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Abstract. Uveal melanoma (UM), the predominant histo-
logical subtype of intraocular malignant tumors in adults, 
often results in high rates of mortality; effective prognostic 
signatures used to predict the survival of patients with UM 
are limited. Small nucleolar RNAs (snoRNAs) are emerging 
as important regulators in the processes of carcinogenesis 
and tumor progression, but knowledge of their application 
as prognostic markers in UM is limited. In the present 
study, the expression profiles of snoRNAs in UM were 
determined; a total of 60 snoRNAs were notably associated 
with the overall survival of patients with UM via univariate 
Cox survival analysis. Subsequently, a prognostic signature 
based on four snoRNAs was proposed, which retained their 
prognostic significance determined by a multivariate Cox 
survival analysis. The formula is as follows: ACA17 * (‑1.602) 
+ ACA45 * 0.803 + HBII‑276 * 0.603 + SNORD12 * 1.348. 
Furthermore, the results of in silico analysis indicated that 
perturbation of the phototransduction, GABAergic synapse 
and amphetamine addiction pathways may be the potential 
molecular mechanisms underlying the poor prognosis of 
patients with UM. Collectively, the present study proposed 
a potential prognostic signature for patients with UM and 
the prospective mechanisms at the genome‑wide level were 
determined.

Introduction

Uveal melanoma (UM), a rare subset of melanoma accounting 
for only 5% of all melanomas, makes up 85‑95% of all ocular 
melanomas; however, UM ranks as the predominant intraocular 
malignancy in adult patients (1‑4). Tumors located on the choroid 

are the most common, affecting ≤90% of patients (5‑7). In addi-
tion, ~50% of patients will develop metastasis, >90% of which 
disseminates to the liver (8,9). Once the tumor has metastasized, 
the median overall survival (OS) is only 6‑12 months (10‑12). 
The average age at diagnosis is 60‑years‑old, and UM affects 
both sexes almost equally, with a slightly increased frequency 
in males (13,14). Recent advances in the detection of molecular 
pathology and a various immune‑based therapies have exhibited 
efficacy in treating UM. However, the molecular biomarkers 
that may be effective in predicting the development and 
prognosis of UM in patients are limited, which has led to the 
unsatisfactory clinical management and targeted therapy of 
this disease (15‑17); thus, UM is associated with high mortality. 
Therefore, there is an urgent need to identify ideal prognostic 
biomarkers and treatment options for patients with UM.

Recently, increasing evidence has indicated that non‑coding 
RNAs serve a vital regulatory role in tumorigenesis and 
tumor progression, including small nucleolar RNAs 
(snoRNAs) (18,19). snoRNAs, encoded by introns, exist stably 
in the cellular environment and can regulate the expression 
of specific genes (20‑23). Numerous studies have proposed 
that snoRNA expression profiles are dysregulated in various 
types of tumors (24,25). Furthermore, numerous dysregulated 
snoRNAs have also been identified to be associated with the 
development and prognosis of cancer, including melanoma, 
which suggests the potential of snoRNAs as prognostic 
predictors  (26‑28). Unfortunately, the association between 
snoRNAs and UM has rarely been reported.

In the present study, the expression landscape of snoRNAs 
was integrated using the snoRNA in cancers (SNORic) 
database and the clinical information of patients with UM 
in The Cancer Genome Atlas (TCGA) database. snoRNas 
associated with survival were systematically selected and 
a specific prognosis index (PI) was proposed, which could 
be an ideal prognostic signature to predict the prognosis of 
patients with UM. Further bioinformatics analysis revealed 
survival‑associated pathways in UM. These findings may aid 
the identification of the novel biological functions of snoRNAs 
in UM, and improve the clinical management of this disease.

Materials and methods

General characteristics. The data of 80 patients with UM were 
submitted for survival analysis. Among the 80 patients with 

A novel four‑snoRNA signature for predicting the 
survival of patients with uveal melanoma

QIONG YI  and  WEN‑JIN ZOU

Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 
Guangxi Zhuang Autonomous Region 530021, P.R. China

Received July 6, 2018;  Accepted November 14, 2018

DOI:  10.3892/mmr.2018.9766

Correspondence to: Dr Wen‑Jin Zou, Department of 
Ophthalmology, The First Affiliated Hospital of Guangxi Medical 
University, 6 Shuangyong Road, Nanning, Guangxi Zhuang 
Autonomous Region 530021, P.R. China
E‑mail: bigstone168@163.com

Key words: uveal melanoma, small nucleolar RNAs, precision 
medicine, prognostic signature, clinical outcome



YI  and  ZOU:  SURVIVAL ASSOCIATED SMALL NUCLEOLAR RNA IN UVEAL MELANOMA 1295

UM, the histological types included epithelioid cell (n=34) 
and spindle cell (n=46). A total of 35 patients were female 
and 45 patients were male. The average age was 61.65 years 
(ranging from 22‑86 years).

