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Abstract. Carbon monoxide (CO) has been shown to induce 
several cardiovascular abnormalities, as well as necrosis, apop-
tosis and oxidative stress in the brain. Magnesium sulfate (MS) 
has been shown to have beneficial activities against hypoxia in 
the brain. In the present study, the possible protective effects 
of MS against CO‑induced cerebral ischemia were investi-
gated. For this purpose, 25 male Wistar rats were exposed to 
3,000 ppm CO for 1 h. The animals were divided into 5 groups 
(n=5 in each group) as follows: The negative control group (not 
exposed to CO), the positive control group (CO exposed and 
treated with normal saline), and 3 groups of CO‑exposed rats 

treated with MS (75, 150 and 300 mg/kg/day) administered 
intraperitoneally for 5 consecutive days. On the 5th day, the 
animals were sacrificed and the brains were harvested for 
the evaluation of necrosis, apoptosis and oxidative stress. 
Histopathological evaluation revealed that MS reduced the 
number and intensity of necrotic insults. The Bax/Bcl2 
ratio and malondialdehyde (MDA) levels were significantly 
decreased in a dose‑dependent manner in the MS‑treated rats 
compared to the positive control group, while a significant 
dose‑dependent increase in Akt expression, a pro‑survival 
protein, was observed. In addition, MS administration reduced 
pro‑apoptotic indice levels, ameliorated histological insults, 
favorably modulated oxidative status and increased Akt 
expression levels, indicating a possible neuroprotective effect 
in the case of CO poisoning. On the whole, the findings of this 
study indicate that MS may prove to be useful in protecting 
against CO‑induced cerebral injury.

Introduction

Carbon monoxide (CO) is a toxic gas produced by the incom-
plete combustion of fossil fuels (1,2). It is a cause of significant 
morbidity and mortality worldwide with no specific antidote. 
Although both normobaric and hyperbaric oxygen are used as 
a common treatment, neurological sequelae are common in 
survivors of CO poisoning (3,4). In the USA, CO poisoning 
accounts for 50,000 referrals to emergency departments and 
causes 334 deaths annually (5). In Iran, the improper use of 
gasoline and natural gas appliances cause a significant number 
of CO poisoning cases (6). Reports from different parts of Iran 
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have shown that the mortality and morbidity rates were higher 
compared to other parts of the world (6). The majority of cases 
of CO poisoning occur in the colder months of the year due to 
the use of fossil fuels in heating appliances (7,8). Therefore, 
CO poisoning is regarded as one of the most challenging cases 
of poisoning in Iranian health system. The pathophysiology of 
CO poisoning centers on the production of carboxyhemoglobin, 
which reduces the oxyhemoglobin concentration and conse-
quently diminishes tissue oxygen delivery (9,10). Since CO 
affinity to hemoglobin is approximately 230‑270‑fold higher 
than that of O2 to hemoglobin, even at low CO concentrations, 
the carboxyhemoglobin concentration becomes sufficiently 
high to induce toxicity (9). The clinical manifestations of CO 
poisoning are non‑specific (i.e., headaches, fatigue, confusion, 
nausea, dizziness, visual problems, chest pain, shortness of 
breath, loss of consciousness and seizures) and they are princi-
pally associated with the deleterious effects of normobaric on 
the brain and heart (11,12).

Magnesium sulfate (MS) is used for the treatment of 
several conditions, including eclampsia, pre‑eclampsia and 
the prevention of torsade de pointes (13). It has attracted the 
interest of scientists due to its protective properties against 
cerebral ischemia/reperfusion (I/R)  (14‑16), as it has been 
shown to reduce brain cell necrosis, apoptosis and oxidative 
stress levels  (17‑21). Moreover, MS is inexpensive, widely 
available, is simple to administer and lacks severe adverse drug 
reactions for common uses in the treatment of pre‑eclampsia, 
eclampsia and torsade de pointes (22,23).

