
OA, was used to assess the performance of the test. Binary 
logistic regression using backward stepwise selection mode 
was performed to screen out potential biomarkers that were 
positively correlated with RA diagnosis when identified 
biomarkers were detected together. Following this, ROC 
analysis was performed to determine the performance of the 
established logistic regression models. All statistical analyses 
in the present study (except for the screening of DEGs) were 
performed using SPSS version 24.0 for Windows (IBM Corp., 
Armonk, NY, USA) and GraphPad Prism 7.0 (GraphPad 
Software, Inc., La Jolla, CA, USA). P<0.05 was considered to 
indicate a statistically significant difference.

Results

Identification of DEGs between patients with RA and OA. 
DEGs were identified by the t‑test statistical algorithm. Based 
on the cutoff criteria, 140, 103 and 95 genes were identified in 
GSE55235, GSE55457 and GSE55584 datasets, respectively, 
which were upregulated in patients with RA (Fig. 1A‑C). In 
addition, 133, 102 and 84 genes were identified in GSE55235, 
GSE55457 and GSE55584 datasets, respectively, which were 
downregulated in patients with RA (Fig. 1A‑C). Notably, 50 
upregulated (Fig. 1D) and 31 downregulated DEGs (Fig. 1E) 
in patients with RA were identified as being overlapped 
between the three datasets. One DEG without a symbol was 
excluded from the upregulated DEGs, therefore 80 DEGs in 
total, containing 49 upregulated and 31 downregulated, were 
included in the final analysis. The list of 80 DEG symbols is 
available upon request.

Biological functions and KEGG pathways. Cytoscape 3.5.1 
and GeneClip 2.0 were used for biological function and 
pathway enrichment analyses. The results of these analyses 
identified 80 overlapped DEGs, which are presented in Table I. 
The results demonstrated that 80 overlapped DEGs were 
significantly enriched in immune, inflammation, apoptosis and 
antioxidant stress‑associated functions and pathways.

PPI network analysis. A PPI network was constructed based 
on the biological interactions of the 80 identified DEGs to 
further elucidate their associations at the protein level. As 
presented in Fig. 2A, 32 nodes were screened out, including 
29 upregulated genes and three downregulated genes 
(heparin‑binding epidermal growth factor‑like growth factor, 
ephrin type‑A receptor 3 and clusterin) in patients with RA. 
The PPI network included three primary sub‑clusters: i) A 
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sub‑cluster including C‑X‑C motif chemokine receptor 4 
(CXCR4) and signal transducer and activator of transcrip‑
tion 1 (STAT1), and at its core was predominantly associated 
with chemokines and immune functions (Fig. 2A; top circle); 
ii) a sub‑cluster including LCK proto‑oncogene, Src family 
tyrosine kinase (LCK), and at its core was predominantly 
correlated with the regulation of developmental events, 
notably in the nervous system (Fig.  2A; middle circle); 
iii)  a sub‑cluster including interleukin (IL)2 receptor, γ 
chain (IL2RG) and CD3d molecule (CD3D), and at its core 
was primarily associated with immunodeficiency (Fig. 2A; 
bottom circle).

Candidate genes and core network. To identify the potential 
pathological molecular network of the 80 identified DEGs, the 
specific network among them based on the human interactome 
network using MCODE algorithm was extracted using the 
default settings on GeneMANIA. This approach included 
maximal members of candidate genes with the minimal inter-
action associations. The network, capturing the 80 DEGs as 
its seeds, contained 323 nodes and 602 edges, including 30 
genes of the 80 DEGs and 293 candidate genes that may affect 
RA and OA progression. To identify the most important core 
network, networks were filtered according to their degree using 
the degree‑filtering approach. Finally, a core network including 

six genes (CD3D, CXCR4, IL2RG, IL7R, LCK and STAT1) was 
identified and presented in Fig. 2B, which suggested that these 
six genes may represent important biomarkers associated with 
RA and OA development and diagnosis.

Gene‑pathway network. To further understand how impor-
tant genes in the core PPI network affect RA development, a 
gene‑pathway network was constructed using ClueGO (Fig. 2C). 
From the gene‑pathway network, five genes (CD3D, IL2RG, 
IL7R, LCK and STAT1) were included in the PPI network. 
Notably, the results demonstrated that CD3D, IL2RG, IL7R, 
LCK and STAT1 interacted with the primary immunodeficiency 
pathway, either directly or indirectly (P<0.001), which suggested 
that upregulated genes may activate the primary immunodefi-
ciency pathway and increase the risk of RA development.

