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Abstract. Salidroside (SDS) is a phenylpropanoid glycoside 
isolated from Rhodiola rosea L. It exhibits multiple 
pharmacological properties in clinical medicine and has been 
commonly used in traditional Chinese medicine. The present 
study investigated the inhibitory effects of SDS on tumor 
invasion and migration, and the expression of metastasis‑related 
genes in highly metastatic hepatocellular carcinoma (HCC) 
cells (MHCC97H)  in  vitro. The underlying mechanisms 
of SDS on the tumor metastasis were also explored. SDS 
was found to significantly reduce wound closure areas and 
inhibit cell migration. In addition, SDS markedly inhibited 
the invasion of these cells into Matrigel‑coated membranes. 
SDS markedly downregulated the expression of Notch1, Snail, 
COX‑2, MMP‑2, MMP‑9 genes and upregulated the expression 
of E‑cadherin in a dose‑dependent manner. Furthermore, SDS 
inhibited the expression of the Notch signaling target genes, 
Hey1, Hes1 and Hes5. On the whole, the findings of this study 
suggest that SDS inhibits HCC cell metastasis by modulating 
the activity of the Notch1 signaling pathway.

Introduction

Hepatocellular carcinoma (HCC) is the most commonly diag-
nosed primary tumor of the liver, ranking third worldwide in 
terms of the most lethal types of cancer (1,2). While there are 
some treatment options available for patients, such as surgical 
intervention, radiotherapy, locoregional therapy and chemo-
therapy, the rates of metastasis and relapse remain high for 

patients with HCC (3,4). Therefore, there is currently an urgent 
need for improved treatment options in clinical practice.

Salidroside (SDS) acts as a phenylpropanoid glycoside and is 
one of the most potent antioxidant ingredients that can be isolated 
from Rhodiola rosea L. It commonly grows at high altitudes and 
may be found in parts of Asia, Eastern Europe and Canada (5,6). 
SDS functions as an adaptogen that provides non‑specific resis-
tance by suppressing physical, chemical and biological stressors 
in the body, and has been used as a hepato‑protective herb in 
traditional Chinese medicine for decades (5).

In recent years, SDS has been reported to possess 
numerous medicinal properties, including antitumor, 
anti‑inflammatory, anti‑viral, anti‑radiation, antioxidative 
stress and fatigue‑reducing properties (7‑16). Most notably, the 
anticancer properties of SDS have been extensively reported 
by researchers in both in vitro and in vivo models. SDS has 
been shown to significantly inhibit the growth of lung, breast 
and liver cancer through the promotion of the activation 
of cellular apoptotic pathways, and to inhibit breast tumor 
growth in vivo (6,17‑22). In addition, SDS has been shown to 
inhibit metastasis, as Sun et al demonstrated that SDS inhibited 
the migration and invasion of HT1080 human fibrosarcoma 
cells (23). However, there is limited information about the role 
of SDS in preventing the metastasis in other forms of cancer, 
and its underlying mechanisms of action remain unknown.

Notch signaling is highly conserved and is often activated 
in many types of tumors, playing complex roles in tumor 
development and metastasis (24‑30). Previously, Zhou et al (31) 
reported Notch1 as a novel candidate biomarker for assessing 
patient prognosis, as well as for the molecular targeted therapy 
of HCC. This is due to the high expression of Notch1 in HCC 
tumor tissues, which has been associated with tumor size, 
tumor grade, metastasis, venous invasion and TNM stage. 
Patients with a high Notch1 expression were shown to have 
significantly shorter overall survival times (31).