Data acquisition. SnoRNA expression profiles were 
downloaded from the SNORic (http://bioinfo.life.hust.edu.
cn/SNORic) database, which provides the quantified expres-
sion levels of snoRNAs in the form of reads per kilobase per 
million (RPKM). Then, the original values were calculated 
via log2 conversion. The corresponding clinical information 
of UM patients was also downloaded from the TCGA data 
portal (http://cancergenome.nih.gov/). To obtain more accurate 
results, low‑abundance snoRNAs with average log (RPKM+1) 
expression levels in all samples were omitted.

Survival analysis. A univariate Cox regression analysis 
was performed to select snoRNAs that were correlated 
with the overall survival (OS) of patients with UM. 
Subsequently, multivariate Cox proportional hazards 
regression was implemented to further identify whether the 
prognostic snoRNAs were independent biomarkers. Finally, 
the snoRNA‑based prognostic signature was proposed 
according to the linear multiplication of the expression profiles 
of each prognostic snoRNA, weighted by their estimated regres-
sion coefficients in the multivariate Cox analysis. All survival 
analyses were conducted using the Survival package version 
2.43‑1 in R software version 3.4.4 (https://CRAN.R‑project.
org/package=survival). Then, patients were separated into 
high‑ and low‑risk groups according to median risk score 
values. Kaplan‑Meier (K‑M) survival analysis followed by a 
log‑rank test was used to assess the value of the snoRNAs in 
predicting prognosis. The number of patients in the low‑ and 
high‑risk groups was recorded every 500 days.

Bioinformatics procedure. To further investigate the potential 
pathways affected in the high‑ and low‑risk groups, the Limma 
package version 3.38.2 in R software was used to identify the 
differentially expressed genes between high‑ and low‑risk 
groups (29). The mRNA expression profiles were downloaded 
from TCGA database; the raw count data of mRNAs 
were submitted for analysis. The thresholds for definite 

Figure 2. Small nucleolar RNA‑based risk scores of patients with UM. (A) Low‑ 
and high‑risk group snoRNA signatures in patients with UM. (B) Survival 
status and duration of survival of patients with UM. UM, uveal melanoma.

Figure 1. The top 20 most significant survival‑associated small nucleolar 
RNAs. HR, hazard ratio.

Figure 3. Patients in the low‑ and high‑risk groups exhibit distinct clinical 
outcomes. (A) Kaplan‑Meier analysis revealed that patients in the high‑risk 
group exhibited poorer overall survival than patients in the low‑risk group. 
(B) The number of patients in the low‑ and high‑risk groups at various 
time‑points. (C) The number of censored cases at various time‑points.
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differentially expressed genes were set to |log fold change|>2 
and false discovery rate <0.01. Subsequently, differentially 
expressed genes were submitted to the DAVID online database 
for gene ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG; https://www.genome.jp/kegg/) analysis. 
GO analysis includes three categories: ‘Biological process’ 
(BP), ‘cellular component’ (CC) and ‘molecular function’ 
(MF). Furthermore, a protein‑protein interaction (PPI) 
network was also generated to demonstrate the association 
between these genes. PPI analysis was performed using 
STRING version 10.5 (https://string‑db.org/). The results were 
visually presented using the ggplot2 package version 3.1.0 in 
R software (30). Providing that BRCA1‑associated protein‑1 
(BAP1) mutation is a critical indicator for monitoring the poor 
progression of UM, the prognostic value of BAP1 mutation 
was determined in the present study. Data for UM patients, 
including BAP1 mutation status, were downloaded from the 
cBioportal database (http://www.cbioportal.org/).

Results

Survival‑associated snoRNAs. After removing the 
low‑abundance snoRNAs, 380 snoRNAs were submitted 

