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Abstract. The study aimed to elucidate the mechanisms 
underlying the occurrence and development of lung adeno-
carcinoma, and to reveal long non-coding RNA (lncRNA) 
prognostic factors to identify patients at high risk of disease 
recurrence or metastasis. Based on extensive RNA sequencing 
data and clinical survival prognosis information from patients 
with lung adenocarcinoma, obtained from The Cancer 
Genome Atlas and the Gene Expression Omnibus databases, 
a co-expression network of lncRNAs with different expression 
levels was built using weighted correlation network analysis 
and MetaDE.ES. The prognostic lncRNAs were identified 
using the Cox proportional hazards model and Kaplan-Meier 
survival curves to construct a risk scoring system. The reli-
ability of the system was confirmed in validation datasets. 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis was performed on the genes 
significantly associated with the prognostic lncRNAs using 
gene set enrichment analysis. A total of 58 and 1,633 differ-
entially expressed lncRNAs and mRNAs were identified, 
respectively. Considering the module stability, annotation, 
correlation between modules and clinical factors, and the 
differential expression levels of lncRNAs, 32 differentially 
expressed lncRNAs were selected from the brown, red, blue, 
green and yellow modules for subsequent survival analysis. A 
signature‑based risk scoring system involving five lncRNAs 
[DIAPH2 antisense RNA 1, FOXN3 antisense RNA 2, 
long intergenic non-protein coding RNA 652, maternally 
expressed 3 and RHPN1 antisense RNA 1 (head to head)] was 
developed. The system successfully distinguished between 
low- and high-risk prognostic samples. System effectiveness 

was further verified using two independent validation datasets. 
Further KEGG pathway analysis indicated that the target genes 
of the five prognostic lncRNAs were associated with a number 
of cellular processes and signaling pathways, including the 
cell receptor-mediated signaling and cell adhesion pathways. 
A five‑lncRNA signature predicts the prognosis of patients 
with lung adenocarcinoma. These prognostic lncRNAs may 
be potential diagnostic markers. The present results may help 
elucidate the pathogenesis of lung adenocarcinoma.

Introduction

Lung cancer is the type of cancer with the highest inci-
dence rate worldwide (1). Lung adenocarcinoma is the most 
common histological type, accounting for ~50% of all lung 
cancer cases (2-4). The prognosis for lung adenocarcinoma is 
generally poor, since its histopathological sub‑classification is 
unclear and it tends to metastasize widely at an early stage 
of the disease (5,6). Therefore, the majority of patients with 
metastatic adenocarcinoma receive empirical chemotherapy 
regimens (7). Different genetic or molecular backgrounds 
may affect the response of an individual to cancer treatment 
and finally lead to a survival discrepancy (8). Thus, improved 
understanding of the mechanisms underlying the occurrence 
and development of lung adenocarcinoma is needed, and prog-
nostic factors that identify patients at high risk for recurrence 
or metastasis are urgently required.

Among the numerous pathogenic factors of lung adenocar-
cinoma, long non-coding RNAs (lncRNAs), which are ncRNAs 
of >200 nucleotides in length, have attracted great interest. 
Lung adenocarcinoma-associated lncRNAs are increasingly 
being identified. For example, colon cancer associated tran-
script 2, a lung adenocarcinoma‑specific lncRNA, promotes 
the invasion of non-small cell lung cancer and may be a poten-
tial biomarker for lymph node metastasis (9). HNF1A antisense 
RNA 1 is overexpressed in lung adenocarcinoma compared 
with corresponding non-tumor tissues, and its expression 
level is significantly associated with Tumor‑Node‑Metastasis 
(TNM) stage, tumor size and lymph node metastasis, leading 
to worse overall survival (10). The expression of the lncRNAs 
DKFZP434 L187 and LOC285548 have been demonstrated to 
be negatively associated with the overall survival of patients 
with lung adenocarcinoma (3). A total of three differentially 
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expressed lncRNAs [maternally expressed 3 (MEG3), myocar-
dial infarction associated transcript (MIAT) and MIR4697 host 
gene) are reportedly associated with clinical features of lung 
adenocarcinoma, while nine differentially expressed lncRNAs 
[long intergenic non-protein coding RNA 115 (LINC00115), 
long intergenic non-protein coding RNA 265, long intergenic 
non-protein coding RNA 1001, long intergenic non-protein 
coding RNA 1002, MIR22 host gene, NFYC antisense RNA 1, 
small nucleolar RNA host gene 10, THUMPD3 antisense 
RNA 1 and TMPO antisense RNA 1] were revealed as prog-
nostic biomarkers for lung adenocarcinoma (11). MEG3 and 
MIAT may be important in the development of lung adenocar-
cinoma via their interactions with microRNA (miR)-106, with 
the consequent regulation of mitogen-activated protein kinase 
(MAPK)9 in MAPK signaling pathways, while LINC00115 
may interact with miR‑7 to regulate fibroblast growth factor 2 
and thus be involved in ‘pathways in cancer’ (11).