The downregulation of Notch1 has been previously found 
to decrease the invasiveness of HCC cells in vitro (32), which 
is partially attributed to the activation of the Notch1/Snail/
E‑cadherin pathway (33‑36). E‑cadherin acts as a homotypic 
epithelial cell‑cell adhesion molecule with anti‑invasive 
properties in certain types of cancer (37‑39). The Notch1/matrix 
metalloproteinase (MMP) pathway has also been found to play 
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an important role in HCC development, as MMPs are proteolytic 
enzymes in the extracellular matrix (ECM) that contribute to 
tumor invasion, angiogenesis and metastasis (40‑42). Previously, 
the downregulation of Notch1 in pancreatic cancer and lingual 
squamous cell carcinoma was shown to inhibit tumor invasion by 
suppressing the expression of MMP‑2 and MMP‑9 (28,29,32). In 
addition, an inhibitor of the Notch signaling pathway effectively 
inhibited the invasion of HCC cells via MMP‑2 and MMP‑9 
suppression (32), confirming that the Notch1 signaling is closely 
associated with the metastasis of HCC.

In the present study, we demonstrate that SDS suppresses 
the metastasis of highly metastatic HCC cells. Genes involved 
in EMT and metastasis are consisted regulated. Notably, 
Notch1 signaling activity is inhibited by SDS. Taken together, 
the findings of this study suggest that SDS suppresses the 
metastasis of HCC cells through suppression of the activation 
of the Notch1 signaling pathway.

Materials and methods

Reagents and antibodies. SDS (purity, >99%) was purchased 
from the National Institute for the Control of Pharmaceutical 
and Biological Products (Beijing, China). SDS was dissolved 
in water and filtered through a 0.22‑µm filter prior to use. 
Hairy and enhancer of split 1 (Hes1; cat. no. BM4488) poly-
clonal antibodies were purchased from Boster Biological Co. 
(Wuhan, China). Hairy/enhancer‑of‑split related with YRPW 
motif 1 (Hey1; cat. no. 19929‑1‑AP) and hairy and enhancer of 
split 5 (Hes5; cat. no. 22666‑1‑AP) polyclonal antibodies were 
purchased from ProteinTech Biological Co. (Wuhan, China). 
Cyclooxygenase (COX)‑2 (cat. no. KGYT1073‑6), E‑cadherin 
(cat. no. KGYT1453‑6), MMP‑2 (cat. no. KGYT2798‑6) and 
MMP‑9 (cat. no. KGYT1892‑6) polyclonal antibodies were 
purchased from KeyGEN BioTech Corp. (Nanjing, China). Snail 
(cat. no. bs‑21598R) and Notch1 (cat. no. bs‑1335R) polyclonal 
antibodies were purchased from Bioss Biological Co. (Beijing, 
China). DMEM was purchased from the Gibco; Thermo Fisher 
Scientific Inc. (Waltham, MA, USA). FBS was purchased from 
the ExCell Biology Company (Shanghai, China). All other 
chemicals were of analytical grade and were commercially 
available.

Cells and cell culture. The MHCC97H cells (cat. no. KG340) 
were obtained from KeyGEN BioTech Corp. the HMCC97H 
cells were cultured in DMEM supplemented with 10% fetal 
bovine serum (FBS) in a humidified incubator at 37˚C with 
5% CO2. The cells were harvested following trypsinization 
(0.25% Trypsin‑EDTA) and washed with phosphate‑buffered 
saline (PBS). The cells were subcultured when the cell density 
reached 80‑90% confluency.

Scratch wound closure assay. For the detection of cell migration, 
the HMCC97H cells were seeded onto a 6‑well plate and cultured 
at 37˚C for 24 h. When the cell density reached 60% confluency, 
the monolayer was scraped away with a sterile tip, as previously 
described (43). The remaining cells were washed with PBS, and 
cultured with new medium with 1, 2, or 4 µg/ml of SDS at 37˚C 
for 24 h. Cell migration into the denuded area was quantified 
using a computer‑assisted inverted microscope (IX71; Olympus 
Corporation, Tokyo, Japan; magnification, x200).