B‑cell lymphoma‑2 (Bcl2) controls mitochondrial 
membrane permeability in order to impede apoptotic signal 
transduction, whereas Bcl2‑associated‑X protein (Bax), as 
a pro‑apoptotic factor, disrupts mitochondrial membrane 
potential and induces caspase‑3 activation, leading to irre-
versible apoptosis  (24). As shown by recent literature, the 
Bax/Bcl2 ratio alone stands as an index of cell apoptosis or 
survival (25‑28). In addition, in our previous studies using a 
model of CO poisoning, a clear connection between apoptosis 
and the Bax/Bcl2 ratio was proven by TUNEL assay and 
caspase activity measurements (29). Moreover, Akt is regarded 
as a pro‑survival factor  (30,31), whose activation induces 
phosphorylation at different sites. Activated Akt influences a 
number of factors involved in apoptosis, either by transcription 
regulation or direct phosphorylation, yielding favorable effects 
against ischemia‑induced apoptosis. Thus, chemicals capable 
of inducing Akt expression/activity may be used in the treat-
ment of I/R injury (2,32‑35).

Considering the importance of CO poisoning and with 
regard to the promising properties of MS, in the present study, 
we examined the effects of MS on CO‑induced cerebral injury 
in rats.

Materials and methods

Animals. In the present study, 25 male Wistar rats (8‑10 weeks 
old; weight, 200‑250  g), were obtained from the Animal 
House of Zabol University of Medical Sciences (Zabol, Iran). 
The animals were kept under standard conditions (at 25˚C 
with a 12 h/12 h light/dark cycle) and were allowed access to 
food and water ad libitum. The present study was approved 
by the Ethics Committee of Zabol University of Medical 

Sciences (approval no. ZBMU.1.REC.1394.112). All animals 
were treated in accordance with the guidelines for the Care 
And Use Of Laboratory Animals prepared by the Animal 
Research Ethics Committee of Zabol University of Medical 
Sciences and in conformity with EU Directive 2010/63/EU for 
animal experiments. The animals were randomly divided into 
5 groups namely, the intact group (rats that were not exposed 
to CO), the control (rats that were exposed to CO and received 
normal saline) and 3 MS‑treated groups (rats that were exposed 
to CO and received MS 75, 150 and 300 mg/kg). CO poisoning 
was induced by exposing the animals to CO at 3,000 ppm for 
60 min, as previously described (36). Immediately following 
the exposure period, the first dose of MS (or normal saline 
for the control group) was administered intraperitoneally (i.p.) 
and the next 4 doses were administered on the next 4 consecu-
tive days on a daily basis (a total of 5 doses of MS).

Chemicals. Protein kinase B (Akt; cat. no.  4685S; 
dilution, 1/1,000), Bcl2‑associated‑X (cat. no. 2772S; dilu-
tion, 1/1,000), Bcl2 (cat. no. 2876S; dilution, 1/1,000) and 
anti‑β‑actin (cat. no. 4967S; dilution, 1/1,000) antibodies and 
secondary rabbit antibody (anti‑rabbit IgG, HRP‑linked; cat. 
no. 7074S) were all purchased from Cell Signaling Technology 
Inc. (Danvers, MA, USA). The Coomassie (Bradford) Protein 
Assay kit was purchased from Thermo Fisher Scientific, Inc. 
(Waltham, MA, USA). A CO capsule (99.999% purity) was 
obtained from Darman Gas (Tehran, Iran). Thiobarbituric acid 
was obtained from Sigma‑Aldrich; Merck KGaA (Darmstadt, 
Germany) and MS was purchased from Pasteur Institute 
(Tehran, Iran).