Despite the marked progress that has been made, the 
prognostic roles of lncRNAs in lung adenocarcinoma and 
the underlying mechanisms remain poorly characterized. 
Further functional studies are required to identify additional 
lung adenocarcinoma associated lncRNAs and verify their 
functional mechanisms in lung adenocarcinoma.

In the present study, extensive RNA sequencing 
(RNA-seq) data and clinical survival prognosis information 
from patients with lung adenocarcinoma was downloaded 
from The Cancer Genome Atlas (TCGA) and the Gene 
Expression Omnibus (GEO) databases at the National Center 
for Biotechnology Information (NCBI), in order to construct 
a co-expression network and mine network modules with 
particular biological functions. Our goal was to construct a 
prognostic risk assessment model based on the expression 
of these lncRNAs. The reliability of the prognostic risk 
assessment model was further validated in two independent 
datasets. Target genes regulated by the prognostic lncRNAs 
were investigated, lncRNA-mRNA networks were built, 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis was performed to decipher the 
possible biological function of the prognostic lncRNAs in the 
pathogenesis of lung adenocarcinoma.

Materials and methods

Data. TCGA database (https://gdc-portal.nci.nih.gov) was 
used to download mRNA-seq expression profiles of lung 
adenocarcinoma, which included 513 lung adenocarci-
noma samples detected in the Illumina HiSeq 2000 RNA 
Sequencing platform. The NCBI GEO database (http://www.
ncbi.nlm.nih.gov/geo) was also used for a search based on 
the key word ‘lung adenocarcinoma’ to retrieve all publicly 
uploaded expression profiles. According to the different data 
screening criteria, dataset I and dataset II were obtained. The 
screening criteria of dataset I were gene expression data, solid 
tissue lung cancer specimens (non-blood, non-cell lines etc.), 
human expression profiles and a total number of samples ≥80. 
A total of three chip datasets [GSE30219 (12), GSE37745 (13) 
and GSE50081 (14)] were included in the analysis, which 
contained 84, 106 and 127 samples, respectively. The detection 
platform was the Affymetrix-GPL570 (Affymetrix; Thermo 
Fisher Scientific, Inc., Waltham, MA, USA).

The screening criteria of dataset II were gene expression 
data, lung adenocarcinoma tumor tissue specimens (non-blood 
and non-cell lines) patients, presence of control tissues, human 
expression profiles and a total number of samples ≥100. Finally, 
a total of four sets was included in the analysis of the micro-
array datasets [GSE32863 (15), GSE75037 (16), GSE10072 (17) 
and GSE43458 (18)]. They included 116 (58 tumor and 58 
normal control), 166 (83 tumor and 83 normal control), 107 
(58 tumor and 49 normal control) and 110 (80 tumor and 30 
normal control) samples, respectively. The detection platforms 
for the samples were the Illumina-GPL6884 (Illumina, Inc., 
San Diego, CA, USA), Affymetrix-GPL96 (Affymetrix; 
Thermo Fisher Scientific, Inc.) and Agilent‑GPL6244 (Agilent 
Technologies, Inc., Santa Clara, CA, USA) systems.

Data preprocessing. The original format of the down-
loaded expression spectrum data was divided into three 
different formats, according to the different detection 
platforms. The original expression data were preprocessed 
in the following three different ways. In the first approach, 
the expression profile data files were downloaded from the 
Affy platform in the original CEL format, and their formats 
were transformed using the oligo package, version 1.41.1, in 
R language 3.4.1 (19) (http://www.bioconductor.org/pack-
ages/release/bioc/html/oligo.html). The median method was 
supplemented using the missing values, and the data were 
standardized using MAS 5.0 algorithm (19) and the quantile 
method.

In the second approach, the expression profile data file was 
downloaded from the Illumina and Agilent platforms in the 
original TXT format. The log2 logarithm was performed using 
the Limma package, version 3.34.0, in R language 3.4.1 (20) 
(https://bioconductor.org/packages/release/bioc/html/limma.html) 
to transform the expressed data from a partial distribution to 
an approximate normal distribution. The data normalization 
was performed using the median method.

In the third approach, fragments per kilobase of exon per 
million fragments mapped expression profile data downloaded 
from TCGA dataset were normalized using the quantile 
standardization method in the preprocessCore package, 
version 1.40.0, of R language 3.4.1 (21) (http://bioconductor.
org/packages/release/bioc/html/preprocessCore.html).

Ref_seq and Transcript_ID provided by the annotation 
platforms were used to annotate the lncRNAs. Comparisons 
between the detection sequence provided by the platform and 
the human genome sequence (version GRCh38) were performed 
using Clustal 2 (22) (http://www.clustal.org/clustal2). Finally, 
multiple annotation results were combined to identify each 
lncRNA and its corresponding expression information.