Transwell assay for in vitro migration. HMCC97H cell migra-
tion was measured using Matrigel‑coated Transwell inserts. 
The cells were cultured in serum‑free DMEM at 37˚C for 24 h 
before being trypsinized and seeded at 5x104 cells per upper 
chamber in 100 µl serum‑free DMEM with 1, 2 or 4 µg/ml SDS. 
The 24‑well plate containing the Transwell was cultured in a 
humidified incubator at 37˚C and 5% CO2 for 24 h. Cells in the 
upper side of the insert membrane were rubbed using a cotton 
swab. Cells that had migrated to the underside of the insert 
membrane were stained with 0.1% crystal violet solution for 
30 min at 37˚C, rinsed in PBS, air‑dried, and observed under 
an inverted microscope (IX71; Olympus Corporation) equipped 
with a camera to count the number of migrated cells (magnifica-
tion, x200). Three fields per insert were scored and averaged.

In vitro invasion assay. The invasion of the HMCC97H 
cells in vitro was determined using Matrigel‑coated Transwell 
inserts, as previously described (44). Serum‑free DMEM with 
2‑fold diluted Matrigel (30 µl/well) was placed into the upper 
chamber of the Transwell filter and incubated for 2 h at 37˚C 
for gelling. Subsequently, 5x104 cells were seeded in the upper 
chamber and cultured at 37˚C for 24 h. The invasion of the 
cells was assessed using the same techniques as those used for 
cell migration described above.

Reverse transcription‑quantitative PCR (RT‑qPCR). RT‑qPCR 
was used to determine the expression levels of Notch1, Hes1, 
Hes5, Hey1, COX‑2, Snail and E‑cadherin in the SDS‑treated 
HMCC97H cells. The cells were incubated with serum‑free 
DMEM containing 1, 2 or 4 µg/ml SDS for 24 h. Subsequently, 
the cells were trypsinized, washed in PBS, and total RNA was 
extracted using TRIzol reagent (Thermo Fisher Scientific Inc.) 
according to the manufacturer's instructions. First‑strand cDNA 
was synthesized with a reverse transcription kit (Thermo Fisher 
Scientific Inc.) according to the manufacturer's instructions 
and used as the template for RT‑qPCR. GAPDH was selected 
as the reference for internal standardization. The primers P1 
and P2 specific of GAPDH, P3 and P4 specific of Hes1, P5 
and P6 specific of Hes5, P7 and P8 specific of Hey1, P9 and 
P10 specific of COX‑2, P11 and P12 specific of Snail, P13 and 
P14 specific of MMP‑2, P15 and P16 specific of MMP‑9, and 
P17 and P18 specific of E‑cadherin (Table I) were designed 
to amplify the specific fragments of all the genes. qPCR was 
performed on an ABI 7500 real‑time PCR system (Applied 
Biosystems, Foster City, CA, USA) using the 2X SYBR Premix 
Ex Taq™ kit (Takara, Shiga, Japan). PCR was carried out in a 
total volume of 20 µl, containing 10 µl 2X SYBR Premix Ex 
Taq™, 0.4 µl ROX Reference Dye II (50X), 1 µl diluted cDNA, 
0.2 µl primers (20 mmol/l) and 8.4 µl of DEPC‑treated water. 
The thermal profile for RT‑qPCR was 94˚C for 15 sec, followed 
by 40 cycles of 94˚C for 5 sec, 60˚C for 15 sec and 72˚C for 
35 sec. All reactions were run in triplicate. Dissociation curve 
analysis of the amplicons was performed at the end of each 
PCR to confirm that only one PCR product was amplified and 
detected. Data were analyzed with the comparative Cq method 
(2‑∆∆Cq) based on Cq values for each gene and GAPDH to calcu-
late relative mRNA expression levels (45).