Study design and treatments. For CO poisoning induction, 
the rats were placed in a 12‑liter airtight Plexiglas container 
which was connected via polyethylene glycol (PEG) tubes 
to oxygen and CO capsules. The CO concentration was 
continuously monitored by a CO analyzer (TPI 707 Carbon 
Monoxide Analyzer; TPI Korea Co., Anyang, Korea) and had 
a constant level of 3,000±100 ppm for 1 h. Subsequently, the 
animals were exposed to ambient air and MS was injected 
(i.p.) at 3 doses (75, 150 and 300 mg/kg). On the 5th day, at 
2 h after the final injection, the animals were anesthetized by 
an intraperitoneal administration of ketamine (90 mg/kg) and 
xylazine (10 mg/kg) and sacrificed. The brain samples were 
then collected and harvested for further evaluation. Moreover, 
for western blot analysis and malondialdehyde (MDA) assay, 
the harvested samples were preserved in cryotubes and stored 
at ‑80˚C, as previously described (37).

Carboxyhemoglobin level assessment. Within 30  min 
following exposure CO, blood samples were obtained from the 
tail of the animals. The serum carboxyhemoglobin concentra-
tion was measured using a spectrophotometer calibrated for 
rat blood (Jenway 6305; Bibby Scientific Ltd., Staffordshire, 
UK), to ensure the induction of CO poisoning (38).

Histopathological examinations. For histopathological 
evaluation, serial brain sections (5‑µm‑thick; corresponding 
to bregma ‑3.3 cm) according to a histological atlas (39) were 
obtained. The samples were placed in microtubes containing 
10% formalin for fixation and 24 h later, they were sent to the 
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Pathology Department of Amiralmomenin Hospital (Zabol, 
Iran). Following H&E staining, pathological insults were 
evaluated based on the severity of the injury, by a pathologist 
who was blinded to the grouping and treatments. The findings 
were categorized into 3 grades of mild (dispersed necrotic cells 
and/or lymphatic infiltration) (Fig. 1B), moderate (necrotic 
unifocal and/or bifocal area) (Fig. 1C), and severe (more than 
two necrotic areas) (Fig. 1D) insults.

Bax, Bcl2 and Akt protein expression assessment. For the 
determination of Akt, Bax, Bcl2 and β‑actin expression, 
western blot analysis was performed. For this purpose, first, 
approximately 200  mg of harvested whole brain samples 
which were kept at ‑80˚C, were weighed, homogenized using 
a mechanical homogenizer, sonicated and centrifuged using 
a refrigerated centrifuge at 10,000 x g at 4˚C for 10 min. The 
supernatants were then collected, the protein contents were 
measured using the Coomassie (Bradford) Protein Assay kit 
which was purchased from Thermo Fisher Scientific, Inc. 
and samples were placed in a hot bath (boiling water) for the 
denaturation of proteins.

In order to determine the total Akt, Bax, Bcl2 and β‑actin 
levels, 5‑10 µl of supernatant was loaded into 12% SDS page 
wells and proteins were separated using gel electrophoresis 
(Bio‑Rad power supply, 120 v for 1.5 h; Bio‑Rad, Hercules, 
CA, USA). At the end of the electrophoresis period, proteins 
were transferred (Bio‑Rad power supply, 350 mA, 25‑45 min; 
Bio‑Rad) to a PVDF membrane using transfer buffer (25 mM 
Tris, 1.2  mM glycine, and 20%  methanol; pH  8.0). The 
membrane was washed 3 times (each time for 5 min) with 
Tris‑buffered saline (TBS). After blocking in 5% non‑fat milk 
in TBST (0.5% Tween‑20, 137 mM NaCl, 20 mM Tris–HCl 
pH 7.5) overnight at 4˚C, the membranes were incubated with 
the primary antibodies for 1 h at room temperature on a rocker. 
The membrane was then washed 5 times (each time for 5 min) 
in washing buffer, in order to remove any unbound conjugate 
proteins. The samples were then treated with the secondary 
antibody for 1 h at room temperature, washed thoroughly with 

TBST and visualized by means of 500‑1,000 µl of enhanced 
chemiluminescence (Pierce, Rockford, IL, USA) to visualize 
the blots using Syngene ChemiDoc (Syngene, Frederick, 
MD, USA). Eventually, blot analysis was carried out using 
GeneTools software.