Selection of stable modules using weighted gene co‑expression 
network analysis (WGCNA). As a bioinformatics algorithm, 
WGCNA is commonly used to construct co-expression 
networks to identify modules associated with diseases to screen 
important pathogenic mechanisms or potential therapeutic 
targets (23). In this study, the stable modules associated with 
lung adenocarcinoma were selected from the co-expression 
networks built using the WGCNA package, version 1.61, 
(https://cran.r-project.org/web/packages/WGCNA/index.
html) (24) in R language 3.4.1, on the basis of the GSE50081 
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dataset. The GSE30219 and GSE37745 datasets in this 
section were used as validation sets. The WGCNA algorithm 
was executed in three steps: i) Calculation of the correlated 
expression between two of the three aforementioned datasets 
selected randomly; ii) definition of adjacency function; and 
iii) module partition. A module containing ≥100 RNAs with 
cutHeight = 0.99 was set as the screening threshold for module 
partition. The functions of the significantly stable modules 
were annotated using the userListEnrichment function, and 
lncRNAs in the stable module were defined as those with an 
association with lung adenocarcinoma.

MetaDE analysis of expression differences in integrated 
multi‑data. The meta-analysis of the GSE32863, GSE75037, 
GSE10072 and GSE43458 datasets was performed using 
MetaDE.ES of the MetaDE package (https://cran.r-project.
org/web/packages/MetaDE) (25,26) in R language 3.4.1. The 
aim was a comprehensive screen of significantly differently 
expressed RNAs with consistent expression across these four 
datasets between lung adenocarcinoma and control samples. 
Thresholds of tau2 = 0 and Qpval >0.05 were set as consistency 
selection parameters. P-values and false discovery rate values 
<0.05 were selected as the significant difference screening 
parameters to identify expression differences in lncRNAs.

Construction of risk prediction model. Based on the impor-
tant lncRNAs that were validated as being associated with 
lung adenocarcinoma through the aforementioned analyses, 
the optimal prognostic lncRNA combination was screened 
using the Cox proportional hazards (Cox-PH) (27) model, 
according to the L1-penalized regular regression algorithm. 
The screening model was derived from the penalized 
package (28) (http://bioconductor.org/packages/penalized/) in 
R language 3.4.1, in which the optimized parameter of ‘lambda’ 
was obtained using the 1,000 cycle calculation of cross-vali-
dation likelihood (CVL). The sample risk assessment system 
was established based on the lncRNA expression, which was 
weighted by the regression coefficient of each lncRNA in the 
optimal combination, and the risk-score of each sample was 
obtained. The risk assessment score was calculated as follows:

Risk-score = β lncRNA1 x exprlncRNA1 + ··· + β lncRNAn x 
exprlncRNAn.

The GSE37745 dataset was used as a validation dataset, 
which was performed using WGCNA analysis along with 
GSE50081, and TCGA dataset was used as an independent 
validation dataset to evaluate the risk of concentrating 
samples. The viability of the risk-score model was judged by 
the significance of the prognosis difference between the two 
groups, with high and low risks identified by this model.

Analysis of important lncRNA‑associated pathways. KEGG 
pathways were enriched using the Gene Set Enrichment 
Analysis (GSEA) method (http://software.broadinstitute.
org/gsea/index.jsp) (29). Signaling pathways that significantly 
correlated with lncRNAs were screened out when the gene sets 
had been extracted from the corresponding important lncRNA 
modules. The basic principle of GSEA is to use a predefined 
gene set that usually comes from functional annotations, such 

as the KEGG pathway, or previous experimental results, to 
rank genes according to their expression levels in samples, and 
to test whether the predefined gene set is enriched in the top 
or the bottom of the ranking table. GSEA analysis is able to 
evaluate gene sets rather than single gene expression changes; 
thus, it may contain these subtle expression changes, with 
better results expected.

Results

Screening of stable modules significantly correlated with 
lung adenocarcinoma using WGCNA algorithm. RNA of 
each dataset was annotated when the expression profiles of 
the downloaded datasets had been standardized. There were 
15,988 mRNAs and 851 lncRNAs shared in the GSE30219, 
GSE37745 and GSE50081 datasets. Using GSE50081 expres-
sion data as the training set and the remaining data as the 
validation set, RNA modules significantly associated with lung 
adenocarcinoma were selected using the WGCNA algorithm. 
The steps and results are described as follows.

Correlation analysis of RNA expression among the three 
datasets. The consistency of expression values of the common 
RNAs was first checked in the three datasets to ensure the 
comparability of RNA expression levels in each dataset. The 
results indicated that the correlation distribution of RNA 
expression levels among the three datasets always exceeded 
0.9, while the P-values were all <1x10-200 (Fig. 1). The results 
suggested a significantly positive correlation between each 
paired combination of the datasets.