Evaluation of the core network for RA identification. ROC 
curves were constructed to calculate the AUCs of CD3D 
(0.8357), CXCR4 (0.7855), IL2RG (0.8368), IL7R (0.9161), LCK 
(0.8683) and STAT1 (0.9138; all P<0.0001). Taking the maximum 
value of the Youden's index, the Log2 expression value of CD3D 
(8.65), CXCR4 (10.86), IL2RG (9.27), IL7R (8.11), LCK (6.58) 
and STAT1 (7.36) were determined (Fig. 3A‑F and Table II). 
For RA identification, at the ROC‑derived optimum cut‑offs, 
the highest sensitivity exhibited by STAT1 was 90.91%. The 

Figure 1. Identification of DEGs between patients with RA and OA. (A) In total, 140 upregulated and 133 downregulated genes were identified in patients with 
RA from GSE55235 datasets. (B) In total, 103 upregulated and 102 downregulated genes were identified in patients with RA from GSE55457 datasets. (C) In 
total, 95 upregulated and 84 downregulated genes were identified in patients with RA from GSE55584 datasets. (D) In total, 50 upregulated DEGs in patients 
with RA were identified as being overlapped between the three datasets. (E) In total, 31 downregulated DEGs in patients with RA were identified as being 
overlapped between the three datasets. One DEG without a symbol was excluded from the upregulated DEGs, therefore 80 DEGs in total were included in the 
final analysis. RA, rheumatoid arthritis; OA, osteoarthritis; DEG, differentially expressed gene.
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specificities exhibited by CXCR4, IL2RG and IL7R were equal 
and reached a maximum value of 92.31%.

Subsequent binary logistic regression analysis demon-
strated that IL7R [odds ratio (OR) RA vs. OA=4.551; OR 95% 

confidence interval (CI): 1.517‑13.657; P=0.007] and STAT1 
(ORRA vs. OA=2.923; OR 95% CI: 1.091‑7.829; P=0.033) were 
inputted into the regression, which suggested that IL7R and 
STAT1 may be detected together (Fig. 3G and Table III). 

Table I. Top five biological functions and top ten KEGG pathways of the overlapped differentially expressed genes.