Western blot analysis. The HMCC97H cells were cultured 
with serum‑free DMEM with 1, 2, or 4  µg/ml SDS for 
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24  h. The cells were washed 3 times with ice‑cold PBS 
and harvested in lysis buffer. The lysate was centrifuged at 
12,000 x g for 15 min to collect the supernatant. Bicinchoninic 
acid (BCA) was used to determine the protein concentra-
tions. Subsequently, 40 µg of each sample was loaded onto 
12%  sodium dodecyl sulfate (SDS)‑polyacrylamide gels 
for electrophoresis and transferred onto nitrocellulose 
membranes. The membranes were blocked with 4%  BSA 
in PBS at room temperature for 2 h prior to incubation with 
primary antibodies, which included anti‑Notch1 (1:1,000), 
anti‑Hey1 (1:1,000), anti‑Hes1 (1:1,000), anti‑Hes5 (1:1,000), 
anti‑Snail (1:1,000), anti‑COX2 (1:1,000), anti‑E‑cadherin 
(1:1,000), anti‑MMP‑2 (1:1,000), anti‑MMP‑9 (1:1,000), and 
anti‑GAPDH (1:2,000). The membranes were incubated with 
the primary antibodies overnight at 4˚C and washed 4 times 
with PBS containing 0.1% Tween‑20 (PBST). The membranes 
were then incubated with HRP‑conjugated anti‑mouse/rabbit 
IgG (cat. no. bs‑0368R‑HRP/bs‑0369M‑HRP; BIOSS, Beijing, 
China) diluted at 1:5,000 in PBS for 1 h at room temperature 
before being washed with PBS‑T and detected using the ECL 
reagent (KeyGEN BioTech Corp.). The signal intensity of 
each band was quantified with ImageJ software (version 1.6.0; 
National Institutes of Health, Bethesda, MD, USA), and the 
results were normalized to those of GAPDH.

Statistical analysis. Data are presented as the means ± standard 
errors of the mean (SEM) from 3 or more independent 

experiments and were evaluated with analysis of variance 
(ANOVA) followed by Dunnett's test for multiple comparisons. 
P<0.05 was considered to indicate a statistically significant 
difference.

Results

SDS suppresses the migration of HMCC97H cells in vitro. 
The scratch test and Transwell assay were used to determine 
the effects of SDS on the migration of the HMCC97H cells. As 
shown in Fig. 1A, the wound closure was 69.2% complete in 
the absence of SDS. Following treatment with SDS, the wound 
closure levels were significantly lower at 58.2, 42.5 and 33.4% 
in the cells treated with 1, 2 and 4 µg/ml SDS, respectively. 
The migration of the HMCC97H cells was significantly 
suppressed by SDS, as shown by Transwell assay. As shown 
in Fig. 1B, cell migration was reduced to 65.31, 39.68 and 
28.12% (relative to the control) following 24 h of treatment 
with 1, 2 and 4 µg/ml SDS, respectively. These results demon-
strated that SDS can effectively suppress HCC cell migration 
in a concentration‑dependent manner.

SDS suppresses the invasion of HMCC97H cells in vitro. 
The Matrigel‑coated Transwell assay was used to examine 
the effects of SDS on the invasion of the HMCC97H cells. 
As shown in Fig. 2, SDS treatment significantly suppressed 
the invasion of the HMCC97H cells in vitro. Following 24 h 

Table I. Table I. Sequences of the primers used in this study.

Gene	S equence (5'‑3')	 Amplicon size (bp)

Notch1	 F‑TCAGCGGGATCCACTGTGAG
	 R‑ACACAGGCAGGTGAACGAGTTC	 104
Hes1	 F‑CTGAGCACAGACCCAAGTGT
	 R‑GAGTGCGCACCTCGGTATTA	 115
Hes5	 F‑GAAAAACCGACTGCGGAAGC
	 R‑GACGAAGGCTTTGCTGTGCT	 184
Hey1	 F‑CGGCTCTAGGTTCCATGTCC
	 R‑GCTTAGCAGATCCCTGCTTCT	 162
COX‑2	 F‑ATAACCCCGCCAAAAGGGG
	 R‑CTGAGTACCAGGTCTGCAGTG	 145
Snail	 F‑CGAGTGGTTCTTCTGCGCTA
	 R‑GGGCTGCTGGAAGGTAAACT	 160
MMP‑2	 F‑GATGACATCAAGGGCATTCAGGAGC
	 R‑ATCTTTTCCGGGAGCTCAGGCC	 254
MMP‑9	 F‑CCAAGGATACAGTTTGTTCCTCGTG
	 R‑GGTTCAGGGCGAGGACCATAGA	 177
E‑cadherin	 F‑GTCAGTTCAGACTCCAGCCC
	 R‑TGTAGCTCTCGGCGTCAAAG	 196
GAPDH	 F‑CATCTTCTTTTGCGTCGCCA
	 R‑TTAAAAGCAGCCCTGGTGACC	 202

F, forward; R, reverse; Hes1, hairy and enhancer of split 1; Hes5, hairy and enhancer of split 5; Hey1, hairy/enhancer‑of‑split related with 
YRPW motif 1; COX‑2, cyclooxygenase‑2; MMP, matrix metalloproteinase.