Selection of β parameter value in the adjacency func‑
tion. A prerequisite of WCGNA analysis is a scale-free 
network distribution. Thus, the appropriate adjacency matrix 
weight parameter β (power) should be chosen to ensure 
that the constructed co-expression network is as close to a 
scale-free distribution as possible. With a β value ranging 
between 1 and 20, a linear model was established using the 
logarithms of the adjacency degree of a node (log k) and the 
probability of the node appearance [log P (k)], respectively. 
The parameter β is the square value of coefficient R. A higher 
R2 value indicates a closer association between the network 
and the scale-free distribution (Fig. 2A). In the present study, 
the β (power) of 5 when the R2 value was ~0.9 for the first time 
was finally chosen. This selection ensured that the network 
connection was close to a scale-free distribution, and made the 
curve smooth as the minimum threshold. When the β value 
was equal to 5, the average connection degree of RNAs in 
the network was 5 (Fig. 2B), consistent with the small world 
network property in the scale-free network.

Screening of stable RNA function modules associated with 
lung adenocarcinoma. The RNA adjacency matrix, which is 
the correlation matrix among RNAs, was constructed on the 
basis of the GSE50081 data set as the training set, with the β 
value set at 5. The hierarchical clustering tree was built based 
on this matrix, in which each RNA module contained at least 
100 RNAs, according to the standard of the hybrid dynamic 
shear tree, with the pruning height set at cutHeight = 0.99. 
A total of eight modules were obtained: M1-black, M2-blue, 
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M3-brown, M4-green, M5-gray, M6-red, M7-turquoise, and 
M8-yellow (Fig. 3A). The stability of the modules in training 
set GSE50081 was evaluated by partitioning the corre-
sponding module in the other validation datasets, GSE30219 
and GSE37745 (Fig. 3B and C).

The results of module partition and correlation in the 
GSE50081 dataset are displayed in Fig. 4. RNAs in the same 
module (denoted by the same color dots) aggregated together 
(Fig. 4A), indicating that RNAs in the same module had similar 
expression. The brown-red module and blue-green-yellow module 
exhibited the characteristics of independent branches (Fig. 4B).

The eight modules were partitioned and their stabilities were 
analyzed. Except for the gray, turquoise and black modules, 
the stability scores (preservation Z-scores) of the remaining 

six modules exceeded 5 (Table I), indicating that they were all 
stable. The top five modules with high stability were the red, blue, 
yellow, green and brown modules, in which RNAs were likely to 
be relevant to the pathogenesis of lung adenocarcinoma. Table I 
lists the functional annotation information of these eight modules, 
of which the top three were red, blue and brown. A total of six 
lncRNAs in the red module, 37 in the blue module, and 24 in the 
brown module were associated with cellular immune responses, 
the cell cycle and focal adhesion, respectively.

The correlation between each module and the various clinical 
factors was calculated by integrating the clinical information of 
samples in the GSE50081 dataset. The results presented in Fig. 5 
indicated that the top three modules in terms of stability (red, 
blue, and brown) were significantly correlated with the T and N 

Figure 2. Determination of the β parameter value in the adjacency function for construction of a scale-free network. (A) The selection diagram of adjacency 
matrix weighting parameter β (power). The horizontal axis depicts the weight parameter power, and the longitudinal axis depicts the square value R2 of the 
correlation coefficient between log k and log P (k) in the corresponding network. The red line indicates the standard line with an R2 value of 0.9. (B) Schematic 
diagram of the RNA average connectivity under the conditions of different power parameters.

Figure 1. Correlation analysis of expression levels between each pair of datasets including GSE30219, GSE37745 and GSE50081. (A) GSE50081-GSE30219. 
(B) GSE50081-GSE37745. (C) GSE30219-GSE37745.
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staging (T, the range of the primary tumors; N, the metastasis of 
peripheral lymph nodes) and recurrence of lung adenocarcinoma. 
The remaining two modules with high stability (green and yellow) 

were significantly associated with smoking. Therefore, lncRNAs 
in these five modules, which were considered to be important 
factors associated with lung adenocarcinoma, were focused upon.

Figure 4. Partition and correlation of modules in the GSE50081 dataset. (A) The MDS graph for each gene in the corresponding module. The X and Y axes 
represent the first and second principal components, respectively. (B) The system tree diagram of the modules. MDS, multidimensional scaling; ME, module 
eigengene.