Thiobarbituric acid reactive substances (TBARS) assay. 
MDA is a product of lipid peroxidation that can be measured 
by spectrophotometric methods (40,41). In this study, the brain 
samples (200 mg) were homogenized in cold 1.15% potassium 
chloride to yield a 10% homogenate. Subsequently, 0.5 ml 
of the 10% homogenate was mixed with 3 ml of phosphoric 
acid 1% w/v, boiled for 45 min at 95˚C and centrifuged at 
12,000 x g for 10 min. After cooling to room temperature, 
4  ml n‑butanol was added and the reaction mixture was 
vortexed. The absorbance of the supernatant was measured at 
532 nm (40) using a spectrophotometer (Jenway 6305; Bibby 
Scientific Ltd.) and the level of MDA was expressed as nmol 
per gram of wet tissue.

Statistical analysis. Data were analyzed using SPSS version 16 
software (SPSS, Inc., Chicago, IL, USA). One‑way analysis 
of variance followed by Tukey's post hoc test, was used for 
data analysis. P<0.05 was considered to indicate a statistically 
significant difference.

Results

Carboxyhemoglobin concentration and the effect of MS 
on CO‑induced brain histological insults. The mean 
blood carboxyhemoglobin concentration was 70±8% in the 
CO‑exposed rats. Brain histopathological evaluations revealed 
that MS treatment decreased the number and intensity of 
brain insults in the CO‑poisoned rats. As shown in Fig. 1, 
brain samples were stained with H&E and brain insults were 
categorized as mild (dispersed necrotic cells and/or lympho-
cytic infiltration), moderate (necrotic cells with low foci) and 
severe (multi foci necrosis). As shown in Table I, in the control 

Figure 1. Representative images of (A) intact brain and histological insults observed in whole‑brain samples following exposure to CO at 3,000 ppm, including 
(B) mild insults (dispersed necrotic cells and/or lymphatic infiltration), (C) moderate insults (bifocal necrotic areas) and (D) severe insults (>2 necrotic foci) 
(magnification, x40). CO, carbon monoxide; MS, magnesium sulfate.
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group (normal saline‑treated), 2 out of the 5 animals exhibited 
mild insults, 1 out of 5 had moderate insults and 2 out of 5 
had severe insults, whereas in the group treated with MS at 
300 mg/kg, 1 out of 5 had mild and moderate insults and no 
animal showed severe insults. Furthermore, in the animals 
treated with MS at 75 and 150 mg/kg, the number and severity 
of insults were decreased. Taken together, these results demon-
strated that as compared to the control animals, all MS doses 
reduced CO‑induced damage to the brain tissues (Table I).

Effects of MS on Akt protein levels in CO‑poisoned rats. As 
depicted in Fig. 2, the expression levels of Akt, as a pro‑survival 
protein, significantly increased following treatment with MS 
as compared to the control group (normal saline‑treated rats). 

In addition, significant differences were observed between the 
MS 300 and MS 75 (P<0.01), and between the MS 150 and 
MS 75 (P<0.05) groups. Furthermore, the differences between 
MS treatment at 150 and 300 mg and the control groups were 
significant (for both cases P<0.001).

Effect of MS on Bax/Bcl2 protein ratio in brain cells following 
treatment with MS in CO‑poisoned rats. Compared to the 
control group, in the MS treatment groups, Bax protein expres-
sion levels were decreased, while Bcl2 (an anti‑apoptotic 
protein) expression levels were increased (Fig. 3). It was evident 

Table I. Histological findings in intact rats and in rats exposed 
to CO at 3,000 ppm for 1 h and treated with normal saline 
(control) and MS at 75, 150 and 300 mg/kg.

Treatment	 No injury	 Mild	 Moderate	 Severe

Intact	 5/5 	 0/5	 0/5	 0/5
Normal saline	 0/5	 2/5	 1/5	 2/5
MS 75 mg/kg	 1/5	 1/5	 2/5	 1/5
MS 150 mg/kg	 3/5	 0/5	 1/5	 1/5
MS 300 mg/kg	 3/5	 1/5	 1/5	 0/5

a‘n/m’ indicates that ‘n’ rats out of ‘m’ rats (which is 5 in each group) 
had the specific grade of histopathological insults. CO, carbon 
monoxide; MS, magnesium sulfate.