A, Biological process

ID	 GO term description	 Count	 FDR

GO:0007166	 Cell surface receptor signaling pathway	 38	 1.10x10‑13

GO:0051239	 Regulation of multicellular organismal process	 40	 1.10x10‑13

GO:0030155	 Regulation of cell adhesion	 23	 1.23x10‑13

GO:2000026	 Regulation of multicellular organismal development	 32	 1.41x10‑12

GO:0070887	 Cellular response to chemical stimulus	 37	 6.78x10‑12

B, Molecular function

ID	 GO term description	 Count	 FDR

GO:0005515	 Protein binding	 51	 3.83x10‑11

GO:0005102	 Receptor binding	 25	 1.05x10‑09

GO:0005003	 Ephrin receptor activity	 6	 4.91x10‑08

GO:0008201	 Heparin binding	 10	 5.03x10‑07

GO:0042802	 Identical protein binding	 20	 5.17x10‑07

C, Cellular component

ID	 GO term description	 Count	 FDR

GO:0005615	 Extracellular space	 28	 4.35x10‑11

GO:0009986	 Cell surface	 19	 2.35x10‑08

GO:0005576	 Extracellular region	 42	 8.80x10‑07

GO:0009897	 External side of plasma membrane	 11	 8.80x10‑07

GO:0098552	 Side of membrane	 13	 2.42x10‑06

D, KEGG pathway

ID	 GO term description	 Count	 FDR

4,060	 Cytokine‑cytokine receptor interaction	 16	 3.66x10‑12

4,360	 Axon guidance	 9	 3.42x10‑07

4,062	 Chemokine signaling pathway	 10	 3.69x10‑07

5,340	 Primary immunodeficiency	 6	 4.88x10‑07

4,151	 PI3K/AKT signaling pathway	 10	 8.41x10‑05

4,630	 JAK‑STAT signaling pathway	 7	 1.87x10‑04

5,162	 Measles	 6	 7.14x10‑04

4,640	 Hematopoietic cell lineage	 5	 1.05x10‑03

4,064	 NF‑κB signaling pathway	 5	 1.11x10‑03

4,660	 T cell receptor signaling pathway	 5	 1.52x10‑03

5,142	 American trypanosomiasis	 5	 1.52x10‑03

ID, identification; FDR, False Discovery Rate; GO, Gene Ontology; KEGG, Kyoto Encyclopedia Genes and Genomes; NF‑κB, nuclear factor‑κB; 
JAK, Janus kinase; STAT, signal transducer and activator of transcription; AKT, protein kinase B; PI3K, phosphatidylinositol‑4,5‑bisphosphate 
3‑kinase.
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Finally, ROC analyses suggested that the detection of 
IL7R + STAT1 together exhibited a higher diagnostic 
performance compared with the detection of either IL7R or 
STAT1 alone (AUC=0.9464; 95% CI: 0.8962‑0.9966), with 
a sensitivity of 93.94% and a specificity of 80.77% (data not 
shown).

Validation using an additional, dependent dataset. To investi-
gate the reliability of the results of the ROC analyses obtained 
from all the three datasets and to identify if there was any 
possible overlapping between them, the same ROC analysis, 
including data from the GSE36700 dataset was performed, and 
the results are presented in Fig. 4. Notably, it was demonstrated 
that the six genes in the core network exhibited good perfor-
mance in distinguishing RA from OA. In addition, the AUCs 
of genes identified in the GSE36700 dataset were increased 
compared with the results obtained from the aforementioned 
three datasets. In conclusion, the results suggested that the 
results obtained from the GSE36700 dataset were closely asso-
ciated with those obtained from the GSE55235, GSE55584 and 

GSE55457 datasets, which further confirmed the reliability of 
the aforementioned results.

Discussion

RA and OA are the most common forms of degenerative joint 
diseases. They are the leading cause of chronic disability and 
may exhibit common clinical etiology (23,24). However, there 
remains a paucity of studies investigating the sensitivity and 
specificity of detection indicators for identification of the two 
diseases, particularly for patients with advanced‑stage RA or 
OA. Recently, epigenetic dysregulation of cartilage genes has 
been demonstrated to have an important role in RA and OA 
development (24). Despite advances in the field, biomarkers 
associated with the pathogenesis and progression of RA and 
OA are not well characterized. Therefore, investigation of the 
gene signatures associated with disease development in RA 
and OA may elucidate the molecular mechanisms underlying 
pathogenesis and identify potential therapeutic strategies for 
the development of a biomarker of differential diagnosis.

Figure 2. PPI network analysis, Core network and Gene‑pathway network. (A) PPI network of differentially expressed genes (light red, upregulated; green, 
downregulated). (B) Core of the specific network affecting RA development. (C) Gene‑pathway network associated with the development of RA. Larger circles 
represent genes in the core network. In Cytoscape 3.5.1 software, there are two visual styles, groups and significance. When ‘significance’ and ‘show only 
pathways with P‑values <0.05’ were selected, the colors and the names of the enriched pathways in the figures are consistent with the P‑values, therefore the 
colors of the pathway circles and their accompanying names represent P‑values. RA, rheumatoid arthritis; PPI, protein‑protein interaction.
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In previous years, bioinformatics has had an increasingly 
important role in examining the pathogenesis of multifacto-
rial disorders (25). In the present study, a comprehensive and 

systematic bioinformatics analysis of three gene expression 
profile datasets identified 80 significant DEGs, including 
49 upregulated and 31 downregulated genes that may be 

Figure 3. Receiver operating characteristic curves of the six genes in the core network to distinguish rheumatoid arthritis from osteoarthritis using data from the 
GSE55235, GSE55457 and GSE55584 datasets. Receiver operating characteristic curves of (A) CD3D, (B) CXCR4, (C) IL2RG, (D) IL7R, (E) LCK, (F) STAT1 
and (G) IL7R+STAT1 are presented. CD3D, T‑cell surface glycoprotein CD3 δ chain; CXCR4, C‑X‑C motif chemokine receptor 4; IL2RG, interleukin 2 
receptor γ; IL7R, interleukin 7 receptor; LCK, LCK proto‑oncogene, Src family tyrosine kinase; STAT1, signal transducer and activator of transcription 1.
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associated with the development of RA and OA. These 
results suggested that alterations in gene expression profiles 
in synovial tissue may affect the development of RA and OA. 
Therefore, detailed analysis of the biological functions of the 
DEGs may be utilized to further understand the pathogenesis 
of the two diseases and may additionally reveal biomarkers for 
more accurate identification of RA and OA.