Figure 3. Corresponding tree diagrams of RNA module partition on the analyzed datasets. (A) GSE50081. (B) GSE30219. (C) GSE37745. Each color represents 
an individual module.
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Screening of important lncRNAs associated with lung 
adenocarcinoma. Based on the integration of the GSE32863, 
GSE75037, GSE10072 and GSE43458 datasets, a total of 
1,691 RNAs with consistently significant expression were 
screened through the comprehensive analysis of the MetaDE 
package, including 58 differentially expressed lncRNAs 
and 1,633 differentially expressed mRNAs. Considering the 
previous results of module stability, annotation and correla-
tion between modules and clinical factors, lncRNAs in the 
brown, red, blue, green and yellow modules were regarded 
as the factors significantly associated with the incidence and 
prognosis of lung adenocarcinoma. In addition, their differ-
ential expression was considered to be associated with cancer 

pathogenesis. Therefore, combining the two aforementioned 
aspects, 32 differentially expressed lncRNAs were selected 
from the brown, red, blue, green and yellow modules for 
subsequent survival analysis in relation to lung adenocarci-
noma. The distributions in the eight modules are presented 
in Fig. 6.

Establishment and evaluation of risk assessment model
Selection of optimal lncRNAs. According to the results of the 
phylogenetic tree (Fig. 4B), 17 and 15 differentially expressed 
lncRNAs in the blue-green-yellow and brown-red modules, 
respectively, were divided into two groups. The third group 
was defined as the combined group, which included these 

Table I. Details of preservation Z-scores and annotation in the eight stable modules of the GSE50081, GSE30219 and GSE37745 
datasets.

Module Color Module size mRNAs lncRNAs Preservation z-score Module GO annotation

Module 7 Turquoise 911 887 24 3.1526 Mitotic nuclear division
Module 5 Grey 792 771 21 4.8675 Cell-cell signaling
Module 1 Black 129 121 8 5.7128 Epidermis development
Module 4 Green 290 283 7 19.2659 Epithelial cell proliferation
Module 8 Yellow 306 288 18 19.5524 Oxidation-reduction process
Module 3 Brown 318 294 24 22.9983 Focal adhesion
Module 2 Blue  413 376 37 47.6821 Cell cycle
Module 6 Red 246 240 6 50.8970 Immune response

A higher Z value indicates greater module stability: Stable modules, 5<Z<10; and highly stable modules, Z>10. GO, Gene Ontology; lncRNA, 
long non-coding RNA.

Figure 5. Heat map of the correlation between the RNA functional modules and their clinical attributes, based on the GSE50081 dataset. Red asterisks 
represent a significant positive correlation. ME, module eigengene; T, tumor; N, node. 
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32 lncRNAs. The lncRNAs in each group were further 
optimized and screened using the Cox-PH model based on 
the L1-penalized regularization regression algorithm in the 
penalized package to obtain the optimal prognosis-associated 
lncRNAs. As presented in Fig. 7A, the 1,000-cycle calculation 
of the CVL algorithm was performed to obtain the optimal 
lambda values in the Cox-PH model. The lambda value 
corresponding to the maximum CVL value was selected 
as the input value in the Cox-PH model. Using the Cox-PH 
model, the best combinations composed of 5, 5 and 6 lncRNAs 
emerged in the blue-green-yellow, brown-red and combined 
modules, respectively. The corresponding coefficients of the 
three selected sets of the optimal combination of lncRNAs 
are presented in Fig. 7B (the algorithm yielded different coef-
ficients to the optimal lncRNAs, and the coefficients of the 
excluded lncRNAs were all reduced to zero).

Establishment, evaluation, and selection of risk prediction 
model. Based on the corresponding Cox-PH regression coef-
ficients of the three optimal lncRNAs obtained in the previous 
step, three sets of prediction models of sample risk scoring 
were constructed as follows:

Risk-score (blue-green-yellow) = (0.182) x ExpCPS1-IT1 
+ (-0.060) x ExpLINC01140 + (0.244) x ExpLINC01711 + 

(-0.259) x ExpSNHG14 + (-0.480) x ExpTP73-AS1;

Risk-score (brown-red) = (0.381) x ExpDIAPH2-AS1 + 
(-0.097) x ExpFOXN3-AS2 + (0.738) x ExpLINC00652 + 

(0.041) x ExpMEG3 + (-0.0003) x ExpRHPN1-AS1;

Risk-score (combined) = (0.122) x ExpCPS1-IT1 + (-0.065) x 
ExpLINC01140 + (0.134) x ExpLINC01711 + (-0.262) xExp-
SNHG14 + (-0.445) x ExpTP73-AS1 + (0.017) x ExpMEG3.

Based on these three models, the risk-score of each sample 
in training dataset GSE50081 was calculated, and these 
samples were divided into high and low-risk groups according 
to the median score. Kaplan-Meier survival curve analysis 
was used to assess the significant differences in the survival 

time between the two groups. All three constructed models, 
including blue-green-yellow, brown-red and combined, had a 
significantly different effect on the high and low‑risk groups 
(P<0.05 for all models) of the GSE50081 training set (Fig. 8A).