Figure 2. Effects of MS at 75, 150 and 300 mg/kg administered for 5 con-
secutive days, on Akt protein expression levels in CO‑poisoned rats. Bars 
represent the means ± SEM. #P<0.05 and ###P<0.001 indicate significant 
differences between the control and treatment groups. *P<0.05 and **P<0.01 
indicate significant differences among the MS‑treated groups. β‑actin was 
used as the endogenous control. The control group rats were CO‑poisoned 
animals treated with normal saline. NS, not significant. MS, magnesium 
sulfate; CO, carbon monoxide.

Figure 3. Effects of the 5‑day administration of MS (75, 150 and 
300 mg/kg/day) on Bax/Bcl2 proteins ratio in the brains of rats. Bars rep-
resent the means ± SEM values. All groups were compared to the normal 
saline‑treated control group (one‑way analysis of variance followed by 
Tukey's post‑hoc test was used for statistical analysis). ***P<0.001 indicates 
statistically significant differences among the MS‑treated groups. ##P<0.01 
and ###P<0.001 indicate significant differences between the control and 
MS‑treated groups. β‑actin was used as the endogenous control. The 
control group rats were CO‑poisoned animals treated with normal saline. 
NS, not significant; MS, magnesium sulfate; CO, carbon monoxide; Bcl2, 
B‑cell lymphoma‑2; Bax, Bcl2‑associated‑X protein.

Figure 4. Effect of 5‑day MS administration on MDA levels in CO‑poisoned 
rats. Results are expressed as the means ± SEM of each group. ***P<0.001 
indicates significant difference between the intact and control group. #P<0.05, 
##P<0.01 and ###P<0.001 indicate significant differences between the control 
and treatment groups. The control group rats were CO‑poisoned animals 
treated with normal saline. MS, magnesium sulfate; CO, carbon monoxide; 
MDA, malondialdehyde.
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that following treatment with MS at 150 and 300 mg/kg, the 
Bax/Bcl2 ratio was decreased in comparison to the control 
group (P<0.01 and P<0.001, respectively). Based on our data, 
MS was able to decrease the Bax/Bcl2 apoptotic index in brain 
cells following CO poisoning.

TBARS assay. The present study demonstrated that oxidative 
stress was increased following CO poisoning compared to 
the control (P<0.001). MS treatment (75, 150 and 300 mg/kg) 
dose‑dependently decreased the oxidative stress levels in 
rats in comparison to the control group (P<0.05, P<0.01 and 
P<0.001, respectively) (Fig. 4).

Discussion

The neuro‑protective properties of MS make it a potential 
candidate for the alleviation of the deleterious effects of cere-
bral I/R injury (17). Since CO induces damage by inducing 
hypoxia, tissues with a greater O2 consumption, including 
the heart and brain, are more vulnerable to the effects of 
CO poisoning (9,42). CO poisoning intensity depends on a 
number of factors, including CO levels during exposure and 
the exposure period (9). Furthermore, CO poisoning has acute 
and delayed consequences (1,39,43). In the current study, we 
demonstrated that MS decreased brain cell necrosis, apop-
tosis and oxidative stress, while it increased pro‑survival 
Akt protein levels in a dose‑dependent manner. Previously, 
we reported several neuroprotective and cardioprotective 
substances, which may be used to decrease CO poisoning 
consequences, in animal models  (2,33,36,37,42,44‑46). 
More specifically, in a recent study from our group, MS 
administration was found to exert positive effects against the 
cardiotoxicity of CO in rats (33). Magnesium dilates blood 

vessels and lowers the heart rate. However, the early adminis-
tration of magnesium in high‑risk patients has been shown to 
have no effect on mortality (47).