A previous study demonstrated that RA development may 
depend on a common alteration in the expression pattern of 
specific key genes (26), which was consistent with the results 
of the present study. Numerous previous studies have identi-
fied specific genes associated with RA development. For 
example, Ma et al (27) identified numerous genes (including 
adiponectin, C1Q and collagen domain containing, 
3'‑phosphoadenosine 5'‑phosphosulfate synthase 1, DNA 
methyltransferase 1 and TIMP metallopeptidase inhibitor 
1) involved in immune responses and inf lammatory 
responses. Microarray analysis has additionally identified 
disease spectrum features in rheumatology and identified 
additional genes that may be associated with RA (28,29). 
Biswas et al (30) identified a number of different biomarkers, 
genes and pathways, the majority of which have not been 
revealed in other studies. Differential diagnoses of RA and 
OA remain clinically challenging due to substantial etio-
logical similarities (16). Microarray experiments performed 
by Wang et al (31) identified an overview of differences in 
OA gene expression compared with healthy patients and 
identified 85 DEGs. In conclusion, these studies suggested 
that RA and OA have complex pathogenic mechanisms, and 

future studies should perform comprehensive and systematic 
analyses to further elucidate these mechanisms.

Biological function and KEGG pathway enrichment 
analyses identified that 80 overlapped DEGs were signifi-
cantly enriched in immune, inflammation, apoptosis and 
antioxidant stress‑associated functions and pathways, 
including ‘cytokine‑cytokine receptor interaction’, ‘axon 
guidance’, ‘chemokine signaling pathway’ and ‘primary 
immunodeficiency’. A constructed PPI network addition-
ally demonstrated that RA progression was associated with 
immunodeficiency. RA has been well established to represent 
a progressive, chronic, inflammatory and destructive joint 
disease (2). These results were based on three high throughput 
microarray datasets with multi‑center design and containing 
large sample numbers of synovial tissue, which may provide 
further evidence for future research. In the present study, the 
PPI network studies demonstrated that CXCR4, LCK, IL2RG 
and CD3D may represent potential biomarkers associated 
with immunodeficiency in RA. To confirm this inference, 
a more complete and specific biological network based on 
GeneMANIA was determined, from which a core network of 
293 candidate genes that may affect RA and OA development 
was obtained. Furthermore, the fact that the core network 
was closely aligned with the constructed PPI network further 
suggested that the six genes in the core network are involved 
in the occurrence and development of RA and OA.

To further investigate how these genes exhibit their 
biological function and affect the occurrence of RA, a 
gene‑pathway interaction network was constructed. The 

Table II. Optimal cut‑off points and associated diagnostic values of six genes in the core network as determined by receiver 
operator characteristic analysis.

Genes	 Cut‑off value, Log2	 Sensitivity, %	 Specificity, %	 AUC	 AUC 95% CI

CD3D	 8.65	 66.67	 84.62	 0.8357	 0.7329‑0.9384
CXCR4	 10.86	 57.58	 92.31	 0.7855	 0.6696‑0.9015
IL2RG	 9.27	 63.64	 92.31	 0.8368	 0.7381‑0.9356
IL7R	 8.11	 81.82	 92.31	 0.9161	 0.8466‑0.9856
LCK	 6.58	 81.82	 84.62	 0.8683	 0.7718‑0.9648
STAT1	 7.36	 90.91	 69.23	 0.9138	 0.8404‑0.9871 

Greater AUC values indicated a greater diagnostic value. The six AUCs all demonstrated statistical significances, P<0.0001. CD3D, T‑cell 
surface glycoprotein CD3 δ chain; CXCR4, C‑X‑C motif chemokine receptor 4; IL2RG, interleukin 2 receptor γ; IL7R, interleukin 7 receptor; 
LCK, LCK proto‑oncogene, Src family tyrosine kinase; STAT1, signal transducer and activator of transcription 1; AUC, area under the curve; 
CI, confidence interval.