GSE50081 together with the GSE37745 dataset in the 
WGCNA analysis were used as the validation datasets to 
evaluate the efficiency of the prediction models. Only the 
lncRNAs in the brown-red model were able to better separate 
the low-risk and high-risk prognostic samples in the GSE37745 
dataset (Fig. 8B; P=0.015). Furthermore, the effectiveness of 
the three models was further verified by the TCGA indepen-
dent validation dataset. Only the brown-red model produced a 
clear discrimination result (Fig. 8C; P=0.0037), suggesting that 
the brown‑red model was very robust, in which five lncRNAs 
[DIAPH2 antisense RNA 1 (DIAPH-AS1), FOXN3 antisense 
RNA 2 (FOXN3-AS2), long intergenic non-protein coding 
RNA 652 (LINC00652), maternally expressed 3 (MEG3) 
and RHPN1 antisense RNA 1 (head to head) (RHPN1-AS1)] 
were significantly correlated with prognosis, were stable in 
distinguishing between the prognosis samples, and could be 
universally applied to other new samples.

Network construction and analysis of functional pathways. A 
total of five important lung adenocarcinoma‑associated lncRNAs, 
including DIAPH2-AS1, FOXN3-AS2, LINC00652, MEG3 and 
RHPN1-AS1, were obtained according to the previous analysis. 
Combined with their associated mRNAs selected in the brown 
and red modules using WGCNA, the important lncRNA-mRNA 
networks were built, as presented in Fig. 9.

GSEA-based pathway enrichment analysis was performed 
on the genes in two lncRNA-mRNA networks, in which three 
key statistical values were used. The first value was the enrich-
ment score (ES) that was the original result of the GSEA analysis, 
reflecting the enrichment degree value of a functional gene set at 
the anterior or posterior of an array when all the hybridization 
data have been sorted. The basic principle of the calculation is 
to scan the sequence of sequences. When a gene of this set is 
prepared, the ES value increases; otherwise, it decreases. The 
second value is the normalized enrichment score (NES, which 
is the standardized processing of ES values. The final value is 
the nominal P‑value, which describes the statistical significance 
of the ES of a functional gene subset. A smaller P-value indi-
cates better gene enrichment. When the absolute value of NES 
is greater, the P-value will be spontaneously smaller, suggesting 
a higher degree of enrichment and greater confidence in the 
analysis result. In the present study, P<0.05 was chosen as the 
threshold for screening KEGG pathways in which the relevant 
module genes were significantly enriched.

As illustrated in Fig. 10A and Table II, six pathways were 
significantly associated with the RHPN1‑AS1 network in the 
red module. In the brown module, three pathways were simul-
taneously associated with the DIAPH2-AS1, FOXN3-AS2, 
LINC00652, and MEG3 networks (Fig. 10B and Table III).

The pathway enrichment analysis demonstrated that the 
RHPN1‑AS1 network was significantly associated with cell 
receptor-mediated signaling and cell adhesion pathways 
(Table II). A total of 26 genes, which included C-X-C motif 
chemokine ligand (CXCL)1, interleukin (IL)6, CXCL5, IL15, 
IL2 inducible T cell kinase (ITK), RAS guanyl releasing 
protein 1 (RASGRP1), protein tyrosine phosphatase, receptor 

Figure 6. Distribution number and proportion of the long non-coding RNAs 
with significantly different expression in each color module.
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type C (PTPRC), cluster of differentiation (CD)274, CD19, 
CD72 and selectin E (SELE), were jointly involved in the six 
pathways and positively associated with them. Furthermore, 
the DIAPH2-AS1, FOXN3-AS2, LINC00652 and MEG3 
networks were significantly associated with ‘cytokine cyto-
kine receptor signaling pathway’, ‘chemokine signaling 
pathway’ and ‘vascular smooth muscle contraction pathway’ 
(Table III). A total of seven genes, which included C-C motif 
chemokine ligand 11 (CCL11), TNF superfamily member 4 
(TNFSF4), adenylate cyclase 2 (ADCY2), actin, γ2, smooth 
muscle, enteric (ACTG2), myosin light chain 9 (MYL9) and 
protein kinase cGMP-dependent 1 (PRKG1), were commonly 
involved in these three functional enrichment pathways, with 
significant positive correlations between genes and pathways.

Discussion

It has been considered that lncRNAs serve important roles in 
the development of lung adenocarcinoma, and may be used 
as diagnostic markers for tumors (3,9-11). To elucidate an 
lncRNA-based signature that predicts the prognosis of patients 
with lung adenocarcinoma, a large amount of of RNA-seq data 
and clinical survival prognosis information from patients with 
adenocarcinoma was initially downloaded from TCGA and the 
GEO database, and a co-expression network was constructed 

to mine network modules with particular biological functions. 
A total of eight modules were obtained in the GSE50081 
training set. Of these, five (red, blue, yellow, green and brown 
modules) featured high stability and appeared likely to be 
associated with the pathogenesis of lung adenocarcinoma. 
Integrated module analyses that included stability, functional 
annotations, correlation analysis with clinical factors and the 
differential expression of lncRNAs, identified 32 lncRNAs in 
the brown, red, blue, green and yellow modules. These were 
used for follow-up survival analysis. Based on the results of 
the system clustering tree, Cox-PH model and Kaplan-Meier 
survival curve, three risk scoring systems were constructed, 
among which five lncRNAs (DIAPH2-AS1, FOXN3-AS2, 
LINC00652, MEG3 and RHPN1-AS1) comprised a signa-
ture‑based risk scoring system that successfully classified the 
low-risk and the high-risk samples in the training set.