Moreover, CO poisoning induces cerebral hypoxia that 
may lead to infarction and necrosis (9). In previous studies, the 
potent effects of MS in decreasing the infarct size in animal 
models were observed (14,17). Marinov et al demonstrated 
that the intra‑arterial administration of a single dose of MS 90 
mg/kg reduced the cerebral infarct size in animals submitted 
to reversible middle cerebral artery occlusion (17). Consistent 
with this, the results of this study revealed that MS (at 75, 150 
and 300 mg/kg) decreased the number and intensity of cere-
bral insults in a dose‑dependent manner in an animal model 
of CO poisoning.

It is known that Akt protein plays a key role in cell survival by 
inhibiting apoptosis (48). Mechanistically, PI3kinase/Akt (also 
known as protein kinase B) pathway activation is considered 
neuroprotective in the case of cerebral I/R  (48‑50). In the 
present study, it was found that MS increased brain Akt protein 
expression levels and decreased apoptosis in the context of CO 
poisoning. This finding is consistent with the observations of 
Yu et al, indicating that the PI3kinase/Akt pathway activation 
is critically important for brain cell survival in case of cerebral 
ischemia through decreasing apoptosis (50).

In addition, the present study demonstrated that MS 
treatment decreased the Bax/Bcl2 ratio, an apoptotic index, 
in brain tissues post‑CO poisoning. Bax is a mitochondrial 
pro‑apoptotic protein, the expression of which increases 
during the activation of the intrinsic apoptotic pathway and 
leads to mitochondrial injury (51). At the same time, Bcl2 is an 
anti‑apoptotic protein which is produced in order to counteract 
pro‑apoptotic signals and protect from mitochondrial inju-
ries (52). The Bax/Bcl2 ratio is considered a measure of cell 

Figure 5. A schematic presentation of the present study along with the underlying mechanisms suggested for the neuroprotective effects of magnesium 
sulfate (61‑65). MgSO4, magnesium sulfate; NDMA, N‑ditrosodimethylamine; BBB, blood‑brain barrier; CO, carbon monoxide; Bcl2, B‑cell lymphoma‑2; 
Bax, Bcl2‑associated‑X protein.
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susceptibility to apoptosis (53) and in the current study, this 
ratio was found to be significantly decreased following MS 
administration in a dose‑dependent manner. Ravishankar et al 
demonstrated that cerebral ischemia increased apoptosis via 
increasing pro‑apoptotic Bax and decreasing anti‑apoptotic 
Bcl2 expression in an animal model of cerebral hypoxia (54). 
The results of this study are in agreement with the data 
reported by several previous studies on MS effects in animal 
models of cerebral I/R injury and clinical studies on global 
cerebral ischemia associated with cardiac arrest and cardiac 
surgery which showed MS neuro‑protective and cerebral 
anti‑apoptotic properties (15,21,55).

Oxidative stress is able to damage cell components 
(e.g., proteins, DNA and lipids) and organelles (56) and has 
been shown to be related with various pathological condi-
tions  (57,58); increased oxidative stress leads to neuronal 
death by damaging brain cellular lipids, proteins and nucleic 
acids and induces apoptosis through the transcription of the 
pro‑apoptotic BID and BAD factors (59). Yavuz et al demon-
strated that a single dose of MS reduced brain oxidative stress 
following CO poisoning and that the intraperitoneal admin-
istration of MS at 100 mg/kg was sufficient to significantly 
decrease lipid peroxidation (60). The findings of this study (for 
a brief summary, see Fig. 5) are in agreement with that study as 
MS treatment reduced lipid peroxidation at all 3 doses (75, 150 
and 300 mg/kg) and proved that lipid peroxidation co‑exists 
with apoptotic induction in CO poisoning and that brain cell 
Akt pathway activation favorably modulates the Bax/Bcl2 
apoptotic index downstream (60).

In conclusion, the current study demonstrated that MS 
administration decreased the deleterious effects of CO 
poisoning on the brain by decreasing neuronal necrosis and 
apoptosis and reducing oxidative stress, while increasing Akt 
expression in brain cells.
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