for survival analysis. Among these, 64 snoRNAs were 
significantly associated with the OS of patients with UM 
(P<0.05). The top 20 most significant survival‑associated 
snoRNAs were presented in Fig. 1. Then, multivariate Cox 
analysis was performed and four snoRNAs were selected to 
construct a prognostic signature, including ACA45 (chr15: 
83424696_83424823), ACA17 (chr9: 139621198_139621331), 
HBII‑276 (chr8: 67834708_67834784) and SNORD12 
(chr20: 47897219_47897309). A survival‑risk formula was 
constructed based on the four snoRNAs as follows: ACA17 
* (‑1.602) + ACA45 * 0.803 + HBII‑276 * 0.603 + SNORD12 
* 1.348. Then, patients were divided into high‑ and low‑risk 
groups according to median value of prognostic signature 
(Fig. 2). K‑M survival analysis revealed that patients in the 
high‑risk group exhibited shorter survival than those patients 
in the low‑risk group (Fig. 3A). The number of patients in 
the high‑ and low‑risk groups, and the number of censored 
patients at different time points are shown in Fig. 3B and C. 
ACA17 was significantly upregulated in the low‑risk group, 
while ACA45, HBII‑276 and SNORD12 were significantly 
upregulated in the high‑risk group (Fig. 4). K‑M survival 
plots were also used to present the prognostic value of each 
snoRNA (Fig.  5). ACA17 upregulation indicated better 

Figure 4. Expression of the four small nucleolar RNAs in the high‑ and low‑risk groups. (A) Heatmap of the expression of the four key snoRNAs in uveal 
melanoma. The colors from blue to red indicate the trend from low expression to high expression. (B) ACA17 was downregulated in the high‑risk group, and 
(C) ACA45, (D) HBII‑276 and (E) SNORD12 were upregulated in high‑risk group.
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clinical outcome, while ACA45, HBII‑276 and SNORD12 
upregulation was associated with the poor survival of patients 
with UM.

Functional enrichment analysis. A total of 281 differen-
tially expressed mRNAs between the high‑ and low‑risk 
groups were determined (Fig.  6). PPI network analysis 
suggested that these genes notably interacted with each 
other (Fig.  7). Gene functional enrichment analysis 
revealed that these genes were significantly enriched in 
several biological processes and pathways. For BP, the most 
notably enriched functional terms were ‘visual perception’, 
‘regulation of rhodopsin‑mediated signaling pathway’ 
and ‘rhodopsin‑mediated signaling pathway’ (Fig.  8A). 
Regarding CC, genes were markedly enriched in ‘photo-
receptor inner segment’, ‘photoreceptor disc membrane’ 
and ‘photoreceptor outer segment’ (Fig. 8B). In regards to 
MF, genes were notably enriched in ‘structural constituent 
of eye lens’, ‘structural molecule activity’ and ‘hormone 
activity’ (Fig. 8C). Importantly, KEGG enrichment analysis 
suggested that these genes were significantly associated with 
‘phototransduction’, ‘γ‑aminobutyric acid (GABA) ergic 
synapse’, ‘amphetamine (APA) addiction’, ‘nicotine addic-
tion’ and ‘neuroactive ligand‑receptor interaction’ (Fig. 9). 
Furthermore, the mutation status of BAP1 may be useful in 
predicting the clinical outcome of patients with UM; muta-
tions in BAP1 demonstrated a significant association with 
poorer overall survival compared with UM patients without 
BAP1 mutations (Fig. 10A). Of note, the prognostic signa-
ture based on snoRNAs was markedly associated high‑risk 

patients with BAP1 mutations than those without in the 
low‑risk group (Fig. 10B).

Discussion

In the present study, survival‑associated snoRNAs in patients 
with UM were selected. Then, the snoRNAs that exhibited 
a significant prognostic value were determined and identi-
fied by multivariate analysis. Most importantly, a prognostic 
signature comprising four novel snoRNAs was proposed: 
ACA17, ACA45, HBII276 and SNORD12. Notably, the 

Figure 5. Prognostic value of the four small nucleolar RNAs. (A) Downregulated ACA17 indicated poor survival of patients with UM. Upregulated expression 
of (B) ACA45 (C) HBII‑276 and (D) SNORD12 indicated poor survival of patients with UM. HR, hazard ratio; UM, uveal melanoma.

Figure 6. Volcano plot of the differentially expressed genes between the high‑ 
and low‑risk groups. Blue represents downregulated genes and red represents 
upregulated genes in the high‑risk group.
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prognostic signature of the present study, based on these four 
novel snoRNAs, may be an ideal risk model for patients with 
UM. To the best of our knowledge, the present study is the 
first to propose a prognostic signature based on snoRNAs. 
Furthermore, gene functional enrichment analysis revealed 
that the optic nerve‑associated pathways are dysregulated most 
significantly between high‑risk and low‑risk groups. These 
findings may provide novel insight into the clinical manage-
ment and molecular mechanisms underlying UM.