Considering that MEG3 has been related to the pathogenesis 
of lung adenocarcinoma (11,30,31), it is possible that the other 
four lncRNAs may be potential novel prognostic factors for 
lung adenocarcinoma. DIAPH2 is a mammalian homolog of 
Drosophila diaphanous. The latter is a protein required for cyto-
kinesis, and belongs to a family of formin-associated proteins 
containing repetitive polyproline stretches (32). DIAPH2 inter-
acts with RhoD (33). However, there is no information on the 
association between DIAPH2-AS1 and human cancer. FOXN3 is 

Figure 7. Lambda parameter filtration and coefficient distribution of the best prognosis‑associated lncRNAs. (A) Curve graphs of lambda parameters screened 
by CVL in the blue-green-yellow, brown-red and combined groups, respectively. The horizontal and vertical axes represent the different values of lambda and 
CVL, respectively. The intersection of the dotted lines indicates the value of the lambda parameter when the CVL is maximal. (B) Distribution charts of the 
optimal prognosis-associated lncRNAs selected by the Cox proportional hazards model when the value of lambda parameter corresponding to the maximum 
CVL value was taken. Each point corresponds to each lncRNA. lncRNA, long non-coding RNA; CVL, cross-validation likelihood; CPS1-IT1, CPS1 intronic 
transcript 1; LINC01140, long intergenic non-protein coding RNA 1140; LINC01711, long intergenic non-protein coding RNA 1711; SNHG14, small nucleolar 
RNA host gene 14; TP73-AS1, TP73 antisense RNA 1; DIAPH2-AS1, DIAPH2 antisense RNA 1; LINC00652, long intergenic non-protein coding RNA 652; 
FOXN3-AS2, FOXN3 antisense RNA 2; MEG3, maternally expressed 3; RHPN1-AS1, RHPN1 antisense RNA 1 (head to head).
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an important member of the FOX family of transcription factors 
that is essential in organ differentiation, development, cell growth 
and cancer (34). FOXN3-AS2 may serve an important role in 
esophageal cancer (35). The function of FOXN3-AS2 in lung 
adenocarcinoma is not well understood. The present study provides 
the first clue that FOXN3‑AS2 may be a potential diagnostic 
marker for lung adenocarcinoma, to the best of our knowledge. 
RHPN1 was originally identified as a RhoA GTPase‑interacting 
partner (36). It was recently implicated as being essential for the 

integrity of the glomerular filtration barrier and is a key deter-
minant of podocyte cytoskeleton architecture (37). RHPN1-AS1 
has a potential role in the progression of uveal melanoma and 
might be an attractive biomarker and therapeutic target in uveal 
melanoma (38). LINC00652 is located in human chromosome 
20; no physiological function has been previously reported, to 
the best of our knowledge. The risk stratification capability of the 
five‑lncRNAs signature was confirmed in the validation set and 
independent validation set. The present data reveal a potential 

Figure 8. Kaplan‑Meier survival curve of samples in the analyzed datasets. (A) Training set GSE50081. (B) Verification set GSE37745. (C) Verification set 
TCGA. The black and red curves represent the low-risk and high-risk groups, respectively. TCGA, The Cancer Genome Atlas.
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Figure 9. lncRNA-mRNA networks corresponding to the red and brown modules. (A) Red module. (B) Brown module. The circular nodes represent the 
significantly differentially expressed genes (up‑ and downregulated) screened by MetaDE. The square nodes represent lncRNAs; the green and red edges 
represent positive and negative expression, respectively. lncRNA, long non-coding RNA.



MOLECULAR MEDICINE REPORTS  19:  4067-4080,  2019 4077

biomarker that may predict the prognosis of lung adenocarcinoma 
patients. The data may be helpful in future explorations of the 
pathogenesis of lung adenocarcinoma.