LU et al:  SALIDROSIDE SUPPRESSES LIVER CANCER METASTASIS 4967

of treatment with SDS, the number of invaded cells had 
decreased to 64.5, 29.0 and 17.5% when treated with 1, 2 and 
4 µg/ml SDS, respectively. These results indicated that SDS 
effectively suppressed the invasion of the HMCC97H cells in 
a concentration‑dependent manner.

SDS decreases the expression of Notch1, Snail, COX‑2, 
MMP‑2 and MMP‑9, whereas it upregulates the expression of 

E‑cadherin in the HMCC97H cells. Western blot analysis was 
performed to investigate protein expression in the HMCC97H 
cells following treatment with SDS. Since Snail, COX‑2, MMP‑2, 
MMP‑9 and E‑cadherin are closely related to the metastasis of 
tumor cells (43,46‑48), we also investigated the effects of SDS 
on these genes in the HMCC97H cells. As shown in the Figs. 3 
and 4, expression levels of Notch1, Snail, COX‑2, MMP‑2 and 
MMP‑9 were significantly lower following treatment with SDS 

Figure 1. SDS suppresses the migration of HMCC97H cells in vitro. (A) The migration of the HMCC97H cells was quantified by measuring wound closure 
areas before and after injury. The wound closure areas were effectively reduced in the groups treated with 2 and 4 µg/ml SDS. (B) Cell migration was quanti-
fied under a microscope (magnification, x200). The numbers of migrated cells were significantly decreased in the groups treated with 1, 2 and 4 µg/ml SDS. 
All data are presented as the means ± SEM from 3 independent experiments. Asterisks indicate statistically significant differences (*P<0.05 and **P<0.01) 
compared to the control (0 µg/ml). SDS, salidroside; SEM, standard error of the mean.

Figure 2. SDS suppresses the invasion of HMCC97H cells in vitro. The invasion of the HMCC97H cells was quantified by Matrigel‑coated Transwell inserts. 
Images indicate the invaded cells visualized under a microscope (magnification, x200) following SDS treatment. The numbers of migrated cells were sig-
nificantly decreased in the groups treated with 1, 2 and 4 µg/ml SDS. All data are presented as the means ± SEM from 3 independent experiments. Asterisks 
indicate statistically significant differences (**P<0.01) compared to the control (0 µg/ml). SDS, salidroside; SEM, standard error of the mean.
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(P<0.05). Moreover, E‑cadherin expression was markedly 
increased following treatment with SDS (P<0.05).

SDS inhibits the activation of the Notch1 signaling pathway. 
Since the Notch1 signaling pathway is closely related to 
tumor metastasis and SDS can inhibit metastasis  (49), we 
hypothesized that SDS may function through the Notch1 
signaling pathway. The activity of the Notch signaling pathway 
was thus assessed by the expression of its downstream genes, 
including Hey1, Hes1 and Hes5. As shown in Fig. 5, treatment 
with SDS significantly reduced the expression levels of these 
genes (P<0.05). This indicates that SDS likely inhibits the 
metastasis of cancer cells by halting the activation of the 
Notch1 signaling pathway.