Table III. Binary logistic regression results of the core network for rheumatoid arthritis diagnosis.

Genes	 β	 S.E.	 Wald	 OR	 OR 95% CI	 P‑value

IL7R	 1.515	 0.561	 7.307	 4.551	 1.517‑13.657	 0.007
STAT1	 1.073	 0.503	 4.551	 2.923	 1.091‑7.829	 0.033 

IL7R, interleukin 7 receptor; STAT1, signal transducer and activator of transcription 1; β, coefficient of logistic regression; S.E., standard error 
of β value; Wald, Wald value of Wald tests; OR, Odds ratio; OR 95% CI, 95% confidence interval of OR value.
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results demonstrated that in the gene‑pathway interaction 
network, five genes in the core network (CD3D, IL2RG, IL7R, 
LCK and STAT1) were included and notably, these genes were 
demonstrated to interact with the primary immunodeficiency 
pathway either directly (CD3D, IL2RG, IL7R and LCK) or 
indirectly (STAT1). Therefore, the results suggested that 
altered expression levels of CD3D, IL2RG, IL7R, LCK and 
STAT1 may activate the primary immunodeficiency pathway 
and subsequently lead to primary immune system dysfunc-
tion and the development of RA.

Primary immunodeficiencies are a heterogeneous group 
of disorders that cause increased susceptibility to infection, 
autoimmune disease and malignancy (32). From the primary 
immunodeficiency pathway, IL7R, LCK and Janus kinase 
(JAK)3/STAT1 primarily affect T‑cell differentiation and 
antibody production (33), which may represent the basis of 
RA development. Investigation of the diagnostic capacity to 

distinguish RA from OA suggested that the genes in the core 
network may be detected alone to predict and diagnose RA 
occurrence with high sensitivity and specificity; however, the 
combined detection of important indicators may improve the 
effectiveness of this diagnostic strategy. Therefore, binary 
logistic regression analysis was used to screen for IL7R and 
STAT1 simultaneously to improve RA diagnosis.

A previous study identified that STAT1 is important in RA 
occurrence and is upregulated in patients with RA (34), which 
corroborates the results of the present study. STAT1 has been 
widely regarded to represent an important transcription factor 
involved in joint inflammation and destruction (33,35). STAT1 
may be activated by numerous cytokines that are expressed 
in RA synovium, including interferon (IFN)γ, type I IFNs, 
IL6, IL10 and IL27, which induce inflammation via direct 
or indirect activation of mitogen‑activated protein kinase, 
JAK‑STAT and nuclear factor‑κB signaling pathways (36). 

Figure 4. Receiver operating characteristic curves of the six genes in the core network to investigate the differentiation between rheumatoid arthritis and 
osteoarthritis using data from the GSE36700 dataset. Receiver operating characteristic curves of (A) CD3D, (B) CXCR4, (C) IL2RG, (D) IL7R, (E) LCK and 
(F) STAT1 are presented. CD3D, T‑cell surface glycoprotein CD3 δ chain; CXCR4, C‑X‑C motif chemokine receptor 4; IL2RG, interleukin 2 receptor γ; IL7R, 
interleukin 7 receptor; LCK, LCK proto‑oncogene, Src family tyrosine kinase; STAT1, signal transducer and activator of transcription 1.
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The functional defects in important proteins (including IL7R 
and IL7) associated with the IL7 signaling pathway may be 
involved in the pathogenesis of severe combined immunode-
ficiency (SCID) (36). IL7R was identified as a novel molecule 
with a potential role in RA in the present study. IL7R has been 
identified to have a critical role in V(D)J recombination during 
lymphocyte development, and thus mutations in this gene may 
increase the risk of SCID (37).

The identification of these two key biomarkers and 
a key pathway associated with immunodeficiency in the 
development of RA and reveals novel therapeutic targets for 
anti‑immunotherapy for patients with RA.

In conclusion, the present study demonstrated that STAT1 
and the primary immunodeficiency pathway may be precisely 
utilized to differentiate RA from OA. In addition, the present 
study additionally identified a previously unreported novel 
biomarker (IL7R), which may serve as potential candidate 
biomarker to differentiate RA from OA at the time of diag-
nosis. Therefore, the present study demonstrated potential 
implications for future clinical management of patients with 
RA and OA.
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