It has been demonstrated that lncRNAs serve important 
roles in a variety of biological processes by regulating target 
genes at the transcriptional, posttranscriptional, and epigenetic 
levels (39,40). Therefore, the present study attempted to investi-
gate the target genes regulated by the five prognostic lncRNAs to 
decipher their possible biological functions in the pathogenesis of 
lung adenocarcinoma. Since the results of the module functional 
annotation demonstrated that lncRNAs in the red and brown 
modules were primarily associated with the cellular immune 
response and focal adhesion, respectively, these two modules were 
used to select the associated mRNAs and to build the important 
lncRNA-mRNA networks. Further KEGG pathway enrichment 
analysis revealed that six pathways were significantly associated 
with the RHPN1-AS1 network in the red module. These included 
cell receptor-mediated signaling and cell adhesion pathways, 

which have notable roles during the multistage progression of 
human carcinogenesis (41). Therefore, it was hypothesized that 
RHPN1-AS1 has the same directional correlation with the six 
important pathways by positively regulating the expression level 
of CXCL1, IL6, CXCL5, IL15, ITK, PRSGRP1, PTPRC, CD274, 
CD19, CD72, SELE and other genes. CXCL1 has been associated 
with lung cancer (42), upregulation of CD274 is associated with 
the poor prognosis of lung adenocarcinoma (43,44), and IL6 (45) 
and IL15 (46) are relevant to the pathogenesis of lung adenocar-
cinoma. Another three pathways, including ‘cytokine cytokine 
receptor signaling pathway’, ‘chemokine signaling pathway’ and 
‘vascular smooth muscle contraction pathway’, were significantly 
associated with the DIAPH2-AS1, FOXN3-AS2, LINC00652 
and MEG3 networks in the brown module. A possible explana-
tion is that DIAPH2-AS1, FOXN3-AS2, LINC00652 and MEG3 
have the same directional correlation with the three important 
pathways by positively regulating the expression levels of CCL11, 
TNFSF4, ADCY2, ACTG2, MYL9 and RPKG1. It was reported 

Figure 10. Pathways enriched in the red and brown network modules, and heat maps of the associated genes. (A) Red module. (B) Brown module. The x-axes 
indicate the genes involved in the pathways; the y-axes indicate the enriched pathways. A deeper red color indicates a stronger positive correlation. MEG3, mater-
nally expressed 3; FOXN3-AS2, FOXN3 antisense RNA 2; LINC00652, long intergenic non-protein coding RNA 652; DIAPH2-AS1, DIAPH2 antisense RNA 1; 
PRKG1, protein kinase cGMP-dependent 1; MYL9, myosin light chain 9; KCNMB1, potassium calcium-activated channel subfamily M regulatory β-subunit 1; 
ACTG2, actin, γ2, smooth muscle, enteric; ADCY2, adenylate cyclase 2; CCL11, C-C motif chemokine ligand 11; TNFSF4, TNF superfamily member 4.

Table II. KEGG pathways significantly associated with the red module.

KEGG pathways ES NES NOM p-val

T_CELL_RECEPTOR_SIGNALING_PATHWAY 0.3936 1.3243 0.0001
JAK_STAT_SIGNALING_PATHWAY 0.2300 1.1451 0.0158
NOD_LIKE_RECEPTOR_SIGNALING_PATHWAY 0.4680 1.0535 0.0285
TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY 0.6984 1.0162 0.0300
B_CELL_RECEPTOR_SIGNALING_PATHWAY -0.2269 -1.0968 0.0333
CELL_ADHESION_MOLECULES_CAMS 0.3157 1.0298 0.0394

KEGG, Kyoto Encyclopedia of Genes and Genomes; ES, enrichment score; NES, normalized enrichment score; NOM p-val, nominal P-value.
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that the differential expression of ACTG2 is useful in distin-
guishing lung adenoma from normal lung samples (47), and low 
MYL9 expression might be associated with the development and 
metastasis of non-small cell lung cancer (48). Moreover, CCL11 
is reported to have a direct and selective profibrogenic effect on 
lung and bronchial fibroblasts (49). The present data revealed 
the possible pathogenesis of lung adenocarcinoma, in which five 
lncRNAs (DIAPH2-AS1, FOXN3-AS2, LINC00652, MEG3 
and RHPN1-AS1) may affect the occurrence and development of 
lung adenocarcinoma by regulating the expression levels of target 
genes.

It is noteworthy that this study was an extensive bioin-
formatics study based on published data. The results require 
further validation by in vitro or in vivo models. These useful 
clues may help other researchers to perform relevant research. 
In a further study, the expression levels of the five lncRNAs in 
clinical samples with prognostic information may be measured 
using experimental methods to validate the predictive value of 
this five‑lncRNA signature.

In conclusion, the present study identified and validated a 
five‑lncRNA signature predicting the prognosis of patients with 
lung adenocarcinoma. The predictive ability of this signature 
may be exploited as a promising prognostic biomarker for lung 
adenocarcinoma. The target genes of these five prognostic 
lncRNAs are associated with a number of cellular processes 
and signaling pathways, including the cell receptor-mediated 
signaling pathway and cell adhesion pathway. Therefore, these 
five prognostic lncRNAs may be potential diagnostic markers. 
The present results may be helpful to elucidate the possible 
pathogenesis of lung adenocarcinoma.
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