Previously, few studies have investigated the PI of UM from 
TCGA database. Xu et al (31) reported that high plasmacytoma 
variant translocation 1 (PVT1) expression was an independent 
predictor in patients with UM; it was inferred that the expression 
of PVT1 may act as a moderate and specific prognostic factor in 
terms of OS in UM. Wan et al (32) identified 21 co‑expression 

modules that were analyzed based on 10,975 genes from 80 UM 
samples, by using weighted correlation network analysis. It was 
revealed that the hub genes solute carrier family 17 member 
7, neurotrophic receptor tyrosine kinase 2, ankyrin repeat and 
BTB domain containing 1 and ADP‑ribosylhydrolase like 1 
may also serve a role as potential diagnostic and prognostic 
biomarkers of UM. Robertson et al  (33) also analyzed the 
genomic data of 80  patients with UM; the patients were 
divided into several subgroups with different genomic 
aberrations, transcriptional features and clinical outcomes. 
Field et al (34) not only identified preferentially expressed 
antigen in melanoma (PRAME) expression as a biomarker for 
increased metastatic risk in class 1 UM; however, PRAME 
expression was associated with poor prognosis among class 
2 UM cases (35). These studies provided novel and constructive 

Figure 7. Protein‑protein network demonstrating the interactions between differentially expressed genes.
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methods of selecting prognostic biomarkers for UM; however, 
the role of snoRNAs in the prognosis of UM remains unclear. 
In the present study, a novel prognostic signature based on 
snoRNAs was developed. More importantly, the proposed 
risk score may attain satisfactory prognostic values for UM. 
With the advantage of high‑throughput RNA‑sequencing, 
numerous snoRNAs were identified; however, investigations 
into the clinical significance of snoRNAs in UM are limited. 
The present study may provide novel insight into the clinical 
management of UM.

Gene functional enrichment analysis revealed that several 
biological processes and pathways were associated with differen-
tially expressed mRNAs between the high‑ and low‑risk groups; 
however, the biological mechanisms underlying this asso-
ciation are unclear. The genes detected from KEGG enrichment 
analysis were demonstrated to be associated with ‘phototrans-
duction’, ‘GABAergic synapse’ and ‘APA addiction’ in particular. 

Brown et al (36) revealed that brain‑modulated choroidal thickness 
has an unusual and well‑established light dependence. In addition, 
Wicks et al (37) reported that ultraviolet phototransduction can 
evoke retina‑dependent calcium flux in human epidermal mela-
nocytes, and increased cellular melanin content. Furthermore, 
ocular melanocytosis is an important predisposing factor for 
UM (38). Therefore, it was speculated that phototransduction 
may be involved in the formation of UM in the present study. 
GABAergic synapses are important inhibitory neurotransmitters 
in the mammalian central nervous system (CNS), as they serve 
to hyperpolarize the postsynaptic neuron (39). Interestingly, 
‘APA addiction’, ‘nicotine addiction’ and ‘dopaminergic (DA) 
synapses’ were also associated with UM; however, DA is an 
excitatory neurotransmitter in the CNS (40). APA promotes 
DA release in the CNS, whilst also inducing other biogenic 
amine‑releasing and inhibitory neurons, and vesicle single‑amine 
transporters (41). Monoamine oxidase can excite the CNS (42). 

Figure 8. GO functional enrichment analysis of 283 common differentially expressed genes. Significantly enriched terms in the GO categories. (A) ‘Biological 
process’, (B) ‘cellular component’ and (C) ‘molecular function’. GO, gene ontology.
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Nicotine initially inhibits DA release, which is then enhanced by 
regulating GABAergic neurons (43). This mechanism of action is 
similar to that of APAs in the CNS. Thus, it may be inferred that 
CNS activity‑associated pathways may be notably dysregulated 
between high‑risk and low‑risk groups.

However, several limitations should be considered. An 
additional independent cohort was not used to validate 
the performance of prognostic signature. Furthermore, the 
in silico analysis for the molecular mechanisms require further 
investigation.

Collectively, the results of the present study demonstrated 
that snoRNAs may be notable prognostic markers for the 
survival of patients with UM. To the best of our knowledge, 
the present study is the first to demonstrate the prognostic 
value of snoRNAs, and provides novel insight into the complex 
biological functions underlying UM.
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Figure 10. Association between BAP1 mutations and the small nucleolar RNA‑based prognostic signature. (A) Patients with BAP1 mutation exhibited poor 
survival compared with patients without BAP1 mutation. (B) In the high‑risk group, the number of patients with BAP1 mutation was greater than in low‑risk 
group. BAP1, BRCA1‑associated protein‑1; HR, hazard ratio.

Figure 9. KEGG pathway analysis. The top 10 most significant KEGG pathways for differentially expressed genes. Size refers to the number of genes enriched 
in each pathway. Color indicates the P‑value. KEGG, Kyoto Encyclopedia of Genes and Genomes.
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