Discussion

The Notch1 signaling pathway plays an important role in the 
differentiation, proliferation and apoptosis of cells during 
early development, and may eventually contribute to tumori-
genesis (50,51). Notch1 plays a paradoxical role in different 
types of cancer as it is upregulated in several types of tumors 
and plays complex roles in tumor development and metas-
tasis (24‑30). Previously, Notch1 expression has been shown 
to be associated with the decreased overall survival of patients 
with breast, colorectal and liver cancers (31,52,53). SDS has 
been reported to display anticancer properties both  in vivo 
and in vitro. A previous study demonstrated that SDS inhibited 
the migration and invasion of HT1080 cells (23). Considering 

Figure 3. Effects of SDS on the expression of Notch1, Snail, COX‑2, MMP‑2, MMP‑9 and E‑cadherin in the HMCC97H cells. The cells were treated with 1, 
2, and 4 µg/ml SDS. (A‑F) The expression levels of Notch1, Snail, COX‑2, MMP‑2, MMP‑9 and E‑cadherin were measured by RT‑qPCR, and the data were 
normalized to the GAPDH gene as an internal control. Data are presented as the means ± SEM from 3 independent experiments. Asterisks indicate statistically 
significant differences (*P<0.05 and **P<0.01) compared to the control (0 µg/ml). SDS, salidroside; COX‑2, cyclooxygenase‑2; MMP, matrix metalloproteinase; 
SEM, standard error of the mean.
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the hepatoprotective role of Rhodiola rosea L. in traditional 
Chinese medicine, in the present study, we aimed to determine 
whether SDS can inhibit the metastasis of HCC via the Notch1 
signaling pathway.

Tumor metastasis leads to the expression of two gene sets, 
including invasion promotors and invasion suppressors (54,55). 
E‑cadherin acts as a homotypic homophilic epithelial cell‑cell 
adhesion molecule that can inhibit tumor cell invasion (37‑39). 
During the invasion and metastasis of epithelial tumor cells 
mediated by Notch1, Snail expression is upregulated, while 
E‑cadherin is downregulated. This indicates that Notch1 
may mediate metastasis by disrupting the normal expression 
profiles of Snail and E‑cadherin (33).

In the present study, we investigated the effects of SDS 
on the migration properties of highly invasive HCC cells 
via the scratch wound closure test and Transwell assay. The 
results from scratch wound closure assay revealed that wound 

closure was suppressed by SDS in a concentration‑dependent 
manner (Fig. 1A). Similarly, the results of Transwell assay 
revealed that cell migration was suppressed by SDS in a 
concentration‑dependent manner  (Fig. 1B). This indicates 
that SDS can inhibit the migration of cancer cells in a 
concentration‑dependent manner. In order to determine the 
possible underlying mechanisms, we detected the activity of 
the Notch1 signaling pathway. RT‑qPCR was conducted to 
investigate the transcription of Notch1, the Notch1 signaling 
pathway relevant genes, Hey1, Hes1 and Hes5, and the 
migration‑associated genes, Snail, COX‑2 and E‑cadherin, in 
HMCC97H cells. The expression levels of Notch1, Hey1, Hes1, 
Hes5, Snail and COX‑2 in the HMCC97H cells were significantly 
decreased following treatment with SDS  (Figs.  3  and  5). 
In addition, the expression of the migration‑related gene, 
E‑cadherin, in the HMCC97H cells was markedly increased 
following treatment with SDS (Fig. 3). Western blot analysis 

Figure 4. Effects of SDS on the expression of Notch1, Snail, COX‑2, MMP‑2, MMP‑9 and E‑cadherin in HMCC97H cells. The cells were treated with 1, 2 and 
4 µg/ml SDS. (A‑F) The protein expression levels of Notch1, Snail, COX‑2, MMP‑2, MMP‑9 and E‑cadherin were measured by western blot analysis. Bands 
were scanned and quantified and the results were normalized to GAPDH. Data are presented as the means ± SEM from 3 independent experiments. Asterisks 
indicate statistically significant differences (*P<0.05 and **P<0.01) compared to the control (0 µg/ml). SDS, salidroside; COX‑2, cyclooxygenase‑2; MMP, 
matrix metalloproteinase; SEM, standard errors of the mean.
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was also conducted to examine the protein expression levels 
of Notch1, Hey1, Hes1, Hes5, Snail, COX‑2 and E‑cadherin in 
the HMCC97H cells following treatment with SDS. SDS was 
found to significantly inhibit the activation of Notch1, Hey1, 
Hes1, Hes5, Snail and COX‑2, while it markedly promoted the 
activation of E‑cadherin (Figs. 4 and 5). These results indicate 

that SDS may suppress the migration of HMCC97H cells by 
inhibiting the activation of the Notch1 signaling pathway.

MMPs are a family of proteolytic enzymes that contribute 
to tumor cell invasion, migration and tumor angiogenesis 
by degrading the basement membrane and other ECM 
components (23,56‑58). The endothelial cell activities, which 

Figure 5. Effects of SDS on the expression of Hey1, Hes1 and Hes5 in HMCC97H cells. The cells were treated with 1, 2 and 4 µg/ml SDS. (A‑C) The mRNA 
expression levels of Hey1, Hes1 and Hes5 were measured by RT‑qPCR and the data were normalized to the GAPDH gene as an internal control. (D‑F) Hey1, 
Hes1, and Hes5 protein expression levels were measured by western blot analysis. Bands were scanned and quantified and the results were normalized to 
GAPDH. Data are presented as the means ± SEM from 3 independent experiments. Asterisks indicate statistically significant differences (*P<0.05 and **P<0.01) 
compared to the control (0 µg/ml). SDS, salidroside; Hes1, hairy and enhancer of split 1; Hes5, hairy and enhancer of split 5; Hey1, hairy/enhancer‑of‑split 
related with YRPW motif 1; RT‑qPCR, reverse transcription‑quantitative PCR; SEM, standard errors of the mean.
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are essential for new vessel development, can be blocked 
with MMP inhibitors. In return, MMP inhibitors likely halt 
the proliferation and invasion of tumor cells (59). Previously, 
the overexpression of tumor suppressor tissue inhibitors of 
metalloproteinases (TIMPs) was shown to downregulate 
the expression of MMP‑2 and inhibit the invasion and 
metastasis of cancer cells  (58). Previous studies have 
indicated that the Notch1 signaling pathway can regulate 
the activities of MMP‑2 and MMP‑9 in pancreatic cancer, 
lingual squamous cell carcinoma and breast cancer (28‑30). 
In HCC cells, the downregulation of Notch1 decreases 
the expression and proteolytic activities of MMP‑2 and 
MMP‑9 (31). This suggests that the Notch1/MMP‑2/MMP‑9 
axis may participate in tumor cell invasion. Previously, 
Sun et al demonstrated that the SDS decreased MMP‑2 and 
MMP‑9 activities, and inhibited the invasion of HT1080 
cells (23); however, it remains unknown as to whether the 
SDS‑attributed inhibition of MMP‑2 and MMP‑9 activities 
occurs via the Notch1 signaling pathway.

In this study, we examined the effects of SDS on the 
invasion of HMCC97H cells, and also aimed to elucidate 
the underlying mechanisms. The results of Transwell assay 
revealed that SDS suppressed the invasion of MHCC97H cells 
in a concentration‑dependent manner, and the expression levels 
of MMP‑2 and MMP‑9 in the MHCC97H cells were signifi-
cantly reduced following treatment with SDS. In addition, the 
expression levels of MMP‑2 and MMP‑9 in the MHCC97H 
cells were also reduced after SDS treatment. Previous studies 
have shown that Notch1 mediates the migration and invasion 
of tumor cells through regulation of MMP‑2 and MMP‑9 
expression and that Notch1 signaling pathway activity can 
be suppressed with SDS treatment (32,60). Therefore, SDS 
likely inhibits the migration and invasion of tumor cells by 
down‑regulating the Notch1 signaling pathway.

In conclusion, the findings of this study suggest that SDS 
suppresses the migration and invasion of HMCC97H cells in 
a concentration‑dependent manner by inhibiting the activation 
of the Notch1 signaling pathway. The results suggest that SDS 
may be an effective anticancer agent with minimal adverse 
effects. Considering the importance of the Notch1 signaling 
pathway, this may be an excellent biomarker for the develop-
ment of novel therapies for HCC; however, more profound 
research into the Notch1 signaling pathway and its role in 
cancer metastasis is required.
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